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1. Introduction.

1.1. Representation of subdivisions.

Topological models1 studied in this paper are defined in order to represent

subdivided objects, i.e. partitioned into cells of different dimensions: vertices,

edges, faces, volumes, etc. Such models are often used for the following reasons:

1. « The object » one intend to handle has a structure, which is important

for the application [12, 10, 51], for instance the representation of geolog-

ical layers for geological applications (cf. figure 1): such layers are often

broken by faults, and thus they are composed by many blocks. Similarly

for architectural applications, buildings are composed by different rooms,

walls, doors, etc. For these applications, assemblies of volumes have to be

represented: such volumes share faces, faces share edges and edges share

vertices.

Figure 1 – Geological layers.

The representation of neighborhood relations between cells is also impor-

tant, for instance in order to know the doors and windows which close

a room. So we want to represent the cells and their incidence and adja-

cency relations [80]. A similar need arises in image analysis [20], since it

is important for many applications to represent the structure of an image

segmented into regions. For these examples, cells can be any cells, and

thus cellular topological models are often used (cf. section 3).

1All notions here are based upon Combinatorial Topology [24].
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2. It is often useful or efficient to handle discretized objects, for instance [36,

46, 89, 31, 88, 28]:

– due to the modeling method itself: an object can be modeled by

a set of patches (e.g. Bézier patches); reconstructing objects from

images, using the marching-cubes method, produces triangulations;

– due to the operations: for instance for realistic rendering, objects

are often triangulated, in order to optimize the computation of ray-

object intersections; many simulation applications handle meshes.

As before, it is necessary to represent cells and their incidence or adja-

cency relations. For such applications, cells are often regular ones (e.g.

tetrahedra, cubes, etc.), and simplicial models are mainly used (cf. sec-

tion 2).

Note also that topology-based geometric modeling methods2 make it pos-

sible to represent local informations and to apply local operations, since the

represented objects are subdivided.

1.2. Distinction between topology and embedding.

Topological models represent the structure of subdivided objects: usually,

such models represent cells as abstract objects, and incidence or adjacency as

relations between cells. For instance for incidence graphs (cf. section 3.1), the

nodes of a graph correspond to the cells, and the edges of the graph correspond

2This terminology has been proposed by Jean Françon at the end of the 80’s, in order to

distinguish more clearly between the modeling of subdivisions and Boundary Representation

methods (B-rep). Schematically, B-rep methods intend to model a « solid » (i.e. a volume)

by the surface which bounds it; and usually, a subdivided surface (orientable without bound-

ary) is represented. So, many work dealt with the definition of models and operations for

handling surface subdivisions. When new works dealt with subdivisions of the 3D space [103]

(i.e. objects composed by several volumes), some confusion arises, i.e. what has to be mod-

eled: sets of faces which bound volumes, or sets of volumes? This question has important

consequences, since the topological dimension of faces (resp. volumes) is equal to 2 (resp. 3).

So, it became important to distinguish more clearly between boundary representation and

subdivision representation. Moreover, the boundary of a solid is not necessarily subdivided.

Note also that an other meaning for Boundary Representation is mentioned in section 3.1
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to incidence relations between cells. In order to get a whole geometric model,

it is necessary to link the topological model with an embedding model, which

describes the shapes of cells and thus the shape of the object [9]. For instance,

an object modeled by a set of triangular Bézier patches can be represented by

a semi-simplicial set (cf. section 2.2), which represents the structure of the

set of patches, and each « abstract » simplex is associated with a patch [68].

For representing polyhedra, each abstract vertex (resp. edge, face, etc.) is

associated with (i.e. embedded into) a point (resp. a line segment, a part of

a plane, etc.). More generally, a topology-based geometric model is a semi-

explicit representation: the structure (topology) is explicitly described, the

shape is more or less explicitly represented. For instance for a subdivision of

the plane, the shapes of the faces can be deduced from the shapes of vertices

and edges which bound them (and when edges are embedded as line segments,

their shapes can be deduced from the points which are associated with their

extremity vertices).

Several important interests come from this distinction between topology

and embedding:

– for computing informations [55, 76, 5, 37, 57, 91]. Several informations

can be deduced from the topological model, for instance the topological

characteristics of a surface [58]. These characteristics (number of bound-

aries, orientability factor, genus) make it possible to distinguish between

different types of surfaces (cf. figure 2), and they can be useful in order

to check the object validity during the construction, or to control the

construction process itself. Similarly, the explicit representation of the

object structure by a topological model can be very useful, for instance

for comparing or matching objects (e.g. automatic matching between

image regions, automatic re-application of a construction process when

several parameters have been modified, etc.).

– for constructing objects [70, 40, 19, 9, 53]. For instance for animat-

ing articulated objects, the shape is modified during time, but not the

structure: so, no topological operation is applied. Other operations can

be decomposed into more local and basic operations. For instance, cell

rounding can be defined as the composition of a topological chamfering
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operation and a geometric rounding operation (cf. figure 3): the topo-

logical model provides informations which are used in order to control

the shape modifications. The converse exists for other operations [18]:

for instance, boolean operations can be defined as compositions of local

operations (e.g. cell split and merge), and embedding information control

the topological modifications.

(a) (b)

(c) (d)

Figure 2 – Several surfaces. The ring (a) (resp. the Möbius strip (b)) is an orientable (resp.

non orientable) surface with one boundary. The torus (c) (resp. the Klein bottle (d)) is an

orientable (resp. non orientable) surface without boundary.

d1

d2

S

(a) (b) (c)

Figure 3 – Chamfering and rounding vertices and edges. Edges d1, d2 and vertex S (a) are

chamfered (b). Rounding, by associating surface patches (c).
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1.3. Different classes of models, and general frame.

Many models (and operations) have been proposed within different fields,

in order to represent and handle subdivided objects, e.g. geometric modeling,

computational geometry, image processing and analysis, topology, mechanics of

solids, etc [6, 3, 77, 101, 59, 48, 103, 38, 42, 29, 13, 72, 71, 39, 4, 94, 60, 78, 87, 98,

49, 23, 14, 61, 89, 66, 74, 45, 90, 67, 50, 17, 8, 69, 11, 15, 32, 28, 30, 26, 83, 92].

We have to notice (and this is reassuring) that the proposed solutions are often

similar, whatever their original field is. Schematically, models can be classified

according to (cf. figure 4):

1. the type of cells: we can distinguish between models which represent

assemblies of:

– regular cells: simplices (triangles, tetrahedra, etc.), cubical simplices

(squares, cubes, etc), simploids (which are cartesian products of

simplices)3, etc;

– any cells: in fact, cells are never « any » cells; cellular models make it

possible to handle more general cells, but such cells generally satisfy

topological properties (cf. section 3);

2. the type of assembly : we can distinguish between topological models

which make it possible or not to represent subdivisions in which cells are

incident several times between them (i.e. multi-incidence). For instance,

a loop is an edge the two extremities of which are identified into one

vertex: so the edge is incident twice to the vertex. For both cases, we

can distinguish other sub-classes, mainly:

– quasi-manifolds, which are characterized by important topological

properties, for instance surfaces4. Models exist for representing

3The set of simploids contains thus simplices themselves, cubes, since they are products

of 1-dimensional simplices (i.e. edges), 3D prisms which are products of a triangle and an

edge, etc.
4A subdivided surface without multi-incidence can be constructed by « gluing » faces

along their boundary edges, in such a way that any edge is incident to at most two faces;

more generally, an n-dimensional quasi-manifold can be constructed by gluing n-cells by
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any quasi-manifolds (orientable or not orientable, with or with-

out boundary), or for representing oriented quasi-manifolds without

boundary;

– complexes (such objects are usually called non-manifolds in the ge-

ometric modeling literature): they are « any » assemblies of cells5,

the word « any » having to be more precisely defined (cf. section 3).

Cells

Assemblies

Regular

“Any”

Complexes Quasi-manifolds

Figure 4 – Different classes of subdivisions.

Instead of enumerating topological models, the goal of this paper is to

present a general frame for defining simplicial, simploidal and cellular models

(cf. figure 5 and figure 6). For instance, it is possible to deduce models for

representing sub-classes of simplicial objects from « general » simplicial models,

by mechanisms based upon the topological properties satisfied by these sub-

classes. In fact, it is a classical way for optimizing data structures (for instance,

optimized data structures can be deduced from a general graph data structure

in order to represent graphs satisfying some regularities). Cubical models and

identifying their boundary (n − 1)-cells, in such a way that an (n − 1)-cell is incident to

at most two n-cells. Quasi-manifolds exist, the geometric representation of which are not

manifolds, i.e. which contain points the neighborhoods of which are not homeomorphic to

n-balls. In fact, it is well-known that manifolds can not be combinatorially characterized,

but quasi-manifolds can be. Note also that any quasi-manifold is a pseudo-manifold, but the

converse is not true.
5For instance in dimension 2, an edge can be incident to more than two faces, faces can

be « glued » along a vertex, etc.
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more generally simploidal models can be deduced from simplicial models, using

the fact that cells are cartesian products of simplices. Similarly, cellular models

can be deduced from simplicial models, using a simple numbering mechanism

which induces a notion of cell. As for simplicial models, mechanisms can be

conceived in order to represent sub-classes of simploidal and cellular objects

(quasi-manifolds, etc.) [73, 14, 74, 45, 7, 2].

simplicial simploidal

cellular

cartesian product

cellular numbering

Figure 5 – General frame for the definition of topological models. Loops correspond to

optimization mechanisms according to the topological properties of sub-classes.

Cellular Quasi-Manifolds

orientable without boundary

Cellular Quasi-Manifolds

Numbered Simplicial Quasi-Manifolds

Numbered Semi-Simplicial Sets

Semi-Simplicial Sets

Figure 6 – Examples of sub-classes: we could also distinguish between models according to

the fact that multi-incidence is allowed or not.

Such a general frame makes it possible to:
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– extend to cellular models important properties defined in combinatorial

topology for simplicial models;

– convert cellular models into simplicial ones (and conversely under certain

restrictions); so, cells of cellular models are not so general, and it is

possible to study their properties.

It is thus also possible to choose a topological model for a particular appli-

cation, according to several criteria.

1.4. Model choice.

The choice of a topological model obviously depends upon the type of ob-

jects one intend to handle, and also upon the operations which have to be

applied, the space/time complexity and the complexity of software develop-

ment [9, 41]. It is thus a classical problem: choosing a data structure, taking

into account:

1. the « type » of objects. It is possible to define a general model in order

to represent « any » type of cellular complex, and the other models are in

fact optimizations adapted for particular sub-classes. Such optimizations

are deduced from the topological properties which characterize the sub-

classes, by making implicit some information. It is obvious that using a

model defined for a sub-class in order to handle objects of a larger class

can lead to important errors. For instance, incidence graphs represent

cellular complexes without multi-incidence. Even if it is possible to intu-

itively deduce an incidence graph from a subdivision in which some cells

are multi-incident, the formal interpretation of the resulting graph does

not correspond in any way to the initial subdivision (cf. section 3.1);

2. the operations applied to the objects. For instance, boolean operations

(union, intersection, difference) applied to simplicial objects do not di-

rectly produce simplicial objects (cf. figure 7). A first way consists in

using a cellular model for representing simplicial objects, applying the

operation and triangulating the result. A second way consists in splitting
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simplices when intersections are processed: the problem here lies in the

fact that new simplices are added which perhaps produce new intersec-

tions, and examples exist showing that the whole process may be non

convergent. As far as we know, this convergence problem has never been

carefully studied.

3. the space/time costs of models and operations. Given a class C of ob-

jects, a model ML corresponding to a larger class uses generally more

memory space than an optimized model MC corresponding to C: some

information is explicit within ML, and implicit within MC . It is clear

that the time complexity of operations has also to be taken into account:

when some operations often need to make explicit some implicit infor-

mation, a less efficient model (according to space complexity) could be a

better choice. For instance, representing a polyhedron by a list of faces

can seem efficient; in fact, since adjacency and incidence relations are im-

plicit, this representation is often not efficient when constructing objects,

since adjacency and incidence information are used by many construction

operations. Conversely, many algorithms do not need all information con-

tained into the whole geometric model, and specialized models can be a

better choice [93] (e.g. a list of faces for rendering algorithms).

4. the cost of operation conception. For instance, the definitions of sev-

eral models do not take into account the constraints of consistency which

have to be satisfied by the modeled objects (e.g. an edge incident to

three vertices can be represented by an incidence graph: cf. section 3.1).

The construction process has thus to control the modeled object valid-

ity. For instance, Euler operators have been defined in order to construct

any subdivision of any orientable surface without boundary [81, 79]: each

operator simultaneously creates or removes several cells; so, the imple-

mentation of Euler operators for handling incidence graphs, even if not

complicated, is not so easy than for other basic operations defined for

handling models in which the constraints of consistency are explicitly

defined.

So, it is clear for us that « one best model » does not exist; some models are
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more adapted for a particular use, and thus conversion algorithms which can

be deduced from the general frame presented in this paper are very important

for practical purposes.

(a)

new intersection

(b)

Figure 7 – Boolean operations are not internal to the set of finite simplicial objects. (a) the

intersection of two simplicial objects is not a simplicial one, (b) simplex splitting generates

new intersections.

Basic simplicial and cellular models are presented in section 2 and section 3

respectively, together with basic related notions and operations. Obviously, it

is necessary for particular applications to adapt such models and operations,

and / or to define more elaborated models and operations from the basic ones.

2. Simplicial models.

Abstract simplicial complexes (ASCs) are one of the most known topological

models [1, 89, 21, 32]. Semi-simplicial sets (SSSs) generalize them [82, 67, 68],

i.e. a SSS can be associated with any ASC, but the converse is not true. In

particular, SSSs can represent « curved » objects, maybe multi-incident, but

it is not possible for ASCs. The definition type also differs: ASCs are sets of

sets, SSSs are algebra.

Their definitions are here recalled, and also basic notions and operations

(operations for computing topological properties are not discussed here, though

many works deal with them [35, 37, 91]). Conversion operations are mentioned,

and also classical model optimizations as for simplicial quasi-manifolds.
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2.1. Abstract simplicial complexes

Definition. An abstract simplicial complex K is defined upon a set V of

(abstract) vertices in the following way (cf. figure 8):

– a p-dimensional simplex is a set of p + 1 vertices;

– K is a set of simplices, such that any non empty subset of any simplex

of K is a simplex of K.

The dimension of K is the highest dimension of the simplices of K.

Let σ = {v0, ..., vp} be an abstract simplex. A proper face of σ is a non

empty subset of vertices of σ, different from σ. The principal face of σ is σ

itself. The boundary of σ is the ASC made of the proper faces of σ. The star

of σ is the set of simplices for which σ is a (proper or principal) face. σ is a

principal simplex if it is not the proper face of any simplex.

Traversal algorithms can be defined using these notions, i.e. by traversing

simplices of the boundary and / or the star of a simplex. These « neighbor-

hood traversal » algorithms are very important for many operations. They

correspond for topological models to « connectivity traversal » algorithms for

graphs; they are either fundamental ones, and they can be defined in similar

ways6.

Geometric realization. The geometric realization of an ASC is a simpli-

cial complex (cf. figure 8). An euclidean p-dimensional simplex is the convex

hull of p + 1 linearly independent points of an euclidean space. A face of an

euclidean simplex is a simplex defined by a non empty subset of the points

which define the simplex. A simplicial complex L is a set of euclidean simplices

which satisfy the two following properties:

– any face of any simplex of L is a simplex of L;

– the (geometric) intersection of two simplices of L is empty, or it is a face

common to the two simplices.

6Note that simple graphs correspond to 1-dimensional ASCs.
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v0

v1

v2

v3

v4

Figure 8 – The geometric realization of ASC K, defined by:

V = {v0, v1, v2, v3, v4},

K = {{v0}, {v1}, {v2}, {v3}, {v4},

{v0, v1}, {v0, v3}, {v0, v4}, {v1, v2}, {v1, v3}, {v2, v3}, {v3, v4},

{v0, v1, v3}, {v1, v2, v3}}.

{v0} and {v1, v3} are proper faces of {v0, v1, v3}, which is a principal simplex. {{v0}, {v1}}

is the boundary of {v0, v1}. The star of {v0} is composed by {v0, v1}, {v0, v3}, {v0, v4},

{v0, v1, v3}. The principal simplices of K are {v0, v1, v3}, {v1, v2, v3}, {v0, v4}, {v3, v4}.

It is clear that several simplicial complexes can be associated with one ASC:

the geometric realization of an ASC K is the set of all (isomorphic) simplicial

complexes which can be associated with K (or sometimes it is one element of

this set)7.

Representations. Due to the definition of ASCs, they can be represented

using well-known methods conceived for handling sets; from a practical point

of view, the notions of face, boundary and star are handled using set inclusion

operations, which have to be managed very efficiently. Note also that we can

choose to explicitly represent:

– all simplices: the consistency constraint of ASCs has thus to be satisfied

(i.e. any face of any simplex is a simplex of the ASC);

– the principal simplices: implicitly, all proper faces belong to the ASC. For

the example of figure 8, we have to represent K ′={{v0, v1, v3},{v1, v2, v3},

{v0, v4}, {v3, v4}}.

Embedding an ASC into an euclidean space consists in associating a sim-

plicial complex with it, i.e. in associating a point with any vertex in such a

7It is possible to associate a simplicial complex in R
2n+1 with any n-dimensional ASC [86].
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way that the geometric constraints over simplicial complexes are satisfied (i.e.

the intersection of two simplices is empty or it is a common face).

2.2. Semi-simplicial sets

Definition. An n-dimensional semi-simplicial set S = (K, (dj)) is defined

by (cf. figure 9):

– K =
⋃n

i=0 Ki, where Ki is a set of abstract objects called i-dimensional

simplices, for any i between 0 and n;

– maps (dj) are boundary operators: no operator is defined on K0; for any

i between 1 and n, i + 1 operators are defined on Ki, which associate

each i-simplex with the i + 1 (i − 1)-simplices of its boundary8. These

operators satisfy the following condition: for any simplex of dimension

at least 2, the successive applications of two operators di then dj , with

j < i has the same result than the application of dj followed by di−1
9.

The consistency of the simplicial structure is given by this constraint: with-

out it, for instance a 2-simplex could be incident to six vertices10.

Notions of proper face, principal face, principal simplex, boundary and star

are here defined using boundary operators: for instance, j-simplex µ is a proper

face of i-simplex σ if a non empty sequence of boundary operators dpi−1
, ...,

dpj
exists, such that σdpi−1

...dpj
= µ.

Geometric realization. The notion of simplicial complex can not be used

in order to define the geometric realization of an SSS: this can be seen on the

two following examples:

– K0 = {µ},K1 = {σ}, and σd0 = σd1 = µ. This SSS describes a loop,

i.e. an edge the extremities of which are identified. A simplicial complex

8∀i, 1 ≤ i ≤ n,∀j, 0 ≤ j ≤ i : dj : Ki → Ki−1.
9∀p, 2 ≤ p ≤ n,∀σ ∈ Kp, ∀i, 0 ≤ i ≤ p,∀j, 0 ≤ j < i, σdidj = σdjdi−1 (where d(σ) is

denoted by σd).
10A 2-simplex σ can have three distinct 1-simplices in its boundary: σd0, σd1, σd2, and any

1-simplex µ can have two distinct 0-simplices in its boundary: µd0 and µd1. The constraint

corresponds to the fact that vertices are equal two by two: σd2d1 = σd1d1, σd2d0 = σd0d1,

σd1d0 = σd0d0.
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v1
v2

v3

v4

v5

d0

d0

d0 d0

d0

d0 d0

d0

d1
d1

d1
d1

d1

d1

d1

d1

d2

d2

(a) (b)

d0 d0

d0

d1
d1d1

d2

v1 v2

v1 v2
d0

d0

d1

d1

(c) (d)

Figure 9 – Examples of semi-simplicial sets. (a) C is a simplicial complex. (b) An SSS

describing the structure of C. (c) and (d) These two SSSs can not be associated with any

ASC.

associated with this SSS is composed by a point, associated with vertex

µ, and edge σ is degenerated into this point.

– K0 = {µ0, µ1},K
1 = {σ0, σ1}, and σ0d0 = σ1d0 = µ0, σ0d1 = σ1d1 = µ1.

This SSS describes two edges sharing two vertices. A simplicial complex

associated with this SSS is composed by two points, associated with the

two vertices, and the two edges are embedded into one line segment.

The geometric realization of an SSS is a CW-complex (it is useless to recall

here this notion) [82, 52]. The important fact for geometric modeling is the

following: SSSs can represent simplicial objects, maybe with multi-incidence

and maybe « curved » objects; ASCs are naturally associated with « linear »

objects.

Representations. An oriented graph can easily be associated with any

SSS: a node of the graph corresponds to a simplex (the dimension of it can also
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be associated with the node); an edge of the graph links two nodes correspond-

ing to two simplices which are linked by a boundary operator (the index of

the boundary operator is associated with the edge). This graph satisfies some

properties: for instance, all nodes sharing a dimension have the same number

of edges issued from them. So, it is possible to represent SSSs using methods

conceived for representing oriented graphs. In practice, it could be useful to

represent the inverse edges of graphs, for star traversal for instance.

SSSs can be embedded using parametric models (cf. figure 10), for instance

Bézier simplicial spaces: for data structures, this consists in associating control

points with simplices (according to the association method, C0-continuity can

be implicitly controlled).

(a)

d0d0

d0d0d0 d0

d0

d0

d0

d1

d1

d1

d1d1

d1
d1

d1

d1

d2

d2

(b)

Figure 10 – A semi-simplicial set, embedded using Bézier simplicial patches.

2.3. Basic operations

Two basic operations can be used in order to construct any simplicial object:

cone and identification. We here recall their basic topological definition: note

that many more elaborated operations have been proposed in order to control

the structures and shapes of the resulting objects:

– schematically, a cone operation consists in adding a new vertex, and to

create, for any initial i-simplex, a new (i + 1)-simplex linking it with

the new vertex (cf. figure 11). As a particular case, any simplex (an its

boundary) can be created by successive applications of the cone operation.

This operation is easily defined on both ASCs and SSSs.
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– the identification operation consists in identifying two simplices having

same dimension within a simplicial object (cf. figure 11). For ASCs,

this operation always consists in identifying vertices, and simplices can

be degenerated by this operation (identifying two vertices incident to

an i-simplex degenerates it into an (i − 1)-simplex). If degeneracy has

to be avoided, it is necessary to control the operation by adding a con-

straint (the cost for checking this constraint has to be taken into account).

Degeneracy is not a problem for SSSs, since simplices are basic objects

(identifying simplices of the boundary of a simplex has no effect on its

existence); but identifying simplices could have surprising effects, due to

the consistency constraint of SSSs.

d0 d1

v

d0d0

d0

d0

d0 d1d1

d1

d1d1
d2

(a) (b)

d0

d0
d0d0 d0

d0

d0

d0

d1

d1

d1

d1d1

d1
d1

d1

d2

d2

d0

d0

d0 d0

d0

d0

d0

d1

d1

d1

d1d1

d1
d1

d2

d2

µ

(c) (d)

Figure 11 – Cone operation (a) and (b). Identification operation (c) and (d) (two edges are

identified into a single edge).

Many other basic operations have been defined [49, 89, 75] (cf. figure 12):

– edge flip is often used for handling triangulations of surfaces in many
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applications (cf. figure 12(a) and 12(b));

– splitting (cf. figure 12(c) and 12(d)) a simplex by a vertex results in

splitting the simplex and its star11. This « propagation » explains why

the definition of boolean operations by successive applications of split

operations possibly do not converge (cf. section 1.4).

– sweeping (cf. figure 12(e) and 12(f)), and more generally cartesian prod-

uct operations are defined on ASCs and SSSs.

Note also that many works deal with the computation of topological prop-

erties of ASCs and SSSs (e.g. homology groups), which provide information

about the modeled objects which can be useful during a construction process

(number of boundaries, of « holes », etc.).

a

(a) (b)

a

(c)

a1 a2

(d)

a

b×

(e) (f)

Figure 12 – Some operations for handling simplicial objects. (a) and (b) flip of edge a. (c)

and (d) split edge a into a1 and a2, by adding a new vertex: note that the simplices of the

star of a are also split. (e) and (f) sweeping edge a along edge b.

2.4. Classes of simplicial objects

Conversion between ASCs and SSSs. Simplicial objects associated

with ASCs make a sub-class of objects associated with SSSs: so, it is always

11This « propagation » is general for all topological models with regular cells: cubic,

simploidal, etc.
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possible to associate an SSS with an ASC12. Conversely, it is possible to asso-

ciate an ASC with any SSS without multi-incidence, i.e.:

– any i-simplex is incident to i + 1 distinct vertices;

– two distinct i-simplices are incident to two distinct sets of vertices.

Quasi-manifolds. For many applications, it is important to handle sub-

classes of simplicial objects, for instance triangulations of surfaces or their

combinatorial extensions in higher dimensions: the simplicial quasi-manifolds.

Many works have dealt with the definition of local characteristic properties, or

with constructive characterization. For instance, an n-dimensional simplicial

quasi-manifold can be defined as a simplicial object which can be constructed

by:

– adding n-simplices (and their boundaries), which are incident to (n + 1)

distinct vertices;

– identifying (n − 1)-simplices, in such a way that any (n − 1)-simplex is

incident to at most two n-simplices.

This constructive definition fits well with SSSs, and optimized models can

be deduced for representing quasi-manifolds: schematically, we have to repre-

sent n-simplices and to replace boundary operators by « adjacency » operators

between n-simplices (cf. figure 13). It is more difficult to apply this definition

to ASCs, since degeneracy can not be dissociated from identification [31, 33].

For ASCs, several authors have proposed to explicitly represent principal sim-

plices, and to add « pointers » corresponding to adjacency relations between

n-simplices: this information is redundant, but it is useful in order to optimize

traversal algorithms [89].

Extensions and other models with regular cells. The notion of simpli-

cial set [82] generalizes SSSs, by adding a second class of operators: degeneracy

operators. It is then possible to handle simplicial objects in which some sim-

plices are degenerated ones: for instance, an edge of the boundary of a triangle

12Given an ASC, it is generally possible to associate several SSSs with it: intuitively, this

is similar to the fact that several sequences can be associated with a set.
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Figure 13 – Optimizing SSSs for representing quasi-manifolds.

can be degenerated into a vertex, but the triangle itself is not degenerated. A

priori, this has few interests for geometric modeling; a theoretical interest lies

in the fact that cartesian product can easily be defined for simplicial sets, and

it is thus possible to optimize it for semi-simplicial sets. Other extensions have

been proposed in order to handle for instance « incomplete » simplicial objects,

i.e. such that all simplices of the boundary of a simplex do not necessarily be-

long to the simplicial object. This kind of extension has also been proposed for

cellular objects.

Cubical sets and more generally simploidal sets [95, 54, 92] have been de-

fined in order to handle objects the cells of which are cartesian products of

simplices (1-simplices for the cubical case). Simploidal sets can be used for

instance for handling assemblies of Bézier patches (i.e. products of Bézier sim-

plicial patches) [25, 85] (cf. figure 14).

The type of a simploid is defined by a k−tuple (a1, . . . , ak) of strictly pos-

itive integers; k is the length of the simploid,
∑k

l=1 al is its dimension (intu-

itively, a simploid is the product of simplices of respective dimensions a1, · · · ak).

It should be noted that a p−simplex is a simploid of type (p) and that a p−cube

is a simploid of type (1, . . . , 1) with length p.

A n-dimensional simploidal set S = (K, (ǫi
j)) is the union

⋃n

p=0 Kp of sets

of p-dimensional simploids, 0 ≤ p ≤ n equipped with boundary operators ǫi
j

such that (figure 14):

(2.1)
(. . . , ai, . . .)ǫ

i
j

with 0 ≤ j ≤ ai

:−→






(. . . , ai − 1, . . .) if ai > 1

(. . . , âi, . . .) otherwise
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(2.2) (. . . , ai, . . .)ǫ
i
kǫi

l = (. . . , ai, . . .)ǫ
i
lǫ

i
k−1

with 0 ≤ l < k ≤ ai

and ai > 1

(2.3)
(. . . , ai, . . . , aj , . . .)ǫ

j
kǫi

l

with i < j, 0 ≤ k ≤ aj , 0 ≤ l ≤ ai

=






(. . . , ai, . . . , aj , . . .)ǫ
i
lǫ

j
k

if ai > 1

(. . . , ai, . . . , aj , . . .)ǫ
i
lǫ

j−1
k

otherwise.

where âi means that ai is removed.

Equation (2.1) denotes the action of a boundary operator on the simploid

type. The cartesian product of a simploid s by a simploid of type (0) (i.e. a ver-

tex) is equal to s. Hence, if a zero appears after the application of a boundary

operator (i.e. if ai = 1), it is removed from the type. Equation (2.2) corre-

sponds to the commutation relation of boundary operators for semi-simplicial

sets. Equation (2.3) corresponds to the commutation relation of boundary

operators, when they are successively applied to two different simplices. The

second part of this equation takes into account the shifts issued from suppressed

zeros (for example, (2, 1, 1)ǫ30ǫ
2
1 = (2, 1)ǫ21 = (2) = (2, 1)ǫ21 = (2, 1, 1)ǫ21ǫ

2
0).

Note that this definition can be optimized for cubical sets for instance.

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
0

ǫ1
1

ǫ1
1

ǫ1
1

ǫ1
1

ǫ1
1

ǫ1
1

ǫ1
1

ǫ1
1

ǫ1
1 ǫ1

2

ǫ2
1 ǫ2

0F1
F2

(a) (b) (c)

Figure 14 – Simploidal sets. (a) boundary operators are explicitly represented (b) a simploidal

set embedded by Bézier spaces (c) prisms link cubes and tetrahedra.
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3. Cellular structures.

Defining a cellular topological model as a simple generalization of simplicial

models is difficult, since one main interest of cellular models is the fact that

cells can have « any » structure, contrary to simplices.

Many works dealt with the definition of cellular topological models. Al-

though these models come from different fields (e.g. geometric modeling, im-

age processing and analysis), they are quite similar and we can distinguish

between two main classes: incidence graphs and ordered models, according to

the terminology proposed by Brisson13.

Incidence graphs can represent a large class of objects (without multi-

incidence), but few works dealt with the characterization of these objects and

the definition of consistency constraints in order to control the topological

properties satisfied by the modeled objects. These problems are solved by or-

dered models. Some partial results exist [2], showing the equivalence between

some sub-classes of incidence graphs and some ordered models. In these cases,

conversion operations can be defined between both types of models.

3.1. Incidence Graphs.

Introduction. Several notions based upon partially ordered sets have been

defined [7, 94, 13, 97], in order to represent different classes of objects (for

instance having or not a complete boundary, etc.). Several models make it

easier to express some topological properties or some construction operations.

We here study incidence graphs (IG) in their basic definition.

An IG is an oriented graph the principle of which is the following (cf. figure

15): a node corresponds to a cell of the modeled object (the dimension of the

cell is associated with the node); an oriented edge corresponds to a boundary

relation between an i-dimensional cell and an (i − 1)-cell of its boundary. An

13The « order » of cells is not explicitly represented by incidence graphs: for instance, two

different subdivisions are presented in figure 17, corresponding to one incidence graph (we

will see later that this graph does not correspond to any of these subdivisions). If we follow

the boundary of face F1 counterclockwise, we get two distinct edge sequences (a, c, e, d, f, b)

and (a, c, f, d, e, b). Similarly, if we go round vertex 3 counterclockwise, we get the edge

sequences (b, f, e, c) and (b, e, f, c). This order notion, which is not explicitly represented by

incidence graphs, is explicit for ordered models: cf.figure 22.
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object is connected when its associated graph is connected. The set of cells

corresponding to the sons (resp. fathers) of a node n is the boundary (resp.

star) of the cell corresponding to n. As for simplicial models, these notions

are important since they are the basis for defining the local neighborhood of a

cell (i.e. adjacency and incidence relations, used in order to traverse an object

or to control its construction; such traversals are fundamental operations for

topological models).

a b

c

d e

f

A

B C

D E

F1

F2

(a)

a b c d e f

A B C D E

F1
F2

(b)

Figure 15 – An incidence graph.

But as far as we know, no consistency constraints have been defined for IGs

(equivalent to that of SSSs for instance). So, fundamental problems arise from

the definition of IGs:

– what constraints have to be added to the definition of IGs in order to rep-

resent « valid » objects? For instance, an edge incident to three vertices

can be represented by an IG (cf. figure 16). More precisely, what topo-

logical properties have to be satisfied by the cells? As said before, one

main interest of cellular models is the fact that cells can be « any » cells,

but this example shows that it could be necessary to be more precise;

– given a subdivided object, does the corresponding « intuitive » IG unam-

biguously represent this object? The answer is clearly no (cf. figure 17);

more precisely, it is not possible to represent objects with multi-incidence

using IGs, since it is necessary to know for these multi-incident cells the

order of the cells of their boundaries and / or stars.
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a
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F1 F2 F3

(a)

a

1 2

3

F1

F2
F3

(b)

Figure 16 – A part of a subdivision containing an edge incident to three vertices.
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a b c d e f

1 2 3 4 5

F1 F2

(c)

Figure 17 – Two distinct objects corresponding to one incidence graph.

Topological interpretation. The first problem is studied in section 3.2

below. The second problem is solved by the fact that it is always possible to

associate an ASC (and thus a SSS) structured into cells with any IG, in the

following way (cf. figure 18):

– each simplex corresponds to a « partial path » within the IG: more pre-

cisely, each simplex corresponds to a sequence of incident cells of strictly

increasing dimensions, i.e. to a particular sub-path of the IG;

– this ASC is structured. Each vertex of the ASC can be associated with the

dimension of the corresponding cell, and the ASC can be partitioned in

the following way: an i-dimensional subset corresponds to a vertex of the

ASC numbered by i, and it is composed by this vertex and all simplices

of its star which are incident to vertices numbered by a dimension lower

than i. A 0-dimensional subset is thus defined by a vertex numbered by

0; a 1-dimensional subset is composed by a vertex numbered 1 and by the
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incident edges numbered by 0 and 1, etc. These subsets make a partition

of the ASC and formally define the structure of cells and their incidence

and adjacency relations as represented by the IG.

0

0 0

00

1

1 1

1

1

1

2

2

σ1

σ2

σ3σ4

σ5

σ6

σ7

σ8

σ9

σ10
σ11

σ12

σ13

σ14

(a)

a b

c

d e

f

A

B C

D E

F1

F2

(b)

Figure 18 – (a) an ASC structured into cells, corresponding to the IG of figure 15(b); (b)

the corresponding object; for instance, 2-simplex σ3 (resp. σ14) corresponds to vertex A

(resp. C) seen from edge b (resp. c), seen from face F1 (resp. F2), i.e to the path (A, b, F1)

(resp. (C, c, F2)). The 1-simplex incident to σ7, the extremities of which are numbered

0 and 2, corresponds to path (B, F2). The ASC is structured into 5 vertices (i.e. the

vertices numbered 0, corresponding to (A), (B), (C), (D) and (E)), 6 edges (i.e. the sub-

sets composed by 0-simplices numbered 1 and the incident 1-simplices the extremities of

which are numbered 0 and 1: {(a), (A, a), (B, a)}, {(b), (A, b), (C, b)}, {(c), (B, c), (C, c)},

{(d), (B, d), (D, d)}, {(e), (C, e), (E, e)}, {(f), (D, f), (E, f)}), and 2 faces (i.e. the subsets

composed by 0-simplices numbered 2, the incident 1-simplices numbered 0 and 2, or 1 and

2, and the incident 2-simplices, i.e.

{(F1), (A, F1), (B, F1), (C, F1), (a, F1), (b, F1), (c, F1),

(A, a, F1), (A, b, F1), (B, a, F1), (B, c, F1), (C, b, F1), (C, c, F1)}

and

{(F2), (B, F2), (C, F2), (D, F2), (E, F2), (c, F2), (d, F2), (e, F2), (f, F2),

(B, c, F2), (B, d, F2), (C, c, F2), (C, e, F2), (D, d, F2), (D, f, F2), (E, e, F2), (E, f, F2)}.

We can now forget any intuition about cellular objects and formally define

a cellular object as a simplicial object structured into cells as described above

(as far as we know, all cellular models can be interpreted in a similar way): this

solves the ambiguity problem of IGs (note that the object described by the IG

of figure 17 is not one of the two subdivisions presented on this figure). So, IGs
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make an optimized model defined for representing a certain subclass of cellular

objects, but the characterization of this class is still incomplete. Note also that

simplicial objects exist, which can not be structured into cells (cf. 19).

0

1
2

?

Figure 19 – A simplicial object, which can not be structured into cells.

Representation and operations. Representations of IGs are obviously

similar to representations of oriented graphs. In practice, it is often useful

for some operations to explicitly represent the inverse edges of the graph, for

instance for computing stars of cells.

Although formally defined as simplicial objects (structured into cells), IGs

make a cellular model which can be associated with several embedding mod-

els. A cell is embedded by associating a geometric object of corresponding

dimension with it (point, piece of curve, piece of surface, etc.). Cells of dimen-

sions greater than 1 are often embedded into a support space, and their precise

shape is deduced from this support space and the shapes of their boundaries14;

this corresponds to the trimmed patch notion used in Computer-Aided Design

(CAD). For instance, a face is embedded onto a surface, cut off by the boundary

of the face; each edge of the face boundary is embedded onto a curve contained

in the support surface of the face, and cut off by its extremity points.

Although it is easy to define basic operations for handling graphs (e.g.

adding or removing nodes or edges), defining basic operations for handling

IGs is more complicated, since they have to control the topological validity

of the constructed object. For instance, several sets of Euler operators have

14This is the current meaning for Boundary Representation.
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been defined for constructing any subdivision of any orientable surface with-

out boundary [80]15. Euler operators are such that the modifications of the

topological characteristics of the surface subdivision are correct (according to

the classification of surfaces). But the definition of similar operators for higher

dimensions remains a problem, since no equivalent classification exists [102].

Several methods have been proposed in order to construct IGs from valid ob-

ject representations (e.g. extracting objects from images by marching-cubes

algorithms); the IG validity comes from the initial object validity. Mainly,

the interest of IGs for this type of applications lies in the reduction of the

represented information, while keeping the essential of topological information.

3.2. Ordered models and cellular quasi-manifolds.

We have seen above that the formal interpretation of IGs is based upon

that of ASCs structured into cells. The definition of ordered models is directly

deduced from this interpretation: numbered simplices (and not cells) are ex-

plicitly represented, providing more information (and avoiding thus problems

related to multi-incidence). An other constraint which is taken into account is

the fact that cells satisfy some topological properties: for instance for cellular

models described in this section, cells are quasi-manifolds (taking into account

such constraints was not directly possible for IGs: cf. section 3.1 and figure

16).

We here study three models derived from the combinatorial map notion [43,

62, 22, 100, 99, 16, 63] (see also the notions of Graph-Encoded Manifolds and

the Crystallization Theory [56, 47, 77, 48, 76, 5], defined in Italy by Mario

Pezzana during the 70’s for studying piecewise-linear manifolds by combinato-

rial methods). These models are respectively generalized maps, maps16, and

chains of maps [74, 45] (cf. section 3.3), which can be used for representing cel-

lular quasi-manifolds, orientable cellular quasi-manifolds without boundaries,

and cellular complexes. We can show that each model corresponding to a

sub-class of cellular objects can be derived from a model corresponding to

15For instance, insert a vertex and an edge incident to the vertex within a face, or split a

face by inserting an edge between two vertices of the face boundary, etc.
16This notion extends for any dimension the notion of combinatorial map, initially defined

for dimension 2.
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a larger class: for instance, generalized maps (resp. maps) optimize chains of

maps (resp. generalized maps) for the representation of cellular quasi-manifolds

(resp. orientable quasi-manifolds without boundaries). At last, we study the

links between these models and other ordered models.

Generalized maps. Given a cellular quasi-manifold, we can intuitively

define the generalized map notion in the following way. The object represented

on figure 20(a) is composed by two faces F1 and F2, « glued » along their

common edge c. This edge can be split into two new edges (cf. figure 20(b)),

in order to dissociate F1 and F2. These new edges correspond respectively to

edge c « seen » from face F1 and to edge c « seen » from face F2. A « 2-

dimensional relation » is added between these new edges, in order to remember

that they initially correspond to a single one. This process is applied to all

other edges, but no new edge is created since all edges belong to the boundary

of the surface: in order to formalize this fact, each edge is linked with itself by

the 2-dimensional relation (cf. figure 20(b)).

The boundary of each face F1 or F2 is a 1-dimensional quasi-manifold: the

same process can be applied, and each vertex is split into two distinct vertices,

linked by a 1-dimensional relation (cf. figure 20(c)). The 2-dimensional relation

is now defined upon these new basic elements (cf. figure 20(c)). The boundary

of each edge is now defined by two distinct vertices, linked by a 0-dimensional

relation meaning that they correspond to a single edge (cf. figure 20(d)).

Split vertices obtained at the end of the process are the basic elements of

the model17, and they are usually called darts in the combinatorial map termi-

nology. i-dimensional relations link pairs of darts, and this can be formalized

in the following way:

A n-dimensional pre-map is an algebra C = (B,α0, ..., αn), where:

– B is a finite set of abstract objects called darts;

– ∀i, 0 ≤ i ≤ n, αi is an involution18 on B.

17At the end of the process, the resulting vertices correspond to the initial vertices, « seen »

from the initial edges, « seen » from the initial faces, i.e. to triangles numbered {0, 1, 2}.
18An involution α : B → B is a bijection on B which is its own inverse; in other words,

∀b ∈ B, bαα = b, i.e. bα = bα−1.
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Figure 20 – Constructing a generalized map by splitting a cellular quasi-manifold.

We can note an other constraint on involutions, which appears during the

previous construction process: four darts, namely 4, 5, 7, 8, have been created

around edge c common to faces F1 and F2. 4 and 5 (resp. 7 and 8) define the

extremities of the edge « seen » from F1 (resp. from F2). Since faces share

edge c, the darts have to be coherently linked by involution α2. More generally,

we get the following definition of generalized maps (or G-maps):

A generalized map is defined as a pre-map C = (B,α0, ..., αn) satisfying:

∀i, j, 0 ≤ i, j ≤ n, i /∈ {j − 1, j, j + 1}, αiαj is an involution19.

19This constraint gets a real meaning when the dimension is greater than or equal to 2.

For higher dimensions, if we think of a quasi-manifold as an object constructed by gluing
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Orbit notion. The cell notion is a particular case of the orbit notion: let

B be a set and π0, ..., πn be a set of permutations defined on B. The orbit of

element b of B according to this permutation set, denoted < π0, ..., πn > (b),

is informally the set of all elements of B which can be reached starting from b

by any composition of the permutations and their inverses. The set of orbits

for {π0, ..., πn} makes a partition of B (cf. figure 21). Let N = {0, ..., n},

I = {i1, ..., ip} ⊆ N and b ∈ B; <>I (b) is the orbit of b relatively to the set of

involutions the indices of which belong to I.

A pre-map (or a G-map) C = (B,α0, ..., αn) is connected if and only if it

contains a single orbit for the set of all involutions.

Different informations can now be extracted from maps. For instance, for

any i between 0 and n, the i-dimensional cells are formally defined as orbits for

<>N−{i} (cf. figure 21). The G-maps of i-cells are defined by: ∀i, 0 ≤ i ≤ n,

the (n − 1)-G-map of i-cells is Ci = (B,α0, ..., αi−1, α̂i, αi+1, ..., αn), where α̂i

means that involution αi is removed. Each connected component of this G-

map describes the neighborhood of an i-dimensional cell (cf. figure 21(a, b, c)).

We can also define the (n − 1)-G-map of the boundaries, which describes the

structure of an (n−1)-dimensional quasi-manifold which recovers the boundary

of the n-dimensional quasi-manifold corresponding to the G-map (if non empty)

(cf. figure 21(d)). The pre-map (or G-map) is without boundaries if and only

if all involutions are without fixed points20.

G-maps can represent multi-incident cells without ambiguities (G-maps as-

sociated with the objects of figure 17 are represented on figure 22).

Other consistency constraints have been proposed in order to represent sub-

classes of quasi-manifolds (for instance for avoiding multi-incidence [2]). It is

thus possible to characterize the corresponding IGs and to define conversion

operations between IGs and G-maps. For instance, if the G-map is without

multi-incidence, an equivalent IG can be associated in the following way. A

node of the graph (i.e. an i-cell) is associated with any orbit <>N−{i}; an edge

of the graph links two nodes associated with orbits <>N−{i} and <>N−{i−1}

if and only if they share a common dart.

n-cells by identifying (n − 1)-cells, this constraint imposes that the identified (n − 1)-cells

have a same structure.
20For all b ∈ B, and all i, 0 ≤ i ≤ n, bαi 6= b.
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Figure 21 – The G-maps of cells corresponding to the G-map of figure 20. 21(a): vertices, i.e.

orbits <>{0,1,2}−{0} = < α1, α2 >; 21(b): edges, i.e. orbits <>{0,1,2}−{1} = < α0, α2 >;

21(c): faces, i.e. orbits <>{0,1,2}−{2} = < α0, α1 >. Figure 21(d) describes the map of

boundaries.
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Figure 22 – The G-maps associated with multi-incident objects of figure 17.
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Topological interpretation of generalized maps. An intuitive presen-

tation has been made above, but in fact, map notions can be deduced from

simplicial objects structured into cells (as many other cellular models known

in geometric modeling, IGs for instance). We have seen in section 2.4 that the

representation of simplicial quasi-manifolds can be optimized, by representing

principal simplices and their adjacency relations. In this case, pre-maps can

be deduced from SSSs: darts correspond to principal simplices, and involu-

tions are derived from boundary operators (indices of involutions are indices

of boundary operators, constrained by the cell structure). For instance, the

G-map of figure 20.e corresponds to the structured simplicial object of figure

18.a: darts correspond to 2-simplices, for instance 1, 5 and 11 correspond to

σ4, σ6 and σ11; for any i, involution αi associates two darts corresponding to

two 2-simplices which share a 1-simplex numbered {0, 1, 2} − {i}.

Conversely, we can associate a simplicial quasi-manifold structured into cells

with any pre-map, using the orbit notion. The quasi-manifold associated with

C = (B,α0, . . . , αn) is defined in the following way. Let N = {0, . . . , n} and

I = {p0, ..., pi} ⊆ N (for any p0, ..., pi):

– the set of orbits <>N−I defines the set of simplices numbered by the

integers of I;

– let b ∈ B, pj ∈ I, σ and τ be the simplices associated with orbits <>N−I

(b) and <>N−(I−{pj})(b). Then σdj = τ .

So, we define a SSS which is a quasi-manifold structured into cells: all

principal simplices have n for dimension, and they correspond to the darts of

B (i.e. to orbits related to an empty set of involutions). An (n− 1)-simplex is

incident to at most two n-simplices, since all αi, (0 ≤ i ≤ n) are involutions.

The SSS is structured into cells, since any n-simplex σ corresponding to dart b

is incident to n + 1 distinct vertices associated to orbits <>N−{i} (b), for any

i of N , and each vertex can be numbered by the corresponding index i.

Note that the SSS associated with a pre-map is a quasi-manifold, but its

cells can be complexes (cf. figure 16.b). Due to their characteristic constraint,

G-maps correspond to quasi-manifolds such that all cells are quasi-manifolds,

i.e. to (what we called) cellular quasi-manifolds.
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Representation of G-maps. It is easy to associate a non oriented graph

with any pre-map or G-map: a node of the graph corresponds to a dart, and an

edge numbered i links two darts which are linked by involution αi. Each node

of the graph is incident to n + 1 edges, numbered from 0 to n. So, pre-maps

and G-maps can be represented by using classical methods for representing non

oriented graphs. Traversal algorithms (for computing connected components,

cells, etc.) can be easily defined as graph traversals using all edges, or some

edges characterized by their associated numbers.

The embedding of G-maps is similar to that of IGs, using support spaces.

Note that since cells are defined as orbits, we can choose different methods for

associating the embedding information with darts, according to the expected

space / time complexity. For instance, the embedding information can be

associated with:

– all darts of the orbit, and the information can be directly accessed from

any dart of the orbit; this is efficient for extracting information, but not

when the map is constructed. For instance, if the structure of the cell is

modified (e.g. by splitting a cell), it can be necessary to traverse all darts

of the orbit in order to change the associated information;

– one representative dart of the orbit: this is more efficient when construct-

ing the map, but it could be less efficient for retrieving the information,

since it can be necessary to traverse all darts of the orbit in order to find

the dart which has the information.

Operations. Two basic operations can be defined in order to construct any

n-dimensional pre-map C = (B,α0, ..., αn). The first one consists in adding a

new « isolated » dart, i.e. which is invariant for all involutions. The second

one consists in « sewing », for a given dimension i (0 ≤ i ≤ n), two darts b and

b′ which are invariant by αi (i.e. involution αi is modified in such a way that

b and b′ are linked by this involution).

These two operations can be used in order to construct any G-map, but it is

then necessary to constrain the « sewing » operation. The precondition is that

orbits <>N−{i−1,i,i+1} of b and b′ have same structure, i.e. that the sub-maps:

(<>N−{i−1,i,i+1} (b), α0, ..., α̂i−1, α̂i, α̂i+1, ..., αn)
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and

(<>N−{i−1,i,i+1} (b′), α0, ..., α̂i−1, α̂i, α̂i+1, ..., αn)

are isomorphic by αi
21. The operation consists in « sewing » b and b′ as before,

and also all darts of the sub-maps defined above.

Many other operations have been defined for handling G-maps (and can

be adapted for handling other classes of cellular objects), based upon these

two basic operations: split, contraction, chamfering, sweeping and cartesian

product, etc. Based upon these topological operations, many geometric opera-

tions have been defined, as rounding cells, refinement and boolean operations,

etc [18, 27, 75].

3.3. Other classes of cellular objects.

Maps. Maps are deduced from G-maps in order to represent orientable

quasi-manifolds without boundaries. An n-dimensional map is defined as an

algebra C = (B, β1, ..., βn), where:

– β1 is a permutation on B;

– ∀i, 2 ≤ i ≤ n, βi is an involution on B;

– ∀i, j, 1 ≤ i, j ≤ n, i /∈ {j − 1, j, j + 1}, βiβj is an involution on B.

This definition is based upon the following property of G-maps (cf. figure

23). Let C = (B,α0, ..., αn) be a connected G-map without boundaries22.

CO = (B,α0α1, α0α2, ..., α0αn) is the n-map of the orientations of C, and

contains:

– one connected component: C is not orientable;

– two connected components; C is orientable, and each connected com-

ponent of CO corresponds to an orientation of C. Each orientation is

21This precondition for G-maps is due to their consistency constraint, i.e. αiαj is an

involution for all j distinct from i − 1 and i + 1. It corresponds to the fact that the sewing

operation in G-maps corresponds to the identification of some cells in the associated quasi-

manifolds, and these cells must have the same structure.
22Remind that a G-map is without boundaries if all involutions are without fixed points.
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the inverse of the other23, so it is useless to explicitly represent both

orientations. This completely defines the optimization and the possible

conversion between G-maps and maps.

F1

F2

F3

(a) (b)

(c) (d)

Figure 23 – (a) A subdivision of the plane. (b) The corresponding G-map, which is orientable

without boundaries (c) A connected component of the map of the orientations and (d) the

other connected component. These two connected components describe the two possible

orientations of the initial subdivision.

We can easily deduce from G-maps numerous notions and operations for

handling n-maps (for instance the (n − 1)-maps of i-cells). Note that the

23Let CO1 = (B1, β1, β2, ..., βn) and CO2 = (B2, γ1, γ2, ..., γn) be the two con-

nected components, then CO1 is isomorphic to the inverse map of CO2, i.e. CO−1

2
=

(B2, γ−1

1
, γ2, ..., γn).
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definitions of some operations and constructions are more difficult to conceive

for n-maps, since they correspond to quasi-manifolds without boundaries.

Chains of maps. Maps are an optimized model deduced from G-maps for

the representation of a sub-class of cellular quasi-manifolds. Other topological

models have been defined for representing other sub-classes, or larger classes.

For instance, chains of maps [44, 45] represent cellular complexes, in which cells

are quasi-manifolds.

A chain of maps is an algebra ((Ci)i=0,...,n, (σi)i=1,...,n), such that (cf. figure

24):

– ∀i, 0 ≤ i ≤ n,Ci = (Bi, αi
0, ..., α

i
i−1, α

i
i = ω) is an i-dimensional G-map

such that ω is undefined on Bi;

– ∀i, 1 ≤ i ≤ n, σi : Bi → Bi−1 satisfies, for any dart b of Bi:

- ∀k, 0 ≤ k ≤ i − 2, bαi
kσi ∈ {bσi, bσiαi−1

k };

- bαi
i−1σ

iσi−1 = bσiσi−1.

(a) (b) (c)

Figure 24 – A chain of maps. (a) a cellular complex; (b) the cells of the complex; (c) the

chain of maps: the interior of each cell is described by a G-map.

For any i, each connected component of each G-map Ci describes the in-

terior of an i-dimensional cell: this is formally expressed by the fact that the

involution of index i is undefined. Each i-dimensional cell is linked to the cells of

its boundary by σi; the consistency constraints corresponds to the facts that all

cells are quasi-manifolds, and that the structure of each cell corresponds to the
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structure of its boundary (they are deduced from the consistency constraints

of SSSs for the case of cellular complexes).

Other ordered models. Many other ordered models have been defined for

different uses in different fields: computational geometry, geometric modeling,

image structuration: equivalences have been proved, for instance between [73,

14]:

– G-maps and structures quad-edge, facet-edge, cell-tuple;

– maps and structures winged-edge, face-edge, vertex-edge, radial-edge.

For instance in the 2-dimensional case, a dart of a map can be interpreted

as an oriented edge, which is the basic object of structures winged-edge,

face-edge and vertex-edge.

Main differences between these structures are the more or less important

redundancy of the explicit information: either the minimal information is rep-

resented (e.g. darts and involutions) or cells may be also represented, in order

to associate non topological information with them (embedding information, or

other information related to the application, etc.). In this last case, it is neces-

sary to satisfy the consistency constraints, i.e. all darts of a cell are associated

with one explicit cell.

Hierarchical topological models. Many works deal also with the defi-

nition of hierarchical models, in order to represent subdivided objects at dif-

ferent levels of detail [84, 64, 65, 34, 96]. Each level of detail is represented

by a basic topological model, and relations between two levels are defined by

maps between the basic models corresponding to the levels. Several types of

representations have been proposed, according to the type of applications, for

instance:

– « bottom-up » representations: for instance for image structuration, all

information can be expressed on the more detailed level; the other lev-

els can be deduced by successive applications of simplification operations

(in this case, the type and parameters of operations are explicitly repre-

sented);
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– « top-down » representations: for other applications (e.g. incremental

construction of objects, for instance in architectural applications), one

can choose to represent the simpler level, and to incrementally precise

the different « details ».
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