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I. INTRODUCTION

The recombination of ozone shows an intriguing isotope effect 1 which, in spite of numerous theoretical efforts, 2 is not yet fully understood. The rate coefficient for the formation of nonsymmetric isotopomers -for example 688 or 866, where 6 and 8 stand for 16 O and 18 O, respectively -depends linearly on the difference of zero-point energies of the possible O 2 dissociation products (∆ ZPE ). 3 This dependence has been explained by statistical, 4 classical trajectory, 5 and quantum mechanical 6 calculations. According to the experimental data 3 the rate coefficients for forming symmetric ozone isotopomers with ∆ ZPE = 0 -for example 666 or 686 -do not follow the linear dependence: They are all by 15%-20% smaller than expected from the results of the non-symmetric isotopomers. This apparent symmetry effect 4,7,8 where M represents a buffer gas. The density of vibrational quantum states in asymmetric ozone is roughly twice the density of symmetric or anti-symmetric vibrational states in symmetric ozone and this difference may influence the intramolecular dynamics of ozone as well as the energy exchange with M.

In a recent study 9 (hereafter termed I) we investigated the vibrational energy transfer in collisions of O 3 with Ar using a most simple quantum mechanical approximation: the breathing sphere approximation (BSA). Within the BSA the six-dimensional Ar -O 3 potential energy surface (PES) is first averaged over the two Ar -O 3 orientation angles θ and ϕ. This completely eliminates rotational transitions and thus drastically simplifies the scattering calculations. An inherent feature of the BSA is that for symmetric isotopomers transitions between symmetric and anti-symmetric ozone states are strictly forbidden. The main goal in I was to test whether the collisional energy transfer, and therefore the stabilization rate, is different for symmetric and non-symmetric molecules.

The main results of I can be summarized as follows: (1) The individual cross sections for vibrationally inelastic transitions n → n ′ show large fluctuations as function of n ′ ; the fluctuations reflect the nodal structures of the underlying vibrational wave functions of O 3 .

(2) The inelastic probabilities are sufficiently small that first-order perturbation theory can be used for analysis, even for initial states close to the dissociation threshold. (3) The energy transfer ∆E n is a strongly fluctuating function of the initial state n and therefore substantial averaging is mandatory for comparing the results for different isotopomers. (4) The BSA calculations show a strong symmetry effect for low initial ozone states, where the energy transfer for the non-symmetric molecules is by an order of magnitude larger than for the symmetric ones. However, for higher initial states with energies E n exceeding half of the dissociation energy, ∆E n is almost indistinguishable for symmetric and nonsymmetric molecules. (5) The results can be rationalized in terms of the polyad structure of the vibrational spectrum and several near-resonance conditions. ( 6) Except for the nonsymmetric isotopomers in the low-energy regime, ∆E n increases very strongly with E n and is proportional to (E n -E 0 ) k with k = 5-7. The main conclusion of I was that, within the BSA, the energy exchange between highly excited ozone complexes close to the dissociation threshold with the buffer gas is independent of the symmetry.

The BSA is a very crude approximation and is not expected to be quantitatively correct. In the present study we investigate the vibrational energy transfer in Ar -O 3 collisions by means of the more accurate infinite order sudden approximation (IOSA) for the rotational degrees of freedom. [11][12][13] Vibrationally inelastic scattering calculations are performed for fixed Ar -O 3 orientations (θ, ϕ) and the cross sections -rather than the interaction potential as in the BSA -are finally averaged over all orientations; the anisotropy of the six-dimensional PES is fully retained in the scattering calculations. 14 Averaging of the cross sections makes the IOSA calculations about two orders of magnitude more time-consuming than the BSA calculations. However, unlike in the BSA, transitions between symmetric and anti-symmetric states for symmetric molecules are allowed. The IOSA has been applied before for studying ozone recombination, 15,16 albeit in strongly limited ways.

II. CALCULATIONS

A. Quantum mechanical calculations

Calculations have been performed for two symmetric isotopomers, 666 and 686, and one non-symmetric one, 668. The corresponding vibrational wave functions Φ n for these three (non-rotating) isotopomers, required for expanding the scattering wave function, have been calculated by means of the filter diagonalization (FD) method. 17 The same simplified PES, V mod , used in I, has been employed in these bound state calculations. It has been obtained by removing the three long-range van der Waals wells by exponential extrapolation along the dissociation coordinate from a value inside the main well to the correct asymptotic limit. In addition, two of the three main ozone potential wells have been eliminated by extrapolation along the bond angle α from α = 85 • to 0. The extrapolations have been made so that V mod and its first derivatives are continuous. Details are described in I. The vibrational wave functions Φ n are functions of the internal ozone coordinates: R, the distance of the central O atom to the center of mass of the two end O atoms; r, the distance between the two end atoms; and γ, the angle between R and r. (R, r, γ) form a set of Jacobi coordinates.

The wave functions for symmetric isotopomers are either symmetric or anti-symmetric with respect to γ = π/2. All vibrational states up to the dissociation threshold -244, 254, and 259 for 666, 668, and 686, respectively --are considered in the scattering calculations. In an attempt to model in a simple way the O + O 2 continuum we additionally calculated, by the FD method, wave functions of states with energies above the dissociation limit. An absorbing potential at the grid boundary was not used in these calculations, i.e., these realvalued so-called "box states" are zero at the grid boundary. They represent artificial bound states and extend the true bound states, to which they are orthogonal, into the continuum.

The "box states" were calculated only for 666 (80 states) and 668 (90 states). They were not part of the main study, but included only in some test calculations.

The collision of Ar with O 3 is described by the polar coordinates ρ, θ, and ϕ defined with respect to a coordinate system, in which the center-of-mass of O 3 is the origin and O 3 lies in the XY plane with the central O atom located on the positive X axis. 18 According to this choice of coordinates, θ = 0 represents Ar approaching perpendicular to the plane of O 3 (i.e., along the Z axis) and θ = 90 • corresponds to in-plane collisions. For an in-plane collision, ϕ = 0 corresponds to Ar approaching along the X axis. The interaction potential V Ar-O 3 between the Ar atom and O 3 is written as a sum of three Ar-O potentials

V Ar-O (R i ),
where R 1 , R 2 , and R 3 are the three Ar -O distances. 9 The evaluation of V Ar-O 3 requires the determination of the R i for a given set of scattering coordinates (R, r, γ, ρ, θ, ϕ). This is done using the condition that the angular momentum vector of ozone is zero. 18 In the IOSA one has to solve an Ar -O 3 scattering problem for a set of fixed angles (θ, ϕ). The time-independent Schrödinger equation for the lth partial wave Ψ l is given by

- 2 2µ ∂ 2 ∂ρ 2 + 2 2µ l(l + 1) ρ 2 + ĥO 3 (R, r, γ) + V Ar-O 3 (R, r, γ, ρ, θ, ϕ) -E Ψ l = 0 , (1) 
where the angles θ and ϕ enter only as parameters. Expanding Ψ l in terms of the eigenfunctions Φ n (R, r, γ) of ĥO 3 , one obtains the set of coupled equations,

d 2 dρ 2 - l(l + 1) ρ 2 + k 2 n ′ χ n ′ l (ρ|θ, ϕ) = 2µ 2 n ′′ V n ′ n ′′ (ρ|θ, ϕ)χ n ′′ l (ρ|θ, ϕ) (2) 
for the angle dependent radial expansion functions χ n ′ l (ρ|θ, ϕ); k 2 n ′ = 2µ(E -E n ′ )/ 2 and E n ′ and µ are the vibrational energies of ozone and the Ar -O 3 reduced mass, respectively.

The potential matrix elements are defined by [START_REF] Unfortunately | the correct volume elements have been neglected by mistake in the integrals in Eqs[END_REF] V n ′ n ′′ (ρ|θ, ϕ) = dR dr dγ sin γ Φ n ′ V (R, r, γ, ρ, θ, ϕ)Φ n ′′ .

(
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The Ar-O 3 interaction potential is strongly anisotropic as illustrated in Fig. 1, which shows a selection of diagonal matrix elements V nn (ρ) for 686 for several pairs (θ, ϕ). The quantum in Fig. 1). The nondiagonal coupling elements are also strongly angle dependent.

Solution of the coupled equations with the appropriate boundary conditions and summation over l yields vibrationally inelastic cross sections σ n ′ n (θ, ϕ). 9 All quantum mechanical calculations presented below are for a collision energy of E c = 200 cm -1 . The strong angle dependence of the V n ′ n implies a large anisotropy of the σ n ′ n (θ, ϕ) illustrated in Fig. 2 for the sum of inelastic cross sections. The cross sections for the symmetric isotopomers are symmetric with respect to ϕ = 180 • , while this symmetry does not exist for non-symmetric molecules. For θ = 0 the cross sections are independent of ϕ. The sum of inelastic cross sections for the same initial state varies by more than two orders of magnitude over the full sphere. The inelasticity is generally weakest for the perpendicular approach.

The final cross sections are obtained by averaging over the angles, 19

σ n ′ n = (4π) -1 π 0 dθ sin θ 2π 0 dϕ σ n ′ n (θ, ϕ) . (4) 
The highly oscillatory character of the σ n ′ n (θ, ϕ) requires a dense grid for the numerical integration. The integration over θ involved the grid points θ i = 90 • , 60 • , 45 • , 30 • , and 0;

the cross sections are symmetric with respect to 90 • . The integration over ϕ used 24 equally spaced points 0 ≤ ϕ j ≤ 345 • with ∆ϕ = 15 • . For θ = 0 only one angle ϕ is necessary. Thus, the total two-dimensional grid included 97 points for non-symmetric molecules. Because of the symmetry with respect to ϕ = 180 • , the analogous grid for symmetric molecules contained only 53 points. The integration scheme used to evaluate Eq.( 4) took into account the special character of the function sin θ σ n ′ n (θ, ϕ) at θ = 0 and 90 • : At θ = 0 the function is zero and the first derivative with respect to θ is finite, whereas for θ = 90 • the function is finite and the derivative is zero.

For comparison with data obtained in I and in the classical calculations we define transition probabilities according to

Q n ′ n = σ n ′ n /σ 0 (5)
where σ 0 is a common cross section. In what follows we will use the value σ 0 = 437.8 Å2 , which is the largest total cross section obtained in the BSA. 9 The main quantity considered 

∆E n = n ′ =n Q n ′ n ∆E n ′ n , (6) 
where

∆E n ′ n = E n ′ -E n .
An alternative quantity is the downward energy transfer ∆E

(-)
n , for which the summation in Eq.( 6) is limited to n ′ < n; it was the main term considered in I. Both ∆E n and ∆E (-) n

give qualitatively similar descriptions of the energy transfer in ozone.

B. Classical trajectory calculations

An obvious question is how the quantum mechanical energy transfer compares with the vibrational energy transfer obtained from classical trajectories. Details of the classical calculations are described elsewhere. [START_REF] Ivanov | [END_REF]21 For consistency with the quantum mechanical calculations, the ozone molecule is prepared with zero total angular momentum and a specific internal energy E int before the collision. Although O 3 initially does not rotate, during the collision it will be rotationally excited and the rotational energy transfer actually is about one order of magnitude larger than the vibrational energy transfer. 21 In order to compare with the quantum mechanical studies, which consider only vibrational energy exchange, the rotational and the vibrational contributions to the internal energy therefore were separated as described by Ivanov et al. [START_REF] Ivanov | [END_REF] Briefly, the instantaneous tensor of inertia is diagonalized at each point on a trajectory and an instantaneous rotational energy T r is defined using standard expressions. T r is a highly oscillatory function of time. However, averaging over a time interval ∆t and over an ensemble of many trajectories removes the oscillations, which allows to calculate the vibrational energy after the collision according to E int -T r . Because of intramolecular energy flow between the vibrational degrees of freedom, on one hand, and the 'active' rotational degrees of freedom, related to the projection quantum number K a , on the other, the classical vibrational energy is not constant. [START_REF] Ivanov | [END_REF] The rate of this intramolecular energy redistribution is an increasing function of K a as well as the internal energy. However, on the collisional time scale of ∼ 1 ps it can be neglected and a meaningful vibrational energy transfer ∆E cl vib can be extracted. Calculations were performed for several internal energies of the isotopomers 686 and 668.

For each energy between 0.5 × 10 6 and 1.0 × 10 6 trajectories were calculated. In all cases the maximum impact parameter was set to b max = 7 Å which corresponds to a cross section of πb 2 max = 153.9 Å2 . This large impact parameter guarantees that ∆E cl vib is practically zero beyond b max . For comparison with the quantum mechanical ∆E n , however, it is necessary to normalize ∆E cl vib to the same total cross section. Therefore, ∆E cl vib is multiplied with πb 2 max /σ 0 = 0.351, where σ 0 is the cross section used in Eq.( 5).

III. RESULTS

A. Vibrational energy transfer in a single collision

The vibrational energy transfer was calculated for all states up to the dissociation threshold for the isotopomers 666, 686, and 668. ∆E n is negative for the majority of vibrational states in all three isotopomers; at a collision energy of 200 cm -1 , ozone is preferentially de-excited by argon. Despite averaging over many orientation angles, ∆E n in the IOSA is strongly state-specific. The energy transfer fluctuates over two orders of magnitude, and the amplitude of fluctuations is comparable with that in the BSA (Ref. 9). These fluctuations reflect the individual nodal patterns of the vibrational eigenstates, which in ozone are even at high energies mostly assignable. 22 We first discuss the quantum mechanical energy transfer in the 668 isotopomer. Surprisingly, the BSA and the IOSA results are close to each other near the dissociation threshold, where the deviation is smaller than a factor of two. However, the energy transfer in the IOSA is much less energy dependent than in the BSA: The slope of ∆E n vs. E n in the IOSA is substantially smaller than in the BSA over a broad energy range down to about -4000 cm -1 .

This difference in slopes reflects inelastic energy exchange in different groups of vibrational n , both in the IOSA and the BSA, has the same slope as ∆E n . These transitions faithfully describe the exact energy transfer for internal ozone energies up to E n ≤ -2000 cm -1 , and it is this energy range, free from any boundary effects, which we are primarily concerned with. The algorithm to isolate the characteristic transitions m(max) → n ′ (max) has been described in detail in Ref. 9.

The most probable downward transitions in 668 are mapped onto the vibrational spectrum of ozone in Fig. 4. All states with E n ≤ -2000 cm -1 can be assigned vibrational quantum numbers of the symmetric (n s ) and anti-symmetric (n a ) stretch and the bend (n b ). More relevant for ozone with its accidental 1:1 resonance between the symmetric and the antisymmetric modes, however, is the assignment in terms of the polyad quantum number P = n s +n a and the bending quantum number n b (Fig. 4). In the BSA and for energies E n ≥ -4000 cm -1 , transitions occur predominantly between states belonging to different polyads, ∆P = 0 [see Fig. 4(a) and Ref. 9]. The energies of these states are close to each other and are related via a set of resonance conditions which are satisfied by the vibrational frequencies as discussed in I. Below -4000 cm -1 , however, the transitions between adjacent states inside one polyad, ∆P = 0, become the most probable ones. These states are quasi-degenerate, too, because of the near-resonance of the symmetric and the anti-symmetric stretching frequencies. The transition from mainly inter-polyad to mainly intra-polyad energy transfer explains, according to I, the sharp change in the slope of ∆E n vs E n in the BSA around -4000 cm -1 (black thin curve in Fig. 3). Inter-polyad transitions involving simultaneous change of all quantum numbers require higher order anharmonicities in the potential making its matrix elements strongly energy (or quantum number) dependent. In contrast, the intrapolyad transitions, involving merely an incremental change in n a and n s , give rise to the more gently declined branch of ∆E n at lower energies.

The IOSA interaction drastically simplifies the pattern of most probable transitions in 668 [see Fig. 4(b)]. For all energies below -2000 cm -1 , the dominant transitions are exclusively those inside polyads. As a result, the slope of the IOSA energy transfer is consistently smaller than in the BSA for all energies E n ≥ -4000 cm -1 . Below -4000 cm -1 , where the The drastic difference between the state-specific energy transfer dynamics in the two approximations becomes conspicuous in 666 (see Fig. 5). Each polyad in symmetric molecules consists of alternate symmetric and anti-symmetric states with even and odd n a , respectively.

The BSA is a symmetry preserving approximation: The corresponding Ar -O 3 potential is symmetric with respect to interchange of the two end oxygen atoms, and transitions between states of opposite symmetries are forbidden. Thus, all dominant transitions in the BSA are of the inter-polyad type [Fig. 5(a)]. As a consequence, the BSA energy transfer in 666 and likewise 686 is strongly energy dependent throughout the whole ozone spectrum (Fig. 3). Below E n = -4000 cm -1 , this energy dependence gives rise to the pronounced symmetry effect discussed in I. The non-symmetric IOSA interaction reverses the energy transfer dynamics in 666: Symmetry-breaking intra-polyad transitions become dominant at all energies [Fig. 5 As a result, the smoothed IOSA energy transfers in the symmetric (666 and 686) and the non-symmetric (668) isotopomers are nearly equal to each other (Fig. 3).

A quantitative comparison between ∆E n in the IOSA and in the BSA depends on the initial ozone energy. At low E n , the energy transfer in the IOSA is about one order of magnitude larger than in the BSA. However, above E n = -4000 cm -1 the BSA ∆E n increases more rapidly than the IOSA ∆E n and the discrepancy gradually becomes less dramatic. At about -1000 cm -1 the ratio is only two and becomes even smaller for energies closer to the threshold.

Both quantum mechanical approximations show a drastic increase of ∆E n in the energy range about 200 cm -1 below threshold. This is an artifact of the calculations and originates from the restriction of the vibrational basis to bound states only. This was tested by calculations, for one partial wave l, in which the vibrational basis was augmented by the "box states": Extending the vibrational basis to energies above threshold removes the sharp increase of ∆E n near E n ≈ 0. The results for other l values are expected to show the same changes when the basis is augmented and therefore we conclude that the l-averaged energy The IOSA energy transfer agrees over a large range of internal energy very well with ∆E cl vib (Fig. 3). Especially the increase with E n is satisfactorily reproduced by the classical calculations. The comparison between the quantum mechanical and the classical calculations is by no means trivial. First, for the classical results E = 0 corresponds to the classical dissociation threshold while for the quantum mechanical calculations it corresponds to the quantum mechanical threshold; the difference is of the order of 800 cm -1 . Second, ozone is rotationally excited in the classical collisions and the 'active' rotational degrees of freedom are coupled to the vibrational motion. The pure vibrational energy transfer is very small and in the classical calculations it is obtained by subtracting two much larger quantities, E int and T r . This may also be the origin of the relatively large difference between the results for 668 and 686 at very low energies (E n ≈ -6000 cm -1 ). ∆E cl vib seems to exhibit a slight isotope effect: The result for the symmetric molecule is consistently larger than the energy transfer for the non-symmetric one. However, in view of the complexity of the classical calculations it is not justified to further dwell on this difference.

The agreement between the IOSA and the classical calculations is remarkable. We know only one other study in which the energy transfer from highly excited molecules has been calculated by quantum mechanical and classical methods: The collinear collision of CS 2 with He. 23 In that study, which because of lack of rotation is considerably simpler than three-dimensional Ar + O 3 collisions, also perfect agreement between the classical and the averaged quantum mechanical energy transfer has been found.

B. Vibrational energy transfer in multiple collisions

In I we additionally investigated vibrational relaxation of excited ozone via a master equation approach. In a simple finite difference form of the master equation on a discrete grid τ k of the dimensionless time τ = ω 0 t (τ k -τ k-1 = 1) the change of the population of state n is calculated iteratively by

z n (k + 1) = n ′ Q nn ′ z n ′ (k) (7) 
("multiple collisions"). The non-diagonal elements Q nn ′ are defined in Eq.( 5) and the diagonal elements are given by

Q nn = 1 -n ′ =n Q n ′ n .
In I, the probabilities were determined 

∆E k = n z n (k)∆E n , (8) 
where ∆E n is defined in Eq.( 6).

In Fig. 6 we show ∆E k as function of the average ozone energy Ēk for 668 and 686. According to Eq.( 8), ∆E k is an average of the state specific energy transfer in a single collision with Ar. The weighting is provided by the actual populations z n (k), i.e., it is a 'dynamical' weighting. The results for the two isotopomers are basically identical. For comparison we also show the average state specific energy transfer ∆E n obtained by averaging over 20 neighboring initial states. Except for energies above -1500 cm -1 the energy transfer from the multiple collision approach, ∆E k , is smaller than the average first moment ∆E n . The deviations are largest at energies below -4000 cm -1 . The origin of the difference is the different weighting in the averaging process -dynamical weighting in the master equation approach vs. uniform weighting in the single collision procedure -and has been analyzed in I.

C. Simple stabilization/dissociation model

We used the discretized master equation, Eq.( 7), to mimic in a simple way the stabilization and dissociation of highly excited ozone molecules. If Ar collides with ozone molecules in vibrational states close to the dissociation threshold, some fraction of molecules will be de-excited and the remaining part will be excited into the continuum. In the simple model we assume that the molecules excited to continuum states will immediately dissociatei.e., their population is set to zero in the next iteration -and therefore the percentage of stable molecules, P stab (k) = n z n (k), gradually decreases with k; the sum extends over all bound states. In the limit of large k, P stab (k) approaches a constant value and we define this constant as the stabilization probability P stab . It depends on the particular initial state n.

The association of O and O 2 to form highly excited O 3 , i.e., the first step of the Lindemann The most important question concerns the definition of continuum states. We performed two types of calculations. In the first approach we define all bound states above -200 cm -1 as continuum states; in these calculations the cross section based probabilities Q n ′ n (summation over all partial waves, averaging over the full sphere) are used in Eq.( 7). In the second set of calculations the "box states" above the dissociation threshold are considered as continuum, while all bound states are considered to represent stable ozone molecules. In the latter calculations only the transition probabilities for partial wave l = 40, averaged over ϕ for fixed θ = 90 • (in-plane scattering), are considered in Eq.( 7).

The stabilization probabilities for the various initial states n obtained in the two calculations are shown vs. E n in Fig. 7. P stab is very small for states close to the 'threshold' and then gradually rises towards one as the initial energy decreases. Molecules starting with an energy of a few hundred cm -1 below threshold are all stabilized. The energy at which P stab starts to deviate from one depends, of course, on the collision energy. It also depends on the partial wave l, because the inelasticity and therefore the energy transfer depend on l.

The main result of these calculations is that the stabilization probability is independent of the symmetry of the isotopomer: Within the IOSA and the simple stabilization model, symmetric and non-symmetric isotopomers are stabilized with the same probability. Without

showing results we note that the same finding is also obtained when the transition probabilities are calculated in the BSA. This is in accord with the energy transfer per collision, ∆E k , being independent of symmetry in the upper energy regime E n > -1500 cm -1 or so. 9

IV. SUMMARY

The state-resolved vibrational energy transfer ∆E n in Ar -O 3 collisions has been investigated by means of the quantum mechanical infinite order sudden approximation (IOSA).

The study complements our earlier investigation using the computationally much less laborious breathing sphere approximation (BSA). 9 At low ozone energies the IOSA ∆E n is considerably larger than the energy transfer calculated with the BSA; the ratio is about one order of magnitude. Since the BSA energy transfer increases with E n more rapidly than the IOSA ∆E n , the disparity becomes less significant with increasing E n . Around the threshold both approximations predict almost the same vibrational energy transfer. The IOSA results The results for two isotopomers, 686 and 668, have been compared. Within the fluctuations of the averaged state specific ∆E n the results for the symmetric and the non-symmetric isotopomers are essentially the same. This is valid for the IOSA, which does not conserve symmetry, for the entire range of E n and it applies, at least for high energies, also to the BSA, which conserves symmetry. The pronounced symmetry effect found in the BSA at low ozone energies 9 is not relevant for the stabilization of highly excited ozone. Thus, we conclude that the vibrational energy transfer in collisions of highly excited O 3 with Ar does not depend on the symmetry of the isotopomer, at least not when ozone is treated as a simplified C 2v molecule. In cannot be precluded that the results may be different, when all the three main potential wells and the three van der Waals wells are taken into account; but that requires much more demanding calculations.

F

The stabilization process has been modeled with a simplified version of the discretized master equation, in which all states above a certain energy are considered to immediately dissociate. In accord with the independence of the energy transfer on the symmetry of ozone, the stabilization probabilities for the symmetric and the non-symmetric molecules are essentially the same. 
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 3 has not been explained up to now. Both, the association/dissociation, O + O 2 ⇋ O * M → O 3 + M, can be affected by symmetry,
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  is n = 230 with an energy of 213 cm -1 below the threshold. The approach perpendicular to the ozone plane (θ = 0) allows the closest encounter between Ar and O 3 . Approaching one of the end atoms in the plane spanned by O 3 leads to the strongest repulsion (ϕ = 105 •

  is the collision induced vibrational energy transfer (first moment)

  For the presentation, the fluctuations are smoothed by averaging ∆E n over twenty neighboring states. [Throughout the following, ∆E n will always represent the smoothed energy transfer without special notation.] The results for 686 and 668 are depicted in Fig. 3; the data for 666 are similar. In the figure, the IOSA results are compared with the (smoothed) BSA results of Ref. 9 and with the classical trajectory calculations. Despite the averaging the IOSA and BSA energy transfers still exhibit substantial fluctuations. They are slightly more pronounced for the symmetric molecule. The energy zero in Fig. 3 corresponds to the quantum mechanical thresholds in the IOSA and the BSA calculations.

  the BSA, the demonstration of this relation was a focal point of I. The same analysis is directly applicable to the IOSA energy transfer in Fig.3. As in I, we restrict the discussion to the most probable downward transitions m(max) → n ′ (max) which dominate the smoothed downward energy transfer, ∆E (-) n ; the downward energy transfer ∆E(-) 

  both approximations occur inside polyads, the slope of the IOSA energy transfer is roughly equal to the slope of the BSA ∆E n .

  (b)] and the slope of the IOSA energy transfer is much smaller than in the BSA. Comparison of the IOSA results for 666 and 668 [cf. Fig. 4(b) and Fig. 5(b)] shows that the most probable downward energy flow is almost indistinguishable in both molecules.

  near threshold -like the classical vibrational energy transfer.

  temperature by averaging over the collision energy E c according to the Maxwell distribution. Because the IOSA calculations are considerably more time consuming, the Q nn ′ in the present work are calculated for a fixed collision energy E c = 200 cm -1 . The initial distribution z n (0) includes a few of the uppermost states. Repetition of Eq.(7) results in the relaxation of the average energy Ēk = n z n (k)E n . The energy relaxation rate ∆E k = Ēk -Ēk+1 is given by

  the vibrational energy transfer calculated by classical trajectories over the entire range of internal energies. Within this range, the vibrational energy transfer varies by more than an order of magnitude. To our knowledge, this is the first comparison of quantum mechanical and classical vibrational energy transfer in full-dimensional collisions of a highly excited polyatomic molecule with an atom.
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 123456 FIG.1: Elastic potential matrix elements V nn (ρ) for state n = 230 of isotopomer 686 and several angles (θ, ϕ). The innermost curve is for θ = 0 • (perpendicular approach) while the other curves are for θ = 90 • (in-plane collisions): ϕ = 30 • (inner curve), 180 • (middle curve), and 105 • (outer curve).
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 177 FIG. 7: Stabilization probability P stab vs. ozone energy. (a) Calculations with all bound states above -200 cm -1 considered as continuum states; the vertical dashed line indicates the fictitious threshold. (b) Calculations including "box states" in order to simulate the continuum. Further details are given in the text. Page 17 of 24
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