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The calculation of the stress tensor and related properties and its implementation in the
CRYSTAL code are described. The stress tensor is obtained from the earlier implemented
analytical gradients with respect to the cell parameters. Subsequently, the pressure and en-
thalpy is computed, and a test concerning the pressure driven phase transition in KI is used
as an illustration. Finally, the possibility of applying external pressure is implemented. The
constant pressure optimization offers an alternative optimization method, in addition to the
already implemented optimization at constant volume.
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1. Introduction

The calculation of the total energy has become an important part of electronic
structure theory, and a set of methods and codes are available. Nowadays, den-
sity functional calculations are feasible for large systems; and in many cases such
calculations have become routine work. After the total energy is computed, then,
from the minimum of the total energy, the optimal geometry is obtained. This is
usually facilitated with the availability of analytical gradients, see e.g. [1–3].

After the equilibrium structure of a solid is determined, there are further prop-
erties of interest which are closely related to the total energy, such as the bulk
modulus or elastic constants. Even more important is the situation when the en-
ergy as a function of the volume is known, and the pressure has to be determined.
When the pressure has been computed, the enthalpy can be obtained, and the
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search for possible phase transitions can be performed. If the derivative of the en-
ergy with respect to the unit cell parameters is known, then from these derivatives,
the aforementioned properties (pressure, enthalpy) can be computed.

The stress tensor [4, 5] is closely related to the derivatives of the total energy
with respect to the cell parameters. The ab initio calculation of the stress tensor
was pioneered some time ago [6]. In this article, the implementation of the stress
tensor in the electronic structure code CRYSTAL [7, 8] is reported. The article is
organized as follows: in section 2, the variables are defined. The definition of the
stress tensor, tests concerning the accuracy of the implementation, the calculation
of pressure and enthalpy, and some examples are given in section 3. In section 4, the
possibility of applying external pressure is demonstrated; and the optimization at
constant volume is compared with the optimization at constant pressure. Finally,
the paper is summarized.

2. Variables

An elastic deformation is given by the expression:

~r ′ = (1 + ǫ)~r (1)

or

r ′

j =
3

∑

k=1

(δjk + ǫjk)rk (2)

where δjk is the Kronecker delta. Here, the case of pure strain is assumed, and
then ǫjk is the symmetric strain tensor[4]:





ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33



 =





ǫ1
1
2ǫ6

1
2ǫ5

1
2ǫ6 ǫ2

1
2ǫ4

1
2ǫ5

1
2ǫ4 ǫ3



 (3)

The primitive cell is given by three vectors: ~a1, ~a2 and ~a3. aij are defined in such
a way that a11 = a1x is the x-component of ~a1, a12 = a1y the y-component of ~a1,
and a13 = a1z the z-component of ~a1, i.e.:





~a1

~a2

~a3



 =





a1x a1y a1z

a2x a2y a2z

a3x a3y a3z



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 (4)

When a distortion is applied, then the cell parameters transform as:

a′ij =

3
∑

k=1

(δjk + ǫjk)aik (5)

The derivatives (see also [9, 10])
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∂a′ij

∂ǫlm

∣

∣

∣

∣

ǫlm=0

= lim
ǫlm→0

a′ij(ǫlm) − a′ij(ǫlm = 0)

ǫlm

=
3

∑

k=1

δjlδkmaik = δjlaim (6)

and

∂E

∂ǫlm

∣

∣

∣

∣

ǫlm=0

= (7)

lim
ǫlm→0

E(~a1
′(ǫlm),~a2

′(ǫlm),~a3
′(ǫlm)) − E(~a1

′(ǫlm = 0),~a2
′(ǫlm = 0),~a3

′(ǫlm = 0))

ǫlm

=

3
∑

i,j=1

∂E

∂a′ij

∂a′ij

∂ǫlm

∣

∣

∣

∣

ǫlm=0

=

3
∑

i,j=1

∂E

∂aij
δjlaim =

3
∑

i=1

∂E

∂ail

aim

are required for the calculation of the stress tensor.

3. The stress tensor and related properties

The stress tensor is a symmetric tensor, and following the notation of [4] it is given
as:





σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33



 =





σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3



 (8)

It can be computed from the total energy as

σij =
1

V

∂E

∂ǫij
(9)

or equivalently, using equation 3:

σi =
1

V

∂E

∂ǫi

(10)

where V = ~a1(~a2 ×~a3) is the volume of the unit cell. Here, the sign is according
to the convention used in [4, 5].

In the case of hydrostatic pressure, the stress tensor becomes diagonal, and the
pressure is obtained as

σij = −pδij (11)

The calculation of the stress tensor thus makes the pressure p and the enthalpy
H = E + pV accessible. The implementation is straightforward: The derivatives
∂E
∂aij

constitute the difficult part and were implemented in the past for the case of
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Table 1. Stress tensor σij , in hartree/bohr3, computed for oxalic acid dihydrate.

component numerical analytical
σ1 -0.00093087 -0.00093087
σ2 -0.00064440 -0.00064415
σ3 -0.00092248 -0.00092197
σ4 0 0
σ5 -0.00000555 -0.00000564
σ6 0 0

3 dimensional periodicity [11] and for the case of 1 and 2 dimensional periodicity
[12].

In addition, this offers the possibility to apply external pressure: by adding a term
−pδij to the stress tensor, an optimization at constant pressure p is implemented.

3.1. Test 1: Oxalic acid dihydrate

A first test was done with oxalic acid dihydrate, which has a monoclinic lattice,
and the stress tensor is non-diagonal and thus not too trivial. The experimental
geometry as determined in [13] was used, and basis sets as in [14] were employed.
The stress tensor was determined numerically, by applying two elastic distortions
with ǫi = 0.001 and ǫi = −0.001, and then performing a numerical differentiation:

σnumerical
i =

1

V

∆E

∆ǫi
(12)

The energy was evaluated at the Hartree-Fock level, and this test therefore serves
essentially to verify that the transformation in equation 7 is implemented properly,
and to check the accuracy. The results are compared in table 1, and it is apparent,
that a good accuracy is obtained.

3.2. Test 2: The NaCl → CsCl phase transition in KI

As a practical example, the phase transition from the NaCl to the CsCl structure
in KI is studied. The earlier suggested procedure [15] is to compute the energy as
a function of the volume (E(V ) curve), then perform a fit for the function E(V ),
obtain the pressure p as the derivative of the fitting function p = −

∂E
∂V

and then the
enthalpy H = E + pV . With the present implementation, the pressure is readily
available via the stress tensor. Thus this procedure can be simplified, and the
pressure and enthalpy can be computed analytically. This requires that the stress
tensor is of the form −pδij . In the present implementation, this was assumed to be
fulfilled, if all non-diagonal components of the stress tensor are below a threshold
value, and the diagonal elements do not differ by more than a threshold value.

The total energies of KI in the NaCl and CsCl structure were computed, at the
level of the local density approximation, with basis sets as were used for KI in
[16]. The E(V ) curves were obtained by fitting the computed energy values with
a polynomial of degree four. This is displayed in figure 1 (top). Subsequently, the
pressure as a function of the volume was computed analytically and numerically
(figure 1, middle). When the analytical differentiation with respect to the volume
(crosses and circles in figure 1) is compared with the numerical differentiation of
the polynomials which fit E(V ) (full and dashed lines in figure 1), then the results
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are virtually identical. This confirms that the implementation is reasonable. Also,
the minimum of the energy and the zero of the pressure agree well.

By adding pV to the energy, the enthalpy is obtained (figure 1, bottom). The
analytically computed enthalpies (crosses and circles) were obtained using the an-
alytical derivative for the pressure and subsequently computing the enthalpy, the
numerically computed enthalpies (full and dashed lines) were obtained with the
numerically computed pressure. Again, when comparing the results employing an-
alytical or numerical differentiation of the E(V ) curve, then the enthalpy curves
are virtually identical.

As a by product of this test of the implementation and accuracy, the critical
pressure at the NaCl → CsCl phase transition is obtained from the intersection of
the two enthalpies for the NaCl and the CsCl structure. This pressure is 1.0 GPa
(present work), and in reasonable agreement with the experiment (1.9 GPa [17])
or earlier calculations (2.75 GPa [18]).

The fact that the stress tensor and the pressure is now available as an analytical
derivative simplifies the calculation of further elastic properties such as the elastic
constants. For example, the bulk modulus can now be obtained by one numerical
differentiation of the pressure with respect to the volume (first part of equation
13), instead of two numerical differentiations (second part of equation 13) which
was necessary earlier; a similar argument holds for the elastic constants.

B = −V
∂p

∂V
= V

∂2E

∂V 2
(13)

4. Applying external pressure

Once the stress tensor has been computed, it is subsequently one possible option
to add external pressure.

For this purpose, an external part σexternal
ij is added to the stress tensor as defined

in equation 9:

σtotal
ij = σij + σexternal

ij (14)

and thus the total stress σtotal
ij is obtained. When this is zero, then this means

that a system is described, where an external stress is applied. As the optimizer
works with the gradient with respect to the cell parameter, the stress tensor σtotal

ij

has to be back transformed to obtain the modified gradients with respect to the
cell parameter. Thus, the matrix aij of the cell vectors has to be inverted, with
(a−1)jk being the inverse:

3
∑

j=1

aij(a
−1)jk = δik (15)

Then, using this in equation 7, the back transformation is obtained:
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Figure 1. The total energy as a function of the volume (top figure), the pressure as a function of the volume (middle
figure), and the enthalpy as a function of the pressure (bottom). The crosses and circles refer to the points where the
total energy was calculated and subsequently the pressure and enthalpy derived analytically. The full and dashed
lines are obtained by fitting the energies as a function of the volume with a polynomial, and subsequently computing
the derivative of this polynomial.
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3
∑

m=1

3
∑

i=1

∂E

∂ail

aim(a−1)mn =
3

∑

i=1

∂E

∂ail

δin =

∂E

∂anl

=

3
∑

m=1

∂E

∂ǫlm

∣

∣

∣

∣

ǫlm=0

· amn = V

3
∑

m=1

amnσlm (16)

Exploiting equation 16, we thus obtain for the total gradient with respect to the
cell parameter, after having added the external stress:

(

∂E

∂aij

)total

=
∂E

∂aij
+ V

3
∑

m=1

amiσ
external
jm (17)

∂E
∂aij

is thus the gradient with respect to the cell parameter without external

stress, and
(

∂E
∂aij

)total

the gradient with respect to the cell parameter in the presence

of an external stress.
In the present implementation, the option of a general external stress tensor is

possible. As the stress tensor must be symmetric, this means six input parameters.
In principle any form is possible, with special cases such as hydrostatic or uniaxial
pressure. The most important case is that of hydrostatic pressure, where the tensor
is diagonal (see equation 11).

As a test, in figure 2, the E(V ) curve for Al2O3 is displayed. The pluses are data
points obtained with the present implementation where the energy is optimized
in the presence of external (hydrostatic) pressure. The squares are data points
computed with the energy optimization under the constraint of a fixed volume, as
implemented in the CRYSTAL06 release [8]. As can be seen, the data from both
methods agrees very well, and the data points lie well on the E(V ) curve, which
was obtained with a polynomial fit of degree four.

Similarly, in figure 3, the E(V ) curve for oxalic acid dihydrate is displayed.
This system is monoclinic and the stress tensor more general (in the case of non-
hydrostatic pressure, the stress tensor is not diagonal). Again, the data from fixed
volume optimization (squares) and the data from the constant pressure optimiza-
tion (pluses) agree well and lie on a smooth curve. This confirms that the present
implementation is reliable.

When comparing the number of steps required for the geometry optimization, it
turned out that both schemes (constant pressure versus constant volume) require
a similar number of steps. The most important parameter is to have a good initial
guess.

5. Conclusion

In this article, the calculation of the stress tensor and the implementation in the
electronic structure code CRYSTAL is described. The stress tensor is obtained from
the analytical gradient with respect to the cell parameters, and subsequently pres-
sure and enthalpy can be computed, all based on analytical expressions without the
need to compute any numerical derivatives. An additional feature is to add terms
to the stress tensor, which allows to apply external pressure. This implementation
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Figure 2. The total energy, on the B3LYP level, as a function of the volume for Al2O3. The pluses are data points
computed with the present implementation of applying external pressure. The squares are data points obtained from
an optimization at constant volume. The full line is a fit through the data points.
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Figure 3. The total energy, on the Hartree-Fock level, as a function of the volume for oxalic acid dihydrate. The
pluses are data points computed with the present implementation of applying external pressure. The squares are
data points obtained from an optimization at constant volume. The full line is a fit through the data points.

also facilitates the calculation of properties such as the bulk modulus or elastic
constants, as only one more numerical derivative is required.
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