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The Ornstein-Zernike equation expresses a simple relationship between direct and full correlation effects of a many-body system. Although it was introduced in the context of fluids, it can be derived through simple physical arguments that are equally applicable to the electrons in a molecule. Direct correlation effects account for the correlation between two particles at a time. If a simple model for direct correlation can be found, the Ornstein-Zernike equation can be used to convert it to a treatment of the full correlation effect. We show that the independent electron pair approximation (IEPA) is a reasonable model for the description of direct correlation effects. IEPA followed by our Ornstein-Zernike treatment is closer to CCSD(T) than is CCSD for valence correlation energies of small molecules.

Introduction

In the Bakerian lecture of 1869, which incidentally appears never to have taken place [1], Thomas Andrews reported his observations on the liquefaction of gases under high pressure [2]. He had prepared carbon dioxide at or near its critical point and when the temperature or pressure was 'suddenly diminished' he observed 'flickering striae'.

His flickering striae were a manifestation of critical opalescence, and the phenomenon was later described by Smoluchowski [3] and Einstein [4] in terms of spontaneous density fluctuations in the fluid. In this early work 'mutual independence of the elements of volume' was assumed [START_REF] Ornstein | Proc. Akad. Sci[END_REF]: the theoretical apparatus needed to treat correlations between the density fluctuations was devised by Ornstein and Zernike [START_REF] Ornstein | Proc. Akad. Sci[END_REF].

Consider a simple (atomic), homogeneous fluid with density ρ. The radial distribution function g(r) expresses the extent to which the density is modified by correlations; so if there is a particle at position r 1 , the density at r 2 will be ρg(|r 1r 2 |) ≡ ρg 12 . In the long range the correlations die out, so g(r) → 1 as r → ∞. It is convenient to consider the shifted quantity h = g -1, called the total correlation function [START_REF] Hansen | Theory of Simple Liquids[END_REF].

In the Ornstein-Zernike (OZ) equation the total correlation function is related to a new quantity c 12 , the direct correlation function:

h 12 = c 12 + ρ dr 3 c 13 h 32 . (1) 
The equation expresses the idea that the total correlation between particles arises † Corresponding author: fred.manby@bris.ac.uk primarily from the direct correlation effect, but with a correction arising from higher-order effects that bring in more and more additional particles. This leads to the interpretation of direct correlation as the correlation effect between just two particles in a homogenous background density. With this in mind, the OZ equation can be 'derived' based on the following physical arguments.

(1) Assume there is a particle at position r 1 (2) The direct correlation effect modifies the density at r 2 by an amount ρc 12 (3) The density at r 3 is modified as well, by the amount ρc 13 (4) This fluctuation at r 3 has an additional effect on the density at r 2 , with magnitude ρc 13 ρc 32 (5) Particle 3 can be anywhere, and after integrating over r 3 and cancelling one power of ρ, one obtains h 12 ≈ c 12 + ρ dr 3 c 13 c 32 [START_REF] Hansen | Theory of Simple Liquids[END_REF] The entire argument can be repeated with more intermediate particles, giving the infinite series h 12 = c 12 + ρ dr 3 c 13 c 32 + ρ 2 dr 3 c 13 dr 4 c 34 c 42 + • • • [START_REF] Evans | Density functionals in the theory of nonuniform fluids[END_REF] And finally, this series can be summed by a simple substitution to give the OZ equation.

The Ornstein-Zernike equation can be viewed as nothing more than a definition of c 12 in terms of h 12 . But if it turns out to be simpler to make approximate descriptions of the direct correlation function, the OZ equation can be used to convert c 12 to the full correlation function, h 12 . In the context of simple liquids it was found that the structure of c 12 was much simpler than that of h 12 . The full correlation function has characteristic long-range wiggles for a fluid close to its critical point, but the direct correlation function has a simple, short-range form at all T, P [START_REF] Hansen | Theory of Simple Liquids[END_REF].

Nothing in the physical argument above is special to simple fluids. In fact the OZ equation can just as well be applied to the electrons in a molecule. In electronic structure theory the familiar objects are two-particle densities (rather than correlation functions) and the system of interest is non-uniform. This suggests a recasting of the OZ equation in the form

ρ h 12 = ρ c 12 + dr 3 1 ρ(r 3 ) ρ c 13 ρ h 32 (2) 
which is achieved by introducing spatial dependence in the one-particle densities and substituting the definitions ρ h 12 = ρ(r 1 )ρ(r 2 )h 12 and ρ c 12 = ρ(r 1 )ρ(r 2 )c 12 into Equation (1).

In Equation (2) the two-particle densities have the following interpretation: ρ h 12 is the correlation component of the exact reduced two-particle density; and ρ c 12 is the correlation component from a calculation that only includes the effects of direct correlation. If a simple model for ρ c 12 can be found, Equation ( 2) can be used to convert it into the total correlation component of the two-particle density.

The physically motivated 'derivation' above is quite compelling, but in any case there are various connections to more formal theory. The OZ equation emerges quite naturally in density functional theory (DFT) of fluids [START_REF] Evans | Density functionals in the theory of nonuniform fluids[END_REF] or indeed of electrons.

In fluids the direct correlation function is defined as a second functional derivative of the excess energy functional (that is the total energy minus the ideal or noninteracting contribution) [START_REF] Evans | Density functionals in the theory of nonuniform fluids[END_REF]:

c fluid 12 = - δ 2 β(F[ρ] -F id [ρ]) δρ(r 1 )δρ(r 2 ) . (3) 
The quantum analogue of the OZ equation has been investigated by Chihara in the context of ionic liquids [START_REF] Chihara | [END_REF] and liquid metals [9]. In zero-temperature electronic density functional theory an Ornstein-Zernike equation can still be derived, but in this case the h 12 is related to a density response function, not a 2-particle density, and the c 12 is proportional to r -1 12 + f xc (r 1 , r 2 ). This is a potentially interesting connection, since this c 12 appears in the Dyson equation that connects the noninteracting response χ 0 to the full response χ. It is the quantity approximated by r -1

12 in the adiabatic-connection fluctuation-dissipation formulations of the random phase approximation [10]. However this connection will not be further pursued here. Instead we focus on the possible role of the OZ equation as an efficient means to build in inter-pair correlations to simple pair-based descriptions of molecular electronic structure theory.

2. The OZ equation in electronic structure theory

MP2 and direct correlation

The direct correlation function describes correlations in the system between just two particles, with the others remaining in their mean-field distribution. It should be possible to approximate the direct correlation function using what in electronic structure theory would be called a pair theory.

The simplest pair theory is MP2, and this choice also has the advantage that, to first order, the correlation contribution to the pair density is simply provided by the amplitudes:

ρ MP2 12 = T ia,jb ψ * i (r 1 )ψ a (r 1 )ψ * j (r 2 )ψ b (r 2 ) . (4) 
Moreover, the correlation energy is in turn simple to extract from this this pair density:

E corr MP2 = dr 1 dr 2 ρ MP2 12 r 12 ≡ tr TK . (5) 
(Here we assume that the amplitudes are properly antisymmetrized and the exchange integrals are not: K ia,jb = (ia|jb)).

The OZ equation in the basis of ia-pairs can be found by inserting the definition in Equation (4) into Equation (1), multiplying by ψ * i (r 1 )ψ a (r 1 )ψ * j (r 2 )ψ b (r 2 ), integrating over the coordinates of both electrons, and cancelling the overlap matrices that appear on the left and right of each term in the equation. This gives where

T h ia,jb = T c ia,jb + T c ia,kc X kc,ℓd T h ℓd,jb , (6) 
X kc,ℓd = dr ρ(r) ψ k (r)ψ c (r)ψ ℓ (r)ψ d (r) . (7) 
It should be noted that the derivation relies on the inversion of the overlap matrix

S ia,jb = dr ψ i (r)ψ a (r)ψ j (r)ψ b (r) (8) 
which becomes ill-conditioned in the basis-set limit; this issue has been ignored in the present work, and in the triple-zeta basis sets used here, the overlap matrix is invertible in double precision. A further assumpinot is that it is acceptable to use the uncorrelated (Hartree-Fock) density in the definition of X.

It is perfectly possible to proceed directly with this equation, but the implementation can be made much more efficient using density fitting. Orbital pairs are defined in the usual way

|ia) = D ia µ |µ), (9) 
with |µ)≡ Ξ µ a set of atom-centered fitting functions (we use the MP2FIT sets of Weigend et al. [11]). If density fitted MP2 is used, the exchange integrals are expressed as

K ia,jb = D ia µ Kµν D jb ν , (10) 
where Kµν = (µ|ν), and the trace in Equation ( 5) can be written

E corr MP2 = T ia,jb D ia µ Kµν D jb ν . (11) 
From this equation it is obvious that the amplitudes can be projected into the auxiliary basis set

Tµν = T ia,jb D ia µ D jb ν . (12) 
Then the correlation energy can equally well be computed in the auxiliary basis as

E corr MP2 = tr T K . ( 13 
)
The OZ equation can also be written in the fitting set,

Th = Th + Tc X Th (14) 
where

Xµν = dr ρ(r) Ξ µ (r)Ξ ν (r) . ( 15 
)
The X integrals (in either representation) are computed by numerical quadrature on DFT integration grids. We have checked that neither grid tolerances nor the threshold used to avoid divergences in 1/ρ have any effect on the conclusions presented.

Since both Equations ( 6) or ( 14) are formally equivalent we will now drop the tildes and consider the fitted and conventional versions together. The OZ equation can be simply rearranged for T h :

T h = T c (1 -T c X) -1 (16) 
and a new correlation energy can be extracted as E h = tr T h K. For the small first-row molecules we used MP2 to obtain T c , computed T h by Equation ( 16), and then evaluated the correlation energy E h : the results are terrible. This, on proper reflection, is not altogether surprising. MP2 theory was selected as a candidate for producing the direct correlation density ρ c 12 on the grounds of being the simplest pair theory. But MP2 really is an exceptional theory, and its surprising accuracy arises from partial cancellation of two rather drastic approximations.

First, it is an independent-pair theory. In such theories the two electrons in a given pair can avoid each other without 'worrying' about the fact that there are other electrons around. This leads to an over-estimation of correlation effects. The exact independent electron pair theory, IEPA [12,13], overestimates the correlation energy by around 15% (see below), implying that the lack of treatment of inter-pair correlations raises the MP2 correlation energy by a comparable amount.

But in MP2 theory the virtual Hartree-Fock eigenvalues that appear in the energy denominator contain a spurious Coulomb and exchange interaction with all N (instead of N -1) electrons [14]. This results in a spurious elevation of the virtuals, an increase in the energy denominators, and, hence, an under-estimation of correlation effects [15]. The spurious interactions present in the Møller-Plesset denominator are explicitly subtracted in Epstein-Nesbet (EN) perturbation theory [13,[16][17][18]. EN2 performs very well for systems of two (correlated) electrons such as H 2 or LiH [15]. But for systems with more than two electrons (i.e. for systems where inter-pair correlations become relevant) EN2 overestimates the full configuration-interaction correlation energy by 15-20% [15,18].

Thus MP2 typically gives good correlation energies as a direct result of the cancellation of errors caused by neglecting inter-pair correlations and by using one-particle energies with spurious interactions.

IEPA and direct correlation

It should be clear from the previous section that a reasonable pair theory to use as a model for direct correlation is IEPA, that is, the pair theory in which the electron correlation within each pair is treated exactly.

To review the argument: direct correlation, as it appears in the physical motivation leading to Equation (1), is the correlation between pairs of electrons, and the OZ equation offers a way to introduce all of the inter-pair couplings. Therefore it seems reasonable to test the ansatz ρ c 12 = ρ IEPA

12

. There are two barriers to doing this directly, one technical and one theoretical. Technically it is non-trivial to obtain the 2-particle density in IEPA, although it certainly possible and we do intend to investigate this in the future. The theoretical problem is that even if one could obtain the exact 2-particle density, the correlation energy only depends on the part of it linear in the amplitudes, and it is not straightforward to extract this part from the whole 2-particle density. Here we propose to test the ansatz of Equation ( 6 For infinite systems it is reasonable for the entire density ρ to appear in the integral of Equation ( 1). For a finite system it becomes important to resolve the fact that the density in the integral should be the total density minus the density distribution of the two electrons under consideration. In the present case, with the ansatz T c = T IEPA , we are in a position to identify the densities that should be subtracted, and this suggests a modification of Equation ( 6)

T h ia,jb = T c ia,jb + T c ia,kc X (ij) kc,ℓd T h ℓd,jb , (17) 
in which the X integrals contain a modified density:

X (ij) kc,ℓd = ρ -ψ 2 i -ψ 2 j ρ 2 ψ k ψ c ψ ℓ ψ d . ( 18 
)
This theory has the pleasing feature of being exact for a single pair, or for any number of non-interacting pairs: in this case IEPA is exact, and the modified OZ equation results in T h = T c . On the negative side it has a high computational cost (O(o 4 v 3 ) for the multiplication in Equation ( 17)) and although this can be reduced by density fitting we will consider a much simpler approach. Given that in general one expects correlation effects to be dominated by 'diagonal' excitations (double excitations from the same doubly-occupied orbital), one can approximate Equation ( 17) by keeping the original form of Equation ( 6) but with the definition

X kc,ℓd = ρ -ψ 2 k -ψ 2 l ρ 2 ψ k ψ c ψ ℓ ψ d . (19) 
This theory, which we will call OZ ′ , is also exact for isolated single pairs, but has much lower computational cost. It should be noted that both of these forms of the OZ equation break orbital variance; however, we will see later that this has little practical impact.

Numerical tests

To examine graphically the various quantities involved it is convenient to compute intracule quantities. In particular we compute

I(u) = T ia,jb (ia|δ(u -r 12 )|jb) (20) 
for the various amplitudes involved, so that the integral

E = ∞ 0 du 4π u 2 I(u) u (21) 
is the corresponding correlation energy. These quantities are shown in Figure 1 for water in a cc-pVTZ basis; all calculations were performed with frozen (1s 2 ) core electrons on non-hydrogen atoms.

The basic structure of the plots is as follows. The quantities vanish at the origin (because of the Jacobian) and integrate to zero (because i|a = 0). The intracules have a negative region at around 1 bohr, reflecting the avoidance of electron pairs as a result of correlation effects, and a balancing positive region at larger r. More particularly the data reveal several of the features discussed above. In panel (a) of Figure 1 it can be seen that the MP2 results lie close to CCD, although not, as discussed above, for entirely the right reasons. It is also clear that IEPA overestimates the correlation effect, producing a correlation intracule that is around 15-20% too large. In panel (b) the data CCD OZ -1 were obtained by setting T h = T CCD and solving the OZ equation (Equation ( 6)) for T c . This has the effect of removing inter-pair correlations. Comparing with CCD OZ -1 one can immediately see that MP2 is completely unsuitable as a model for direct correlation, but IEPA is rather close.

Finally, in panel (c), CCD is compared with results arising from processing MP2 and IEPA amplitudes with the OZ equation. The MP2 OZ result underestimates the correlation effects (here we have used the OZ equation to fold in inter-pair correlations, so the resulting underestimation of correlation is a pure symptom of the use of a one-particle energy spectrum with spuriously high virtual states). On the other hand IEPA OZ agrees quite closely with CCD, suggesting that if one starts of with an accurate description of the independent pair correlations, the simple OZ equation of Equation ( 6) can effectively incorporate inter-pair correlation effects.

The general features are reproduced for many molecules, and further examples are (more briefly) shown in Figure 2 for aldehyde, ketene, F 2 and H 2 . For hydrogen IEPA is already exactly equivalent to CCD, and processing the amplitudes with the (unmodified) Ornstein-Zernike equation introduces spurious many-electron effects to this two-electron system. This problem does not arise in the two modified OZ equations (Equation (17) or Equations ( 6) and ( 19)).

Correlation energies

To assess the accuracy of correlation energies obtained using the OZ equation we have performed calculations on selected small molecules. The valence correlation energies are shown in Table 1. The broad features are that IEPA overestimates CCD by an average of about 40 millihartree; the uncorrected OZ equation (using X as defined in Equation ( 7)) compensates for this, but often somewhat overshoots; and the modified OZ equation (using X as defined in Equation ( 19)) corrects for this over-shooting, deviating from CCD by an average of only 2 millihartree. For comparison MP2 differs from CCD by an average of around 8 millihartree.

The systematic over-estimation of correlation energies by IEPA is corrected by the OZ equation, but as always the spread of the data is also important. Here the performance is less good, with the standard deviation in the OZ ′ method relative to CCD being on the order of 20 millihartree. In considering this result, it should be noted that the OZ equation certainly has no direct relation to CCD, and the standard deviation of CCD relative to the more accurate method of CCSD(T) for these molecules is itself 11 millihartree. Incidentally, it is instructive to look at the correlation energies per correlated pair: the average error for MP2 valence correlation energies per pair relative to CCD over all molecules except H 2 is around 1 millihartree. For H 2 the MP2 correlation energy is 7.5 millihartree too small, and here the true problem with MP2 is revealed: since H 2 has only one pair, there is no compensation between the use of the 'wrong' denominators and the neglect of inter-pair correlations.

IEPA is not invariant to unitary rotations amongst the occupied orbitals. It is therefore obvious to ask how the results vary with different representations of the occupied space, and in particular whether the results are improved using localized orbitals. All calculations have therefore been repeated with Boys [START_REF] Boys | Localized Orbitals and Localized Adjustment Functions[END_REF] and Pipek-Mezey [START_REF] Pipek | [END_REF] localized orbitals, and the data are presented in has been previously observed, we note that with local orbitals IEPA correlation energies are even more overestimated than with canonical orbitals [21]. With Boys localized orbitals, the mean signed error in IEPA relative to CCSD(T) is -74.2 millihartree; the OZ equation reduces this to just -9.6 millihartree, with a standard deviation of around 9 millihartree. With Pipek-Mezey orbitals, the agreement is even better, with a mean signed error of -4.8 millihartree and a standard deviation around 6 millihartree. IEPA followed by the OZ equation agrees more closely with CCSD(T) than does CCSD, which has a mean error and standard deviation of +20 millihartree and 9 millihartree for the same set of molecules.

The modified OZ ′ method does not perform so well, with correlation energies typically falling about halfway between IEPA and unmodified OZ results. The spread of errors is also increased with OZ ′ , indicating that the approximate treatment suggested Equation [START_REF] Boys | Localized Orbitals and Localized Adjustment Functions[END_REF] does not perform particularly well. Implementation and testing of the full theory corrected for spurious inter-pair correlations (Equa- 1 and2 relative to CCSD(T)/cc-pVTZ. The horizontal axis is marked in millihartree, and the data presented are for CCSD (solid), MP2 (dashed), IEPA (dot-dash) and OZ (dot-dot-dash). The IEPA and subsequent OZ calculations used Pipek-Mezey local orbitals.
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100 100 tion (17)) will be investigated in the future.

In any case, the OZ equation does appear to do a reasonable job of correcting IEPA for inter-pair correlations. For further striking evidence one can view the statistics graphically (Figure 3). IEPA using Pipek-Mezey orbitals followed by the OZ equation is closer to CCSD(T) than is CCSD.

Conclusions

The Ornstein-Zernike equation connects the direct correlation function to the full correlation function of a fluid. A simple physical argument leads to the equation if 'direct correlation' is taken to mean correlation within a single pair of particles, neglecting all others. The electronic structure theory that corresponds to that de- Table 1. Valence correlation energies (in millihartree) in the cc-pVTZ basis for small first-row molecules using a variety of correlation treatments. OZ and OZ ′ refer to the OZ equation applied to IEPA amplitudes using X defined in Equations ( 7) and [START_REF] Boys | Localized Orbitals and Localized Adjustment Functions[END_REF], respectively. The mean error and standard deviations are relative to CCD. One can interpret the OZ energy expression diagrammatically. Using dots to denote the X integrals, a solid line for the IEPA amplitudes and dashes for exchange integrals, the OZ (or OZ ′ ) energy expression can be written as

Molecule

E h = + + + • • • . ( 22 
)
From this expansion it is clear that the energy expression is topologically a sum of ring diagrams. In other contexts this kind of structure has the effect of incorporating some part of the inter-pair correlation to all orders. The method described in this paper has numerous theoretical deficiencies, some of which are listed below:

(1) The OZ equation for which there is a clear physical argument contains 2-particle densities, not amplitudes. The use of amplitudes is justified only for MP2 (because the amplitudes provide directly the first-order contribution the 2-particle density). Even if two-particle densities were used, there is no straightforward procedure for extracting the correlation energy.

(2) If amplitudes are used in the OZ equation, then the density ρ that appears in the integral term should probably be more properly considered as a density of excitations, and the whole theory be considered as a theory of a fluid of (bosonic) excitons i → a.

(3) We have made no consideration of spin. A proper treatment of spin would presumably further increase accuracy, and will be investigated in the future.

Despite these shortcomings we believe that the evidence provided shows three conclusions very clearly. First the OZ equation can be applied to the electrons in a molecule, because there is nothing particular to classical systems or to systems at finite temperature in the physical argument presented in the Introduction. Second, IEPA is a reasonable model for direct correlation, as defined by the OZ equation. This conclusion is equivalent to saying that the OZ equation appears to be a reasonable approach for incorporating inter-pair correlations. Lastly, the accuracy of MP2 arises from a compensation between the underestimation of pair-correlation energies and the overestimation arising from the neglect of inter-pair correlations. that trip and numerous insights on this project are very gratefully acknowledged. We are very grateful to Prof Hans-Joachim Werner for converting the CCSD code in Molpro into an IEPA code in a period of about 20 minutes. On a personal note, it has been my great pleasure and honour to collaborate with Prof Werner on local, density fitted and explicitly correlated electronic structure theory over the past years, and I thank him for his support, insight and friendship -FRM. 
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 1 Figure 1. Comparison of correlation intracules 4πr 2 I(r) for water in cc-pVTZ with several correlation methods. Panel (a): comparison of CCD, MP2 and IEPA. The MP2 correlation intracule closely agrees with that from CCD, but correlation effects in IEPA are clearly overestimated. Panel (b): comparison of MP2 and IEPA with the direct correlation intracule obtained by processing the CCD amplitudes using the OZ equation in reverse. Panel (c): comparison of the CCD correlation intracule with intracules obtained by processing MP2 and IEPA through the OZ equation.
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 923 Figure 2. Correlation intracules 4πr 2 I(r) for four small molecules using a cc-pVTZ basis and the correlation methods CCD (solid), IEPA (dot-dash) and IEPA-OZ (dash). Panels show intracules for (a) acetaldehyde, (b) fluorine molecule (c) ketene and (d) hydrogen molecule. Note that for H 2 CCD and IEPA are exactly equivalent.
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 2 Valence correlation energies (in millihartree) in the cc-pVTZ basis for small first-row molecules using a variety of correlation treatments. IEPA and IEPA plus OZ equation were performed using Boys and using Pipek-Mezey localized orbitals, and errors are relative to CCSD(T).

			Boys		Pipek-Mezey
	Molecule	CCSD(T)	IEPA	OZ	IEPA	OZ
	C 2 H 2	-339.3	-395.3 -341.8	-383.4 -333.8
	C 2 H 4	-374.9	-422.3 -377.3	-416.7 -373.2
	C 2 H 4 O	-618.2	-710.5 -635.8	-705.6 -632.0
	C 2 H 5 OH	-653.2	-738.0 -660.1	-735.6 -658.2
	C 2 H 6	-414.5	-458.1 -413.4	-458.1 -413.4
	CH 3 CHO	-612.6	-702.7 -625.6	-693.9 -619.0
	CH 3 OH	-461.6	-522.5 -465.2	-520.0 -463.4
	CH 4	-224.7	-244.8 -221.0	-244.8 -221.0
	CO	-376.7	-443.4 -387.3	-434.5 -380.9
	CO 2	-622.5	-732.5 -642.4	-720.6 -633.3
	H 2	-39.3	-39.2	-36.8	-39.2	-36.8
	H 2 CCO	-574.9	-667.7 -591.1	-655.6 -581.8
	H 2 O	-275.4	-314.6 -274.5	-312.4 -272.9
	H 2 O 2	-523.2	-613.3 -539.1	-604.0 -532.1
	HCHO	-422.9	-490.6 -433.5	-481.5 -426.6
	HCONH 2	-640.7	-738.3 -655.3	-729.8 -648.7
	HCOOCH 3	-850.8	-980.2 -874.1	-970.5 -866.6
	HCOOH	-661.6	-768.1 -679.2	-758.5 -671.8
	HNCO	-605.3	-708.6 -623.6	-698.5 -615.8
	NH 2 CONH 2	-857.3	-986.0 -876.1	-978.9 -870.6
	NH 3	-255.3	-286.9 -253.2	-286.8 -253.2
	Mean error	-	-74.2	-9.6	-67.8	-4.8
	Std. deviation	-	35.2	8.8	32.3	6.4
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