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Vibrational motion of the radical cation C+

3 in its degenerate electronic ground state

Thomas Weber1, Wilfried Meyer1 and Pavel Rosmus2
1Fachbereich Chemie, Technische Universität Ksaiserslautern, 67653 Kaiserslautern, Germany

2Laboratoire de Chimie Théorique, Université de Marne la Valée, 77454 Champs sur Marne, France

(Dated: February 12, 2010)

The cation C+

3 plays an important role in astrophysical reactions but so far it has not been charac-
terized spectroscopically. Theory has established a complicated degenerate electronic ground state
with a conical intersection of D3h structure and three local minima of D∞h structure. The small
isomerization energy is not well determined with estimates ranging from 3 to 7 kcal/mol.

In this paper the first attempt is made to generate a reliable global potential energy surface. The
MR-CI method is used to cope with a very strong multi-configurational electronic structure. Includ-
ing Davidson corrections and complete basis extrapolation, we predict a Jahn-Teller stabilization
energy of 1334 cm−1, a pseudorotation barrier of 376 cm−1, a well depth of the linear minima of
289 cm−1 and an electronic isomerization energy of 2238 cm−1 (6.4 kcal/mol).

An analytical form of the potential surface is used in variational calculations of low-energy vi-
brational motions which are based on hyperspherical coordinates. Vibronic coupling is treated in a
diabatic framework for the J-T region as well as the near-linear region. We find a unique mixture of
vibrational states which are either located around the three cyclic minima or the three linear minima,
or they are global in the sense that they fill the energy valleys between these minima. Assignments
are proposed in terms of local vibrator quantum numbers. Zero point energies in the cyclic global
and linear local minima are 1626 cm−1 and 1195 cm−1, respectively, i.e. the isomerization energy
is reduced by vibrational effects to 1668 cm−1 (4.75 kcal/mol).

I. INTRODUCTION

The cation C+

3 has been intensively investigated since
it was suggested that it may play a crucial role in the
process of forming larger homonuclear carbon clusters in
interstellar space via hydrogenation steps [1]. The room
temperature reaction rate of the hydrogen abstraction re-
action C+

3 + H2 →C3H
+ + H was found abnormally low

as compared to the rates of other C+
n ion clusters [2, 3]

which has been tentatively linked to a cyclic C+
3 struc-

ture. Recent ion trap studies revealed a surprisingly steep
increase of the reaction rate down to about 50 K where
it suddenly levels off [4]. At this low temperatures even
the radiativ association reaction C+

3 + H2 → C3H
+
2 +hν

becomes competitive. So far there is no well-based ex-
planation of this inverse temperature dependence, spec-
ulation envisions either a long-living precursor complex
or a structural peculiarity of C+

3 such as very facile bent-
to-linear isomerization.

Apart from these reaction rates, there are indeed only
very few experimental data available. Coulomb explo-
sion experiments [5] have been interpreted as indicating
a cyclic structure in contrast to older theoretical predic-
tions of a linear structure. While early measurements of
the first IP of C3 left a range from 11 to 13 eV [6, 7],
the recently measured photoionization efficiency curve of
C3 [8] shows a clear step for vertical ionization at 11.70
±0.05 eV and in particular a rather long tail to lower en-
ergies wich is believed to indicate unresolved vibrational
states of a bent C+

3 . However, a firm experimental de-
termination of its structure and a detailed spectroscopic
characterization of C+

3 are still missing.

Sunil et al [9] reported the first careful theoretical in-
vestigation of ionization potentials of C3 and noted a

particularly strong role of electron correlation for the
properties of (linear) C+

3 . It can be traced to rather
low-lying nonbonding 1πg orbitals which are not oc-
cupied in the Hartree-Fock (HF) configurations of the
2Σ+

u and 2Σ+
g states, 4σ2

g3σu1π4
u and 4σg3σ2

u1π4
u, respec-

tively. They give rise to large left-right correlation via
strong admixture of pair excitations into 1π2

g or σu,g1πg.
This results in a reordering of the electronic statess by
moving the 2Σ+

u and 2Σ+
g states below the 2Πu state, the

lowest at the HF level. It turned out that SD-CI still
gave a wrong ordering of states and the Moller-Plesset
perturbation series MPn showed large oscillations of the
correlation energies in particular from triple excitations.
Only multi reference configuration treatments - MC-SCF
as well as MR-CI - produced the correct ordering and a
first IP of 11.5 eV in good agreement with the recent
experimental value quoted above.

The observation of a complex electronic structure of
C+

3 and the suggestion of a cyclic structure [5] triggered
a rush of high-level ab initio calculations in which all
possible methods and a large number of basis sets were
explored, with the main purpose to ascertain the bent-
to-linear isomerization energy (which we henceforth ab-
breviate by ∆Ee). Raghavachari [10] used the quadratic
configuration interaction method (QCISD(T)) with a rel-
atively small basis set and was the first to predict a
bent 2B2 global minimum with apex angle of 67◦. This
minimum is only 3 kcal/mol lower than the 2Σ+

u min-
imum of linear C+

3 but separated from it by a barrier
which rises about 4 kcal/mol above the linear minimum.
An imaginary force constant for the asymmetric stretch
mode indicated symmetry breaking even at the level of
a restricted QCISD(T). Applying a similar basis and the
same method, but based on a UHF reference function,
Martin et al [11] proposed 1.9 kcal/mol as best estimate
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for ∆Ee and stressed that this value would be further
reduced by a zero point energy (ZPE) difference of about
0.7 kcal/mol. Grev et al. [12] tried the single reference
CI method, exploring substitution levels up to quadru-
ples and various active orbital spaces to conclude that
the ∆Ee should be about 4 kcal/mol, however with an
uncertainty of ± 4 kcal/mol. They found a small imag-
inary bending frequency for the 2Σ+

u state indicating a
direct decent to the 2B2 minimum and also report sym-
metry breaking for the HF wavefunctions of the 2Σ+

u and
2B2 states which prevails for SD-CI.

The newly established singles and doubles coupled
cluster method with perturbative triples (CCSD(T)) was
applied by Scuseria [13] with a focus on basis set sat-
uration. Using atomic natural orbitals in symmetry-
restricted calculations, ∆Ee was found to increase mono-
tonically with basis set size and reached 6.8 kcal/mol
for the largest set. The performance of the CCSD(T)
was investigated by Watts et al. [14] trying out various
schemes for handling triple excitations, including the full
CCSDT. They encountered variations up to 5 kcal/mol
and concluded that the generally accepted CCSD(T) ap-
proximation artificially favors the linear structure by 2.0
kcal/mol. The results for the antisymmetric stretch
frequency were indicative for the problems of single-
reference methods with C+

3 : It changed from 1431i for
CCSD(T) to 451i for CCSDT but was real for other vari-
ants.

Taylor et al. [15] stressed the strong multi-reference
character of correlation in the lower electronic states of
C+

3 as the primary cause of the problems. They per-
formed a series of CASSCF/MRCI calculations with a
full-valence active orbital space, state-averaged orbital
optimization, reference configuration selection with vary-
ing thresholds for their coefficients and optionally ap-
plying a multireference analogue of the Davidson correc-
tion. Their best calculation yielded a ∆Ee value of 5.18
kcal/mol. A critical evaluation of various energy incre-
ments and an estimate for the deficiency of their basis
set data led them to propose an energy difference of 5.2
kcal/mol as best estimate, with a confidence interval from
4.2 to 6.7 kcal/mol. This nicely includes the estimate of
ref. [12] at the lower end and the best calculated value
of ref. [13] at the upper end and it has not been chal-
lenged since. It should not be overlooked, however, that
they encountered imaginary frequencies for antisymmet-
ric stretch of the linear species even at their full-valence
CASSCF level.

The problems encountered with all the methods tried
seem to have so far prevented any investigation of larger
parts of the ground state energy surface. Only har-
monic frequencies have been reported in some of the
work discussed above, as they come along with geometry
optimization. However, for bending and antisymmetric
stretch vibrational modes they are of very limited use in
view of the obvious strong anharmonicities. Symmetric
stretch frequencies for the linear form vary between 1154
cm−1 from CASSCF [15] and 1261 cm−1 from SDCI [12],

not very different from the experimental C3 frequency of
1225 cm−1. For the bent form, symmetric stretch fre-
quencies reported from well correlated treatments vary
between 1590 and 1724 cm−1. The only attempt to pro-
vide a global potential energy surface has recently been
made by Wang et al. [16]. An analytical expression was
derived from a straight application of the many-body ex-
pansion theory [17] of polyatomic interaction potentials.
The parameters were taken from potential curves of the
dissociation products C2 and C+

2 and from the harmonic
force constants pertaining to the 2B2 global minimum.
Since no reference was made to the peculiarities of the
electronic structure of C+

3 this analytical surface can not
expected to be really useful.

For the sake of completeness we mention some recent
theoretical results which have been generated in the con-
text of experimental work. McAnoy et al. [18] performed
single-point CCSD(T) calculations with an aug-cc-pVTZ
basis, albeit for B3LYP optimized geometries. While the
∆Ee of 5.7 kcal/mol does fit into the picture of previous
work, a rather high barrier of 2.9 kcal/mol is suggested.
Fura et al. [19] applied a quite similar but unrestricted
scheme to a larger number of ion clusters and reported
a rather small ∆Ee of only 1 kcal/molr. Nicolas et al.
[8] presented CASSCF/MR-CI potential curves along the
bending coordinate while fixing the CC bond length to
a value favouring the linear form. Thus, the suggested
∆Ee of 2.2 kcal/mol as well as a flat, suspiciously looking
hump may be artifactual.

All these variations in the results for ∆Ee and the
transition state barrier indicate that great care has to be
taken if a potential surface is to be generated that can
be trusted. It is the purpose of the present paper to es-
tablish a global potential energy surface (PES) which is
reliable up to some lower vibrational levels of linear C+

3

, i.e. the conformation in which it is most likely formed.
Both sheets of the adiabatic PES are obtained from MR-
CI calculations in numerical form on a grid that covers all
conformations which are accessible within the given en-
ergy range (Section II). These data are used to generate
an analytical PES suitable for integration with global vi-
brational basis functions (Section III). A transformation
based on a J-T parametrization of the potential in the
cyclic region and on the dipole moment matrix in the
linear regian provides a PES in diabatic form for efficient
account of vibronic coupling (Section IV). Vibrational
states are finally obtained from variational calculations
wich use hyperspherical coordinates for proper treatment
of symmetry requirements and boundary conditions at
D3h and D∞h geometries. They are characterized in
terms of their distribution over the cylic and linear do-
mains and in terms of approximate vibrational quantum
numbers (Section V).

With respect to analytical fits and vibrational states
we follow the technical procedures previously applied to
degenerate states of Na3 [20] and Li3 [21–23]. Measured
vibrational band positions of exited E” states could be
reproduced to within 2 cm−1 and excellent agreement
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with rotational resolved spectra was found. Of course,
electronic structure calculations were facilitated by the
small number of valence electrons and vibrational motion
turned out to be confined to the lower sheets of the E”
states. In the more recent analysis of vibrational struc-
tures in the 2E′ ←2A′

1 absorption spectrum of B3 we
arrived at a satisfactory simulation of a spectrum taken
in a Ne matrix, but it was difficult to draw conclusions
about the accuracy achieved for vibrational levels [24]. In
the case of C+

3 the low-lying conical intersection and the
presence of the three local linear minima will substan-
tially complicate the vibrational analysis. Since there is
not yet a convincing suggestion of how C+

3 will eventually
be seen spectroscopically we restrict the present investi-
gation to a vibrational analysis of the ground state. It is
hoped that this might help understand the unexpected
features of its reactivity.

II. AB INITIO ELECTRONIC STRUCTURE

CALCULATIONS

From the discussion of the previous investigations
of C+

3 it seems clear that a global PES requires a
computational procedure which is based on a multi-
configuration reference wavefunction. Lacking a multi-
state, multi-configuration coupled cluster program, we
have decided to use the multi-reference configuration in-
teraction method (MR-CI) as implemented in the MOL-
PRO program package [25]. Its particular strength is
the efficiency derived from the concept of internally con-
tracted configurations, i.e. singles and doubles substitu-
tion operators are applied to the reference function as a
whole. This was first formulated by Meyer [26] but de-
veloped into an fully operative algorithm and efficiently
implemented by Werner and Reinsch [27].

The reference function is obtained from CAS-SCF cal-
culations. The definition of the active orbital space is
not trivial in the present case and no perfect solution
has been found in test calculations along the minimum
energy path (MEP) between the D3h and C2v conforma-
tions. The reason is the C-C bond breaking upon opening
the apex angle from 60◦ to 180◦ which is - as well known
for multiple bonds in diatomic molecules, e.g. N2 [28] -
connected with a series of avoided crossings of Rydberg-
type with valence-type orbitals and, consequently, cross-
ings of the corresponding configurations. This is seen
in Fig. 1 which shows CAS-SCF potential curves of the
lower excited states of C+

3 . The optimized orbitals for
a preselected set of states therefore undergo rather sud-
den changes which may affect also the PES of lower-lying
states. The resulting humps may be rather large at the
CAS-SCF level (e.g. 100-200 cm−1 for the lower compo-
nent of the ground state). They are effectively reduced
at the MR-CI level but may still be at a disturbing size
of 10-20 cm−1. Since extending the set of states did not
improve the situation significantly, we restricted this set
to the two components of the ground state which is suf-
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FIG. 1: Cuts of PESs of lower electronic states of C+

3 along
the ground state MEP, from CAS-SCF with basis AVTZ

ficient to avoid the unphysical symmetry breaking. The
avoided crossing of the upper component with the next
higher state appears at about 75◦ of the apex angle, i.e.
in a region where the upper component is not significant
in itself for the low-energy vibrations. Thus, the effect
of the crossing could be diminished by introducing an
angle-dependent weighting of the two components which
reaches a 1:1 ratio only above 100◦ . After some experi-
menting we found as best compromise a set of 13 active
orbitals (more precisely 11a’, 3a” orbitals in Cs symme-
try or 6a1, 5b2, 2b1, 1a2 orbitals in C2v symmetry), which
is one orbital in excess of the full-valence set used pre-
viously. In order to reduce computing expense, an occu-
pation restriction was imposed to the configurations of
the reference function in the MR-CI: only two electrons
were allowed to occupy simultaneously the four upper-
most active orbitals. This restriction has an insignificant
effect on the surface even though it may introduce an
additional risk for small bumps.

Standard correlation consistent basis sets are used
throughout [29]. For the full set of grid points, the cc-
pVQZ basis was used [25]. For a significantly smaller
subset of points, the VTZ and V5Z basis sets were ap-
plied to perform complete basis set extrapolation (CBS)
[30]. Since dynamic electron correlation is significantly
larger for the more compact cyclic structures than for lin-
ear structures, basis set deficiencies are also more serious
there. Thus, CBS extrapolation increases ∆Ee by 13%,
up from 2125 cm−1 to 2401 cm−1 . The truncation of
the configuration space inherent to a SD-MR-CI expan-
sion has the opposite trend since configuration mixing is
stronger for linear structures. Thus, approximately ac-
count for higher substitutions by Davidson’s correction
as implemented in the MR-CI of MOLPRO, lowers ∆Ee

by 164 cm−1 to our final value of 2238 cm−1 . Adding up
both extrapolations leads to a bending potential curve
which is quite similar to the uncorrected one. Still, the
small barrier for bending changes from 359 cm−1 to 289
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cm−1 upon the extrapolations. After corrections, the
Jahn-Teller (JT) stabilization energy is predicted as 1334
cm−1 and the pseudorotation barrier has a height of only
376 cm−1 .

Potential curves along the MEP for apex angles be-
tween 50◦ and 180◦ are shown in Fig. II. It includes
also results from standard CCSD(T) calculations. This

−1500
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E
ne

rg
y 

/ c
m

−
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α

MR−CI / VQZ

MR−CI −Q / VQZ

MR−CI −Q / CBS

CCSD(T) / VQZ

FIG. 2: Cut of ground state PES along the MEP of the lower
sheet from fits of MR-CI energies without and with Davidson
correction (-Q) or/and CBS extrapolation. Also included is
the CCSD(T) PES (cut along an approximate MEP)

method accounts better for dynamical correlation then
uncorrected MR-CI but underestimates the effects from
near-degenerate configuration mixing. Both differences
add up, yielding after CBS extrapolation an ∆Ee isomer-
ization energy of 2660 cm−1 and in particular a strongly
reduced linear-to-cyclic barrier of only 40 cm−1 . We note
again that the CCSD(T) treatment converges nicely for
C2v geometries (as those of Fig. II) provided the occupied
orbitals obey C2v symmetry. But it is difficult to devise a
proper one-determinant wavefunction for general Cs ge-
ometries: convergence is not stable and may end up in
unphysically distorted wavefunctions.

The much discussed question of the stability of the
linear minima with respect to asymmetric stretch defor-
mation is elucidated in Fig. 3 and seen to be somewhat
academic. The harmonic force constant turns out to be
very small indeed: It is weakly positive at equilibrium
bond distances but soon changes sign with symmetric
bond elongation, i.e. we find a valley-to-ridge transition.
The effective force constant related to the fundamental
frequency for asymmetric stretch is then largely deter-
mined from the positiv quartic force constant.

The molecular constants derived from the MR-CI PES
are collected in Tab. II. The structural parameters agree
quite well with the better calculations of the literature.
Our value for the ∆Ee of 2237 cm−1 = 6.4 kcal/mol is
within the confidence range proposed by Taylor et al.
[15] but close to its upper end. We are certain that the
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FIG. 3: Cuts of the X− PES for asymmetric stretch deforma-
tion of linear C+

3 ; calculated energies (points) and fitted PES
(solid lines)

TABLE I: Characteristic points of the X 2E’ PES.
Methods and Basis sets: a: this work, MR-CI/cc-pVQZ;
b: this work, MR-CI-Q/CBS; c: [10] QCISD(T)/6-31G*;
d: [12] CISD(TQ)/TZ2P; e: [13] CCSD(T)/5s4p3d2f1g;
f: [15] MR-CI-Q/5s3p2d1f.
Numbers in brackets: ZPE from harmonic frequencies.

E + 113 Er r1,2 α ZPE ω1(a1)

Eh cm−1 Å ◦ cm−1 cm−1

C2v a -0.42535 0 1.322 66.9 1692 1785

min b -0.44094 0 1.321 67.1 1626 1780
2B2 c -0.40392 0 1.333 67.2 (1811) 1684

d -0.29780 0 1.296 71.0 (1759) 1724

e -0.43724 0 1.324 67.8

f -0.32590 0 1.324 68.0 1675 1612

C2v a 357 1.391 55.9

sadd b 376 1.391 55.8 1760

D3h a 1278 1.358 60.0

min b 1334 1.358 1792

C2v a 2487 1.308 104.7

trans b 2526 1.308 110.1 1465

c 2432

f 2026

D∞h a 2120 1.303 180.0 1251 1190

min b 2237 1.303 1195 1188
2Σ+

u c 1051 1.318

d 1400 1.283 1261

e 2383 1.307

f 1372 1.314 1154
2Σ+

g b Tv 6035
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barrier between linear and bent structures is real, but
it is difficult to qualify the accuracy of the 289 cm−1

obtained, given the large absolute amounts of CBS and
Davidson extrapolations of together about 4700 cm−1 .

III. ANALYTICAL REPRESENTATION OF

POTENTIAL ENERGY SURFACES

MR-CI calculations as just described have been per-
formed for a grid of non-redundant conformations defined
by varying the bond lengths in steps of ∆r = 0.05 Bohr,
starting from r = 2.56 Bohr, which is close to r at the
D3h geometry with minimum energy, and stopping only
after the relative energy exceeded 4000 cm−1 above the
D3h minimum. With some extra points for bending from
linear conformations, this amounted to 250 grid points.

As outlined in section V, the variational calculation of
vibrational states involves basis functions that are global
in the sense that they span the complete space of the
cyclic hyperspherical coordinates θ and φ , e.g. harmonic
functions of φ for pseudorotation. Numerical integra-
tion of the potential then requires substantial extension
beyond the ranges covered by the grid of the electronic
structure calculations. Therefore, we like to have the po-
tentials in an analytical form which is well-behaved ev-
erywhere. Moreover, since finite basis sets are used which
do not allow a vibrational wavefunction to be exactly zero
over finite ranges in coordinate space, we have to make
sure that the potential does nowhere assume very large
values, including the ranges where two C atoms come
very close to each other.

In previous applications to A3 molecules (with JT dis-
torted potentials) we found it convenient to base an ana-
lytical expression on the three bond distances since they
are most directly related to bonding forces. In order
to further adapt the coordinates to the typical shape of
bonding potentials, we introduced ’Morse coordinates’
defined as r̃ = (1− exp(−β(r − ro)))/β [31]. This trans-
forms a Morse potential into a parabola with a finite
range for positive r̃ and usually allows to represent a
bonding potential by a low-order polynomial of r̃. As
compared to functions of the apex angle, the steep C+

3

potentials around 60◦ are widened and the shallow po-
tentials above 130◦ are compressed. Thus, β has to be
chosen with care so that bending forces can be accounted
for also in the linear domain. For the present case we
found β = 0.90 suitable.

The coordinates r̃i are combined to form symmetry-
adapted coordinates in the usual form:

r̃a = (r̃1 + r̃2 + r̃3)/
√

3, (3.1)

r̃x = (2r̃3 − r̃1 − r̃2)/
√

6 , r̃y = (r̃1 − r̃2)/
√

2 (3.2)

r̃e = (r̃2
x + r̃2

y)/
√

2, φ̃ = arctan(r̃y/r̃x) (3.3)

Symmetry is solely carried by functions of φ :
cos(kφ̃), sin(kφ̃) form a pair of E′ species if (k mod 3) 6= 0,
otherwise they are A′

1 + A′

2 species. Since the adiabatic

PES belong to the A′

1 representation, the following linear
ansatz for the potential is appropriate:

V =
∑

ijk

vijk r̃i
a r̃j

e cos(3kφ̃) (3.4)

i, j, k = 0, 1, 2, .. ; i + j ≤ n ; k ≤ kmax(j) (3.5)

r̃e is by definition non-negative and is zero only for
D3h geometries. At these points, the two components of
an E′ state PES are smooth continuations of each other
if taken as functions of r̃x and r̃y due to the fact that
they are eigenfunctions of a regular Hamiltonian. Thus,
the ansatz above can describe both components with a
single set of vijk if the range of r̃e is simply extended
to negative values, which then correspond to the upper
component PES. In the close neighborhood of r̃e = 0,
vijk should vanish for 3k > j but we only enforce this for
j = 1. Admittedly, such a one-center polynomial expan-
sion, which worked very well for our previous cases Li3
and Na3, is somewhat under stress in the present case
where linear geometries matter which have little to do
with the conical intersection. In order to ensure sufficient
flexibility, we adopted the pragmatic choice of k ≤ 0, 1, 4
for j ≤ 1, j = 2, j ≥ 3, respectively. The linear ansatz
has the obvious advantage that it can easily handle a
large number of parameters. It has been preferred over
a non-linear fit in terms of the elements of a 2x2 dia-
batic potential matrix because the upper potential has
less quality then the lower. In the present case we have
chosen n=8 and i, j ≤ 7. The total number of terms then
amounts to 132. It should be noted that powers of up to
7 in a polynomial expansion are acceptable here because
the relevant ranges of r̃a and r̃e are effectively limited
to little more than 1 by the Morse transformation, and
extended extrapolation is regularized as described below.

For a sensible least-squares fit the input energies should
be weighted according to their relevance. We have chosen
the weight function w(e) = (1 + e/e0)

−2 , where e =
E −Emin, i.e. squares of errors of energy differences are
minimized for e < e0 but squares of relative errors for
e > e0. Above a certain threshold, e > emax , the weight
is further reduced by the linear cut-off factor (2−e/emax)
and it is set to zero above 2emax. We have chosen e0 =
3000 cm−1 and emax = 5000 cm−1 , respectively. Around
α = 75◦ a small ridge in the error surface was observed
(see discussion in previous chapter) and the weights were
reduced to half in that region. The final result comes with
a rms error of 4.5 cm−1 for fitting the weighted MR-CI
energies while the MR-CI-Q energies are fitted with an
rms error of 2.9. (The Davidson correction reduces the
ridge just mentioned.) Largest deviations amount to less
then 15 cm−1 . The quality of the fit can also be judged
by inspection of Fig. 3 for the most critical region around
linear C+

3 .
We need to deal with the fact that there are large re-

gions of conformation space for which the PES is not
controlled by calculated energies and for which the poly-
nomial fit may go wild. Extending the grid does not
help since the range of the fit can not easily be extended
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without loss of quality in the relevant region. Therefore,
the analytical fit needs to be regularized in the regions
which are beyond the grid but are accessed by (our) vi-
brational basis functions. The transformed coordinates
r̃a and r̃e are quite convenient for simple regularizations
[20–22, 24, 31]: It is usually possible to determine an
ellipsoidal cut-off boundary with respect to a reference
point r̃ao, r̃eo which encloses all regions where the PES is
low and well represented by the fit. Beyond this bound-
ary the PES may be defined with reference to its values
at the boundary or close to it. E.g., if the boundary is
defined by requiring

D2(r̄a, r̄e) = dar̄2
a + der̄

2
e + 2daer̄ar̄e =! r̄2

cut (3.6)

where r̄a = r̃a − r̃ao and r̄e = r̃e − r̃eo, the external
potential may simply be derived by radial scaling of the
coordinates r̄a, r̄e whith t = r̄cut/D(r̄a, r̄e):

E(r̃a, r̃e, φ) = E(r̄at + r̃ao, r̄et + r̃eo, φ)(2− t2) (3.7)

This scheme has been chosen here. In addition, the po-
tential is not allowed to exceed an energy Emax, chosen
here as 14000 and 19000 cm−1 for lower and upper sur-
face, respectively. It has been made sure that the calcu-
lated vibrational energies are not affected by reasonable
changes of all of these parameters.

IV. VIBRONIC COUPLING

In the region of the Jahn-Teller well there is significant
vibronic coupling. In adiabatic framework the electronic
coupling factor < Φa

2 |∂/r∂φ|Φa
1 > has a pole at the con-

ical intersection, r → 0, which has to be removed by
the vibrational factor < χa

2 |∂/r∂φ|χa
1 >. For practical

reasons, among them program limitations, we prefer a
diabatic framework in which the vibronic coupling turns
into simple potential coupling. Diabatic electronic states
are the specific combinations of the two adiabatic states
which have minimal dependense on the angle φ. Applying
a 2x2 rotation matrix the two adiabatic PESs V ad

−
, V ad

+

from the MR-CI calculations turn into the diabatic 2x2
matrix PES

2V d = V ad
+ + V ad

−
+
(

V ad
+ − V ad

−

)

(

cos δ sin δ

sin δ − cos δ

)

where δ is twice the angle for rotating the wavefunctions.
The diabatic wavefunctions may be chosen to be identi-
cal to the adiabatic ones, δ = 0, at the C2v geometries
linked to φ = 0. In the cyclic region around the conical
intersectioni, the angle δ can be determined from the fa-
miliar expansion of the Hamiltonian in a power series of
the polar deformation coordinate r [32, 33]. Since the di-
abatic wavefunctions Φd

x, Φd
y form a pair of E′ symmetry,

their Hamiltonian matrix elements generate the repre-
sentation A′

1 ⊕ E′ and may be approximated up to cubic

terms in r by

Hxx + Hyy = a2r
2 + a3r

3cos(3φ) (4.8)

Hxx −Hyy = e13r cos(φ) + e2r
2cos(2φ)

Hxy = e13r sin(φ)− e2r
2cos(2φ)

where Hxy abbreviates < Φd
x|H |Φd

y > and e13 = e1+e3r
2.

Diagonalization provides the rotation angle δ as

tan(δ) =
sin(φ)− sin(2φ) re2/e13

cos(φ) + cos(2φ) re2/e13

(4.9)

The expansion coefficients an, en obtained from a fit of
the adiabatic potentials in the J-T region lead to the
function δ(φ) shown in Fig. 4. Note that δ = φ not

0 30 60 90 120 150 180
0

30

60

90

120

150

180
δ /deg

ϕ /deg

FIG. 4: Rotation angle δ as function of φ. Black curves: J-T
region , α 60-15-105◦; Red curves: linear domain, α = 105-
15-180◦

only in the linear J-T region but generally at the angles
φ = nπ/3, n=0,1,.., i.e. for all C2v geometries. This has
also to be required for a consistent continuation of δ(φ)
beyond the J-T well.

At the other ends of the bending potential valleys, for
linear C+

3 the separation of the surfaces is 6032 cm−1

, much larger than the vibrational energies considered
there. Still, vibronic coupling is not negligible for asym-
metric stretch motion due to a strong coupling between
two diabatic states correlating to 2Σ+

u and 2Σ+
g , respec-

tively, which is obvious from the shape of the asymmetric
stretch potential, Fig. 3. As asymmetric stretch is always
described by the angle φ, diabatization is again a matter
of defining δ(φ). The pertinent quantity is the deriva-
tive (∂δ/∂φ)0 since only small ranges of φ around the
C2v geometries are probed. (For linear structures the
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turning points are below 4◦ for v3 = 0). The rotation
angle has been determined from the matrix elements of
the dipole moment operator under the assumption that
their changes are solely due to changing mixtures of the
diabatic states upon asymmetric stretch. We are led to
the relation

tan(δ) = ∆µ/µ12 (4.10)

∆µ = |µ11(φ) − µ22(φ)− (µ11(0)− µ11(0))|/2

This procedure seems validated by the facts that µ2
12 +

∆µ2 is nearly independent of φ and that the resulting di-
abatic potential has nearly quadratic diagonal elements
with a nearly linear coupling element. In Fig. 5 the di-

0.00 0.05 0.10 0.15 0.20
0

1000

2000

3000

4000

5000

(r2−r1)/2 /Bohr

E/cm−1

v22
dv11

dv12
d

v1
a

v2
a

v3=0

v3=1

0.0

0.2

0.4

0.6

0.8

1.0 µ/a.u.

µ12

µ11−µ22

(µ12
2  + (µ11−µ22)

2)1/2

δ/rad

FIG. 5: Transformation to diabatic frame for asymmetric
stretch deformation of linear C+

3 . Upper panel: Dipole mo-
ment matrix elements and rotation angle. Lower panel: Adi-
abatic and diabatic potentials; vibrational levels from uncou-
pled adiabatic and coupled diabatic treatment.

abatization procedure is illustrated for linear geometries
but the picture changes little for apex angles down to
about 120◦. Remarkable large values of δ/φ ≈ 17 are
obtained which are somewhat difficult to reconsole with
the requirement that δ → φ for φ → nπ/3. After some
experimenting we have settled at an exponential approx-
imation for π/3− δ. This modeling, indicated by dashed

curves in Fig. 5, does not affect the vibrational levels,
however. The function δ(φ) is also shown in Fig. 4. The
effect of the vibronic coupling is quite substantial for the
zero-point energy of the asymmetric stretch mode: In the
linear 1-D model, see Fig. 5, this energy is increased by
about 13% or 85 cm−1 . After averaging over symmet-
ric stretch and bending motions, there remains a shift
of 65 cm−1 for low vibrational states that populate lin-
ear structures, as compared to the states that populate
cyclic structures. Note that the level v3 = 1 is hardly
changed so that the fundamental transition is reduced
by 85 cm−1.

V. CALCULATION OF VIBRATIONAL STATES

We employ hyperspherical coordinates for ease of tak-
ing into account symmetry and proper boundary condi-
tions for cyclic motions. For three equal masses they
may be defined by expressing the squares of interatomic
distances as [34] (k=1,2,3)

r2
k = 3−1/2ρ2(1 + sin θ cos(φ + εk)) ; εk = k2π/3. (5.11)

where the hyperspherical radius ρ determines the size of
the molecule, sin θ gives the strength of deformation and
φ describes the pseudorotation motion around points of
D3h symmetry. With this definition θ = 0, π correspond
to equilateral geometries (D3h) and θ = π/2 to linear
ones (D∞h, C∞v), φ = 0,±2π/3 gives isosceles triangles
(C2v).

For convenient visualization of the actual motion with
changing φ it is useful to note the relations

R = 3−3/4ρ cos(θ/2) ; r = 3−3/4ρ sin(θ/2) (5.12)

where R is the distance of the atoms from the center of
mass in the D3h reference geometry and r is the polar
radius for the motion around this reference point, see
Fig. 6. We shall use (r,φ) as coordinates for 2-D plots

0°

0°

0°

90°

90°

90°

180°

180° 180°

270°

270°

270°

R

r

j

FIG. 6: Pseudorotation motion by varying φ with constant
ρ, θ or R, r, respectively. Shown is the situation for φ = π/3
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of the PES and vibrational wavefunctions. Of course,
the coordinate surface of the plots should contain the
MEP. The latter is close to a pure bend, i.e. r1 = r2 =
ρ2(1−0.5 sin θ) constant. Actually, ρ increases somewhat
less than this along the MEP and is nearly constant close
to θ = 0. It is approximated rather well by defining

ρ′2 = ρ2[2− (sin2 θ +a2)1/2]/(2−a) ; a = 0.1885 (5.13)

and requiring ρ′ = const. Fig. 7 shows contour lines of
the lower component PES in a (ρ′, θ ; φ = 0) 2-D cut,
verifying this relation. Fig. 8 displays contour lines for
the 2-D surface (r, φ; ρ′ = ρ′0). One recognizes the typi-
cal structure of a JT potential with its central cone, three
equivalent minima separated only by small barriers and
three rather narrow valleys along C2v deformations to-
wards linear conformations which are reached at the cir-
cular boundary. Note the large coordinate space which is
not accessible for its highly repulsive potential. With a
strongly anharmonic potential as the one shown in Fig.s
7 and 8, a variational treatment of the vibrational mo-
tion is mandatory. Based on the hyperspherical kinetic
energy operator introduced by Johnson [34], efficient pro-
cedures for the calculation of the Hamiltonian have been
devised and implemented by Carter and Meyer [35, 36].
This implementation was originally designed for vibra-
tional and rovibrational states on a single adiabatic PES
with geometric phase boundary conditions 0 or π, respec-
tively, but it has more recently been extended by Carter
to handle also two electronic states in a diabatic frame-

−
.2

5
0

0.
25

0.
50

−.50 0 0.50 1.00 1.50

ϑ / rad

ρ’−ρ0’ / Bohr

FIG. 7: Contour map of the X− PES in the ρ′/ϑ plane for φ =
0 with increments of 250 cm−1 . Blue line at lowest energy
of conical intersection, red lines below, green lines above this
energy, respectively.

work. This latter version is applied here since the upper
component of the E′ ground state has to be taken into
account if vibrational states are investigated that reach
out to linear conformations.

The particular strength of our scheme is the tailoring of
the vibrational basis functions to fit the given potential.
The full-dimensional basis set is generated from lower-
dimensional sets by a sequence of contractions based on
the eigenfunctions of appropriate parts of the kinetic en-
ergy operator and corresponding effective potentials. The
effective potentials are defined as lower-dimensional min-
ima of the full-dimensional potential surface and ensure
that the basis functions cover adequately all energetically
accessible regions of the coordinate space while effectively
excluding the regions with high potentials. The primitive
1-D functions are taken to be Morse functions for the ra-
dius ρ, Jacoby polynomials for the angle θ and harmonic
functions cos(mφ), sin(mφ) with integer or half-integer
modulus m for the angle φ . Two-dimensional contracted
functions may either be defined for the θ -φ subspace or
the ρ -θ subspace. Primitive functions as well as con-
tracted functions and their derivatives are represented on
a grid and Gauss integration is used for the Hamiltonian.
In the present calculations we have used the following
sets of primitive and contracted (numbers in parenthe-
sis) functions: ρ : 28(16), θ : 60(54), φ : 132(78), ρ -θ
(69). The dimension of the Hamiltonian matrices were

0.
75

0.
50

0.
25

0
−

0.
25

−
0.

50
−

0.
75

−0.75 −0.50 −0.25 0 0.25 0.50 0.75

y

x

FIG. 8: Contour map of the X− PES in the r/φ polar plane
for ρ′=const., i.e. including the MEP of equ. 5.13. The polar
radius r is given in equ.5.12 and shown in Fig. 6. Increments
are 250 cm−1 up to 1250 cm−1 and 500 cm−1 beyond. Blue
line at zero energy = lowest energy of conical intersection; red
lines below, green lines above zero energy, respectively.
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1850 for A′ symmetries and 3700 for the E′ symmetry,
respectively.

The vibronic wavefunctions are symmetry-adapted
products of electronic and vibrational wavefunctions.
Since the coordinates ρ and θ are not affected by any
symmetry operation, vibrational symmetry is determined
only by the factor-functions of the coordinate φ : The
pairs (cos(mφ), (−)l sin(mφ)) are e′ symmetry species if
l = (2m modulo 3) 6= 3, otherwise they generate a′

1 and
a′2 species, respectively [35, 36]. (The phase factor (−)l

is required to ensure identical representation matrices of
C3 rotations; l is defined to allow for half-integer values
of m required in the adiabatic frameA.) As customary,
small case letters are used for the symmetry species of
vibrational functions. With the diabatic electronic wave-
functions Φx, Φy one finds the following four species of
vibronic wavefunctions:

ΨA1 = ΦExχex
+ ΦEyχey

ΨEx = ΦEx(χex − χa1) + ΦEy(χey + χa2)

ΨEy = −ΦEx(χey − χa2) + ΦEy(χex + χa1)

ΨA2 = ΦExχey − ΦEyχex (5.14)

These symmetry species provide the only exact classi-
fication of vibronic states. The calculated vibronic
energy levels are collected in Tab. V and are displayed
in Fig. V. As the shape of the bending potential sug-
gests, we find three groups of vibrational states. The
first group, labeled by index b in Tab. V, starts lowest
in energy and is confined to strongly bent regions around
the conical intersection and the J-T minima. The sec-
ond group, labeled by l, should appears above energies
of 1870 cm−1 and is localized in the linear domain. The
third group, labeled by g, is global in the sense that the
barrier at about 2200 cm−1 is overcome and both regions
are visited. A further characterization of the vibrational
states may be attempted in terms of approximate quan-
tum numbers. For group b states they may be derived by
reference to the limiting case of a very high pseudorota-
tion barrier, for which the states are superpositions of the
three equivalent states of vibrators localized in the three
deep wells. The states can then be labeled by the usual
quantum numbers for small-amplitude vibration of a bent
molecule. This situation is signaled by near degeneracy of
pairs of E′ and A′

1 states. The other limiting case, a very
low barrier, lends itself to quantum numbers of a free in-
ternal rotation and is signaled by near degeneracy of pairs
of A′

1 and A′

2 states. Comparison of the low-energy A′

1-
E′ splittings of 201 and 285 cm−1 , respectively, with the
first A′

2-A
′

1 splitting of 605 cm−1 indicates that the first
option is more adequate. Although the pseudorotation
barrier of only 376 cm−1 seems rather low, a quite effec-
tive separation of the three wells is caused by the fact
that the saddle point region is rather narrow in bend-
ing direction (see Fig. II). Indeed, the lowest A′

2 state,
which heavily populates the saddle point region, lies as
much as 806 cm−1 above the ground state. Thus, group
b states are assigned with vibrational quantum numbers

TABLE II: Calculated vibrational energy levels (in cm−1 )
and local vibrator assignments.

A1’ E’ A2’

E v1v2v3 E v1v2v3 E v1v2v3

201 000 b 0 000 b

966 010 b 681 010 b

1245 001 b 806 001 b

1571 020 b 1377 020 b

1821 100 b 1596 100 b

1869 000 l 1820 030 b

2011 030 b 1869 000 l

1962 011 b 1806 011 b

2015 020 l 2014 020 l

2141 040 l 2130 040 l

2227 070 g 2154 070 g

2311 080 g 2252 080 g

2428 090 g 2277 110 b

2555 110 b 2329 002 b

2565 0x0 g 2386 090 g

2658 002 b 2499 0x0 g

2735 0x0 g 2637 0x0 g

2741 021 b 2333 101 b

2894 0x0 g 2794 0x0 g

2885 101 b 2569 021 b

2956 031 g 2935 111 b

2971 111 b 3002 001 l

3002 001 l 3110 003 b

3064 100 l 3064 100 l

3075 0x0 g 3071 120 b

3161 021 l 3161 021 l

3173 120 b 3170 0x0 g

3258 120 l 3194 200 b

3281 3258 120 l

(v1, v2, v3) for symmetric stretch, bend and asymmetric
stretch modes of a C2v vibrator, respectively. A par-
ticular set of such quantum numbers shoul appear twice,
that is in E′ and A′

1 symmetry for v3 even but in A′

2 and
E′ symmetry for v3 odd. Within such a pair, the energy
order E’ < A’1 and E’ > A’2, respectively, is usually ob-
served. However, this assignment becomes less and less
stringent ar higher energies as different local vibrators
interact across the pseudorotaton barrier. From the en-
ergies given in Table II one derives frequencies for funda-
mental transitions of 1596-1620 , 681-765 and 1245 cm−1

for symmetric stretch, bent and antisymmetric stretch
modes, respectively.

In the case of group ”l” states one finds E′+A′ pairs
which are exactly degenerate because the three compo-
nents around φ = εk, k=1-3, correspond to conformations
with different center atoms which do not interact at all.
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FIG. 9: Vibronic energy levels for XC+

3 . States with bent
(b), linear (l) and global (g) domains indicated in red, green
and blue, respectively. Tentative assignment by local vibrator
quantum numbers (vs, vb, vas); related E-A pairs linked by
dotted lines.

Vibrational quantum numbers as used above apply even
better to these states but it should be noted that states
with v2 odd do not appear in a rotation-free calculation.
We observe only a short progression, v2 = 0, 2, (4), of low-
energy bending vibrations with a fundamental frequency
of only 73 cm−1 (level distance 146 cm−1), which is due
to the broad barrier of 289 cm−1 at at α = 110◦. The
levels v2 = 4 at 272 and 261 cm−1 , respectively, show
already a small splitting from interactions with group b
vibrations. The first excitations of symmetric and anti-
symmetric stretch modes appear with energies 1195 and
1133 cm−1, respectively, above the lowest linear level.
(The latter value differs by -25 cm−1 from the result
of the linear 1-D model for vibronic coupling, which is
due to vibrational averaging.) Short bending progres-

sions start with these excitations.
Finally, group g states spread rather evenly over cyclic

and linear domains. The vibrational motions appear
as 1-D bending vibrations within the three energy val-
leys, with rather regular interconnections in the cyclic
region. (Quantum mechanics appears to effectively sup-
presses chaotic vibrational motion in the energy range
under consideration here.) The states are simply de-
noted by the number of nodes along the minimum en-
ergy path (not double-counting the nodes as in the linear
case). The average spacing between consecutive levels is
around 110 cm−1 , but interactions with the pure cyclic
and/or pure linear modes of similar energy cause signif-
icant variations. The assignment of quantum numbers
becomes more and more questionable with increasing en-
ergy but the grouping according to domains turned out
rather definite. The assignment has been carried out by
applying small diagnostic step potentials and monitor-
ing the resulting shifts of the energy levels. Of course,
contour plots of the vibrational wavefunctions have been
illuminating and very helpful in this regard.

Selected low-energy vibrational wavefunctions are dis-
played in figures 9 - 11. For an are adequately represen-
tation of global motions the wavefunctions are shown for
the (r,φ; ρ′0) surface as used for the potential in Fig. V.
Since it appeared difficult to produce comprehensive pic-
tures of the diabatic wavefunctions, we have transformed
them to adiabatic ones. Only the component at the lower
surface is shown since there is little population of the very
narrow upper adiabatic surface. Note that the nonadia-
batic wavefunctions are double-valued with a sign change
for the second full period of φ. The plots show only the
period -π to π and indicate by a bold black line the cut
where the wavefunction continues smoothly on the other
sheet. As to the symmetry assignment please note that
we do not invoke the double group notation. Thus, adi-
abatic electronic states are considered of A′ symmetry
and the symmetry species of adiabatic vibrational states
are identical to that of the vibronic states. The lowest
vibrational state then has E′ symmetry and shows only a
single node over the 4π period (jpsr = 1/2) while the low-
est A′

1 and A′

2 states have three nodes (jpsr = 3/2 ). The
latter resides pretty much on top of the pseudorotation
barrier. Plots for the ρ − θ plane have been instructive
for the assignment of vibrational quantum numbers but
are not shown here.

The vibrational analysis provides a vibronic value for
the isomerization energy of ∆Eev = 1668 cm−1 ( 4.75
kcal/mol). The significant difference of 570 cm−1 to the
purely electronic value of ∆Ee = 2238 cm−1 results from
the reduction of the ZPE from 1626 cm−1 for the cyclic
ground state to the vibrational energy of the lowest linear
state of only 1195 cm−1 , which is due to much weaker
bending and antisymmetric stretch potentials.
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FIG. 10: Vibronic states of A
′

1 symmetry.
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FIG. 11: Vibronic states of A
′

2 symmetry
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FIG. 12: Vibronic states of E
′

y
symmetry
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VI. CONCLUSIONS

We have presented a first attempt to generate a reliable
global potential energy surface for the electronic ground
state of C+

3 . The internally contracted MR-CI method
proved to be adequate to deal with the strong multi-
configurational character of the electronic structure. A
large one-electron basis and beyond full-valence active
orbital space as well as extrapolations to complete basis
and complete configuration space are believed to support
a rather uniform accuracy of about ±1 kcal/mol for the
lower sheet of the potential surface. The electronic iso-
merization energy ∆Eeis calculated as 2238 cm−1 (6.4
kcal/mol), cyclic and linear structures appear separated
by a transition state barrier of only 290 cm−1.

The variational calculations of vibronic states take full
account of strong vibronic coupling in the cyclic (J-T)
and the linear domains of the vibrational motion and are
converged to better than 1 cm−1. The complex manyfold
of low-energy (< 3000 cm−1) states could be classified
according to local motions in the cyclic or the linear do-
mains or global motions connecting all low-energy parts
of the PES. A more detailed characterization has been at-
tempted in terms of quantum numbers of local vibrators.
The vibrational analysis shows that The isomerization
energy is reduced by vibrational effects to the vibronic
value of 1626 cm−1 (4.75 kcal/mol), due to a rather low
ZPE in the linear domain.

The present work is focused on the electronic ground
state because of the substantial problems we encoun-
tered whith the accurate determination of the upper state

wavefunction beyond the J-T region. Work is in progress
to derive reliable transition moments for simulation of
spectra which may be helpful for identifying C+

3 spectro-
scopically.

In a final remark we like to address again the low re-
action rate for C+

3 + H2 →C3H
+ + H and the puzzle

of its inverse temperature dependence mentioned in the
introduction. No new options seem to emerge from the
knowledge of potential surface and vibrational manyfold
of C+

3 : Only one vibrational level, the A′

1 level at 202
cm−1, is subject to temperature dependent population
but its structure hardly differs from the ground vibra-
tional state. More information is required on the ionic
collision complex. Some exploratory calculations have
revealed the following situation: Multipole Coulomb and
induction forces form a van der Waals complex with sev-
eral local minima, the deepest of which is bound by about
3500 cm−1 . On the one hand, it may be stabilized with
respect to the entrance channel by internal vibrational
redistribution. On the other hand, it is separated from
the reactive channel by a barrier which rises up to about
the educt energy - our calculations are not yet conclu-
sive for the sign of the small difference in energy. This
barrier may well explain the low reaction rate at room
temperature and maybe even its inverse temperature de-
pendence because the decay channel to the educts is ef-
fectively closed at low energies by rotational energy re-
distribution. Work is in progress to map out the van der
Waals potential well and accurately locate the barrier to
the reaction channel.
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Schwarz., J. Chem. Soc., Perkin Trans. 2 p. 1647 (2002).
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