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Abstract

We have studied the performance of Boys and Handy’s transcorrelated equation for Jastrow factors,
without further approximations on the integrals involved, using quantum Monte Carlo methods. Con-
trary to previous statements in the literature, we observed no violation of variational bounds. Our
results agree to very high accuracy with variational calculations for various atoms and small molecules.
It should be mentioned that our findings are not in direct contradiction with the results of Boys and
Handy obtained forty years ago. Instead their results were slightly obscured by obvious limitations
of computational resources and resulting approximations for complicated integrals. According to our
results and related work, the transcorrelated method of Boys and Handy might be an interesting alter-
native to conventional F12 methods where the correlation factor is not the subject of optimisation.

1 Introduction

A prevalent prejudice in quantum chemistry is that correlated wave functions of many-electron systems are
unwieldy objects which require an enormous number of degrees of freedom for an accurate representation.
This point of view originated from large scale configuration interaction (CI) calculations where up to
billions of Slater determinants were used in order to achieve accurate results for rather small molecules. A
more economical representation of wave functions can be achieved via the exponential ansatz which became
popular through its use in coupled cluster (CC) theory. This ansatz incorporates essential physical insights
and guarantees size consistency of the method. Another important insight from Hylleraas and collaborators
was the astonishing accuracy of expansions in terms of inter-particle distances. A combination of both
worlds is the Jastrow ansatz for the wave function

Ψ(R) = eτ(R)Φ(R), R = (r1, r2, · · · , rN ), (1.1)

where R denotes the combined coordinates of all N particles. The correlation function τ represents a
symmetric function of the electron coordinates and the reference wave function Φ(R) can be chosen as
a single Slater determinant, e.g. from Hartree-Fock, or an appropriate linear combination. Generally, a
given ansatz for the reference wave function has an inherent error in the nodal structure which cannot
be compensated by the Jastrow factor. Therefore, the Jastrow ansatz should be considered only as
an approximation to the exact wave function. The remaining, so-called fixed-node error is typically
small, i.e., less that 5% of the correlation energy, but hard to improve in a systematic manner. Jastrow
factors have been extensively studied in condensed matter and nuclear physics [1] but rarely considered
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in quantum chemistry. Remarkable exceptions are the transcorrelated (TC) method of Boys and Handy
[2, 3, 4, 5, 6, 7, 8, 9, 10] developed forty years ago and more recent developments in quantum Monte Carlo

(QMC) methods [11, 12, 13, 14]. Because of the exponential ansatz, the optimisation of the correlation
function is a highly nonlinear problem. This can be handled in a variational manner using either QMC
[11, 15, 16, 17] or highly sophisticated diagrammatic techniques, like the Fermi hypernetted chain method
[18, 19]. An alternative nonvariational approach is the TC method of Boys and Handy [4]. The basic idea
is to transform the formal Schrödinger equation for the Jastrow ansatz

(Ĥ − E)eτΦ = 0, (1.2)

into the form
(e−τ Ĥeτ − E)Φ = 0, (1.3)

where the similarity transformed Hamiltonian gives only rise to quadratic non-linear terms in the correla-
tion function. According to our previous discussion, Eqs. (1.2) and (1.3) are generally not exactly solvable
for a given ansatz of the reference wave function Φ. Instead an approximate solution can be envisaged
which satisfies

∫

R3N

d3NR

(

∂e−τΦ

∂cα

)

(Ĥ − E)eτ Φ = 0, (1.4)

for any free parameter cα of the correlation function τ or reference wave function Φ. This transcorrelated
formulation strongly resembles the projection equations of CC theory. The error of this approach in
the wave function and energy has been characterized by Boys and Handy [2, 4] via the least squares
errors of the basis {∂eτΦ/∂cα} and corresponding projection basis {∂e−τΦ/∂cα} with respect to the exact
wave function. For actual calculations, the original Eq. (1.4) poses severe technical difficulties concerning
the computation of the integrals. Three different approaches have been studied by Boys and Handy
to circumvent this problem. The first approach is to replace the projection basis by a computationally
simpler CI-type basis consisting of a set of single and double excited Slater determinants. This has been
tested for the Ne atom [5] and gave a total energy which is more than 20 mHartree below the “exact”
energy. Another approach is to fix the leading order term which gives rise to Kato’s cusp condition and to
choose a separable ansatz for the optimised part of the correlation factor. The difficult to handle leading
order term therefore does not show up as a derivative on the left side of the Hamiltonian in (1.4) which
greatly simplifies the computations. Applications to LiH and the Be atom are reported in Refs. [6] and [7],
respectively. The third approach uses a Gaussian type geminal basis set for the correlation factor which
enables the computation of all the integrals involved. Interestingly, it has been observed by Handy that
the latter approach behaves similar to a variational calculation [9] in contrast to the other two approaches
mentioned before. It is fair to say that the TC calculations of Boys and Handy were of amazing accuracy
for those days. However, due to obvious limitations of the computing facilities sometimes very small basis
sets were taken which might obscure, together with a mixture of different computational approaches, the
actual behaviour of the TC method. It is the purpose of the present work to provide unambiguous results
which shed light on the performance of the TC method for Jastrow factor optimisation.

The lack of a variational lower bound, generally attributed to the non-hermitian TC Hamiltonian, is
usually considered as a severe problem of the TC approach [20]. Therefore it was largely abandoned until
the revival of the method by the work of Ten-no and collaborators. In their work [21, 22, 23, 24, 25],
the correlation factor was kept fixed, e.g., using Gaussian geminals, and the transcorrelated Hamiltonian
was treated using perturbation theory or the coupled electron-pair approximation. In this sense Ten-
no’s approach resembles to R12 or F12 methods [20] which improve convergence with the basis set for
conventional many-particle methods. Another work along this line is the approach of Umezawa et al.
[26, 27, 28, 29] to solve the orbital equations in a self-consistent manner for a single Slater determinant,
where the correlation factor is fixed up to a single parameter. Like in the present work, QMC techniques
were used to compute the integrals.

Within the present work we want to reconsider the TC method in its original formulation (1.4) using
the Hylleraas-like correlation basis introduced by Boys and Handy in terms of polynomials of rational
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expressions in the inter-particle distances. The complicated integrals, which prevented straightforward
computations forty years ago, have been calculated with QMC. For comparison we performed variational

Monte Carlo (VMC) calculations with TC and energy optimised Jastrow factors. Originally, the TC
equations were designed to optimise the reference function, i.e., the orbitals which constitute the Slater
determinant, and the correlation function simultaneously. We refrain from optimising the orbitals and
consider only the correlation function. With this no indeterminacy appears concerning the one-electron
part of the correlation function which required an additional contraction equation in the work of Boys
and Handy [3].

The paper is organized as follows: In Section 2 we give a detailed description of the TC equation and
discuss its relations with the variational approach. Test calculations for atoms and small molecules are
presented in Section 3 where we compare the performance of the TC and variational approach. Finally,
in Section 4 we give some concluding remarks.

2 Transcorrelated versus variational treatment of electron correlation

For a given reference function Φ, the Jastrow ansatz (1.1) usually does not provide an exact solution for
the stationary Schrödinger equation

ĤΨ = EΨ (2.1)

with nonrelativistic Hamiltonian

Ĥ = −
1

2

∑

i

∇2
i +

∑

i

vext(ri) +
∑

i>j

1

rij

. (2.2)

in the Born-Oppenheimer approximation. Atomic units have been used throughout the paper. Instead of
the exact solution one can search for the correlation function τ(R) which minimises the expectation value
of the energy

E = min
τ

∫

R3N d3NReτΦ(R)ĤeτΦ(R)
∫

R3N d3NR eτΦ(R) eτΦ(R)
. (2.3)

Here and in the following we assume all wave functions to be real valued. According to the standard
procedure we introduce a basis set for the correlation function

U (1)
α (R) =

∑

i

u(1)
α (ri),

U
(2)
β (R) =

1

2

∑

i6=j

u
(2)
β (ri, rj),

... (2.4)

where U
(k)
α denotes symmetric k-particle basis functions. For notational simplicity we skip the index k in

the following discussion. Inserting the expansion of the correlation function

τ(R) =
∑

α

cαUα(R), (2.5)

into (2.3) yields a nonlinear eigenvalue problem

〈Uαeτ (Ĥ − E)eτ 〉 = 0, (2.6)

where

〈Ô〉 :=

∫

R3N

d3NR Φ(R)ÔΦ(R) (2.7)
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denotes the expectation value of an operator Ô with respect to the normalized reference wave function.
The variational equation (2.6) can be interpreted as the Schrödinger equation for the Jastrow ansatz

projected onto the subspace spanned by {UαeτΦ}. This means that Schrödinger’s equation is only satisfied
in a weak sense with respect to the set of test functions {UαeτΦ} and not on the whole Hilbert space. In
contrast to the variational approach, the TC method of Boys and Handy for the correlation factor leads
to a weak formulation of the Schrödinger equation of the form

〈Uαe−τ (Ĥ − E)eτ 〉 = 0, (2.8)

where a set of test functions {Uαe−τΦ} has been applied. In fact Eqs. (2.6) and (2.8) are closely related
since the test functions UαeτΦ and Uαe−τΦ share the same nodal structure. If we consider the limiting case
where {Uα} forms a complete basis for n-body permutationally symmetric functions, the spaces spanned
by {UαeτΦ} and {Uαe−τΦ} are identical which means that also Eqs. (2.6) and (2.8) become equivalent.

It is only the kinetic energy part of the Hamiltonian which does not commute with the Jastrow factor.
Therefore, Eq. (2.8) can be rewritten as

〈Uα(Ĥ + [Ĥ, τ ] −
1

2

∑

i

(∇iτ)2 − E)〉 = 0, (2.9)

and the TC energy is

E = 〈Ĥ〉 −
1

2
〈
∑

i

(∇iτ)2〉. (2.10)

By constant shifts of the basis functions

Ũα = Uα − 〈Uα〉, (2.11)

Eq. (2.9) becomes

〈Ũα(Ĥ + [Ĥ, τ ] −
1

2

∑

i

(∇iτ)2)〉 = 0, (2.12)

which is decoupled from the transcorrelated energy (2.10). The non-linear character of Eq. (2.12) requires
an iterative solution method. Following Boys and Handy [4], we solve the corresponding linear defect
equation

〈Ũα[Ĥ, δτ ]〉 −
∑

i

〈Ũα(∇iτ) · (∇iδτ)〉 = −〈Ũα(Ĥ + [Ĥ, τ ] −
1

2

∑

i

(∇iτ)2)〉, (2.13)

and update the correlation function τ + δτ → τ of the Jastrow factor in an iterative manner until
convergence has been achieved.

Some of the integrals in Eq. (2.12) are notoriously difficult to compute and must be treated by elaborate
numerical quadrature schemes. In order to simplify the problem Boys and Handy devised an alternative
approach where the set of test functions {Uαe−τΦ} is replaced by {e−τΦ′′

r} which is more convenient from
a computational point of view. Here Φ′′

r denotes Slater determinants generated via double excitations
from the reference determinant Φ. By construction, these test functions, however, have different nodal
structures and their span differs from the subspace spanned by {Uαe−τΦ}. Therefore no basis set limit
exits, in the sense discussed in the previous paragraph, such that the TC and variational approaches
become equivalent. Furthermore, for the new set of test functions, Eq. (2.12) cannot be rigorously satisfied
anymore and has to be solved in the sense of a least squares approximation [5].

Even for present day computing facilities, not to mention the situation faced by Boys and Handy forty
years ago, TC calculations with the original set of test functions {Uαe−τΦ} are rather challenging. On
the one hand basis functions Uα are required which provide compact and accurate representations for
correlation functions and on the other hand these functions must be also convenient from the compu-
tational point of view. In our previous work we studied tensor product wavelets within the framework
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of diagramatic multiresolution analysis [30] in order to meet both requirements. Quite recently we have
also considered canonical tensor product approximations for correlation functions [31] as an alternative
approach to reduce the computational complexity of the corresponding integrals. In order to be applica-
ble to the TC method both approaches require extensive software development. The main purpose of the
present work is to test the accuracy of the original TC equation (2.12) and to perform a direct compari-
son with variational calculations. Therefore we have chosen QMC techniques for the computation of the
integrals. This enables us to use well established basis functions for the Jastrow factor. The expectation
value of a general operator Ô can be rewritten as

〈Ô〉 =

∫

R3N

d3NR OL(R)ρ(R), (2.14)

with

OL(R) =
ÔΦ(R)

Φ(R)
(2.15)

and measure

ρ(R) =
|Φ(R)|2

∫

R3N d3NR |Φ(R)|2
. (2.16)

Generating a set of random samples {Rm}m=1,M according to the distribution function ρ from a Metropolis

algorithm, the expectation value of Ô can be estimated by

〈Ô〉 ≈
1

M

M
∑

m=1

OL(Rm). (2.17)

The statistical error of this approximation converges with O(M− 1

2 ) independent on the number of particles.

3 Transcorrelated QMC calculations

We have performed some test calculations for the ground states of the atoms Be, O, Ne and the molecules
CH4, H2O. In these calculations, we have used the polynomial basis originally suggested by Boys and
Handy [5] which became the standard basis in QMC after its revival by the work of Schmidt and Moskowitz
[12]. For the representation of the pair-correlation function this basis is given in terms of polynomials of
rational functions in the inter-partical distances, i.e.,

u(2)
α (ri, rj) = (r̄m

iI r̄n
jJ + r̄m

jI r̄
n
iJ)r̄o

ij , (3.1)

with
r̄iI =

riI

1 + riI

, r̄ij =
rij

1 + rij

, (3.2)

where m,n, o are taken to be non-negative integers and I, J are indices of nuclei. Such basis functions
are characterized by a multi-index (m,n, o, I, J) which is simply denoted by α here and in the following.
For atoms, the largest basis used in our calculations contains 49 polynomials. It is simply constructed by
taking into account all polynomials (3.1) with m + n + o ≤ 6. Among these 49 polynomials, there are
6 one body terms (with m 6= 0, n = o = 0) and 43 two body terms to which spin dependent coefficients
have been assigned except for He atom. Therefore our atomic basis for the pair-correlation function has
in total 92 spin dependent degrees of freedom. Wave functions with spin dependent Jastrow factors may
not be eigenstates of the total spin operator Ŝ2. A study by Huang et al. [32], however, revealed that
possible spin contaminations are small. For molecules, the multi-index of the basis functions also depends
on indices for the nuclei (I, J) which increases their number considerably and requires a more adaptive
construction of the basis set. In the case of H2O and CH4, basis sets with 103 and 125 spin dependent
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Figure 3.1: Convergence of the TC correlation energy (Hartree) of the Ne atom for different basis sets:
(©) 8 term basis of Boys and Handy, (�) 17 term basis of Schmidt and Moskowitz, (♦) 92 term spin
dependent basis. For comparison we have shown the corresponding variational correlation energies for
energy optimised correlation functions τopt from first-order iterative Jastrow perturbation theory (dotted
lines).
.

degrees of freedom have been employed in our calculations, respectively. Within the present work, we
consider only the TC equation for the correlation factor, and the reference wave functions were taken
from Hartree-Fock calculations. For atoms, Slater-type orbitals were taken from Clementi and Roetti [33]
and for the molecules Gaussian-type orbitals have been obtained from MOLPRO [34].

As can be expected, the polynomial basis (3.1) leads to ill-conditioned matrices, a problem which is
enhanced by statistical fluctuations from the Monte Carlo algorithm. To keep the equations tractable
a singular value decomposition (SVD) has been applied to get rid of statistical fluctuations and almost
linear dependencies in the basis. The details of our procedure are as follows: usually we take an ensemble
of 100 random walkers which undergo random walks of 2 × 105 Monte Carlo steps. The matrix elements
for the linear TC equation (2.13), in the following briefly denoted Ax = b, are calculated for each of the
walkers separately, so we have an ensemble of matrices A

(i) and vectors b
(i) where i refers to the index

of the walker. Taking an ensemble average yields the matrix A, and vector b. The SVD applied to the
matrix A gives

Ã = U
T
AV, (3.3)

where U and V are orthogonal matrices and Ã is a diagonal matrix with non-negative elements (singular
values). Thus the linear equation is diagonalized as

Ãx̃ = b̃, x̃ = V
T
x, b̃ = U

T
b. (3.4)

In order to get an estimate of the statistical error of the matrix Ã and vector b̃, we performed the
transformations (3.3) and (3.4) for each A

(i) and b
(i) separately, and calculated the standard error of

the matrix elements of Ã and b̃ based on the fluctuation of Ã
(i) and b̃

(i), respectively. By denoting the
diagonal matrix elements of Ã and their standard errors as Ãα and δÃα, respectively, the solution of the
linear equation simply becomes x̃α = b̃α/Ãα. To prevent the fluctuations being amplified by small singular
values, we set x̃α = 0 if |δb̃α| > b̃α or |δb̃α| > Ãα or |δÃα| > Ãα.

The first test calculations were carried out for the Ne atom. In order to check the dependence of the
TC correlation energy on the choice of the basis functions {Uα}, we have performed calculations for three
different basis sets, i.e., the 8 term basis of Boys and Handy (cf. Table 1. in Ref [5]), the 17 term basis of
Schmidt and Moskowitz (cf. Table VI. in Ref [12]) and the 92 term spin dependent basis described before.
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Figure 3.2: Comparison of TC and variational correlation energies. Ratios with respect to the corre-
sponding fixed-node DMC correlation energies are shown. The variational energies are calculated with
TC correlation factors as well as for energy optimised correlation factors from first-order iterative Jastrow
perturbation theory. For atoms the 92 term basis has been used whereas for H2O and CH4 the 103 and
125 term basis have been employed, respectively.

The convergence of the iterative solution of the transcorrelated equation (2.12) using (2.13) is shown in
Fig. 3.1, where the initial correlation function was set to τ = 0. It turned out that the iteration scheme
converged very fast, i.e., within two to three iterations for all three basis sets. For comparison, we have
also calculated energy optimised correlation functions τopt for the same basis sets using first-order iterative
Jastrow perturbation theory [17]. The corresponding variational correlation energies, which are obtained
from VMC calculations of the expectation value of the energy, are indicated in Fig. 3.1 as dotted lines.
It can be seen that for all three basis sets, the TC and variational correlation energies are in very close
agreement to each other.

For our other test systems Be, O, H2O and CH4, calculations have been only performed with the
large spin dependent bases discussed before. It is interesting to calculate besides the TC correlation

energies E
(TC)
corr from Eq. (2.10) also the variational correlation energy E

(var)
corr (τTC) for the TC Jastrow

factors. The results for TC Jastrow factors have been compared in Table 3.1 with correlation energies

for energy optimised Jastrow factors E
(var)
corr (τopt). In Fig. 3.2 these correlation energies are shown for

our test systems relative to the fixed-node diffusion quantum Monte Carlo (DMC) results E
(DMC)
corr which

can be considered as benchmarks for variational energies in the complete basis set limit. We obtained
very close agreement, i.e., within 2% for all three types of correlation energies. In particular, we never
observed that (2.10) gives an energy significantly lower than the corresponding variational value. The
good agreement between transcorrelated and variationally optimised correlation energies suggests that
also the corresponding Jastrow factors are of comparable quality.

Our calculations show a similar qualitative behaviour as the Gaussian-type geminal approach of Handy
[9] which can be expected since this approach uses the same TC equation (2.12) and differs only in the
choice of the basis set for the correlation function. Based on their calculations for the Be atom and LiH
[6, 7], it has been argued by Handy [9] that a better convergence behaviour can be expected if the leading
order term is not fixed by Kato’s cusp condition. We have tested this argument in our calculations and
obtained almost the same results independent of whether or not this term was fixed.
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Table 3.1: Transcorrelated and variational correlation energies (mHartree). The variational energies are
calculated with VMC for both TC (τTC) and energy optimised correlation functions (τopt). For comparison,
the fixed-node DMC and exact nonrelativistic correlation energies are given.

Be O Ne H2O CH4

Nterm 92 92 8 17 92 103 125

TC -0.0769(2) -0.2253(2) -0.3370(4) -0.3431(4) -0.3567(3) -0.3290(5) -0.2634(3)

VMC(τTC) -0.0772(2) -0.2260(5) -0.3367(5) -0.3446(3) -0.3581(2) -0.3310(4) -0.2657(2)

VMC(τopt) -0.0778(2) -0.2268(4) -0.3369(5) -0.3458(4) -0.3599(5) -0.331(1) -0.2678(5)

DMC -0.08415(7)a -0.2422(5)a -0.3752(3)a -0.352(1)c -0.283(1)c

Exact -0.09434b -0.2579b -0.3905b -0.3719c -0.296c

a Ref. [35], b Ref. [36], c Ref. [37]

4 Conclusion

Test calculations on several atomic and molecular systems demonstrate that the performance of the original
TC equation (2.12) is very close to variational calculations for the determination of correlation functions.
This important fact was somewhat obscured by the calculations of Boys and Handy owing to technical
limitations and related further approximations. Our work together with the results of Ten-no et al. and
Umezawa et al. suggests that the TC method is an interesting alternative to conventional F12 methods
where the correlation function is kept fixed throughout the calculation. QMC offers an efficient approach
to compute complicated integrals which are otherwise difficult to access.

References

[1] Clark, J. W., 1979, Progress in Nuclear and Particle Physics Vol. 2, Ed. Wilkinson, D. H., (Pergamon,
Oxford), p. 89.

[2] Boys, S. F., 1969, Proc. R. Soc. London Ser. A 309, 195.

[3] Boys, S. F., and Handy, N. C., 1969, Proc. R. Soc. London Ser. A 309, 209.

[4] Boys, S. F., and Handy, N. C., 1969, Proc. R. Soc. London Ser. A 310, 43.

[5] Boys, S. F., and Handy, N. C., 1969, Proc. R. Soc. London Ser. A 310, 63.

[6] Boys, S. F., and Handy, N. C., 1969, Proc. R. Soc. London Ser. A 311, 309.

[7] Handy, N. C., 1969, J. Chem. Phys. 51, 3205.

[8] Handy, N. C., 1971, Mol. Phys. 21, 817.

[9] Handy, N. C., 1972, Mol. Phys. 23, 1.

[10] Handy, N. C., 1973, J. Chem. Phys. 58, 279.

[11] Umrigar, C. J., Wilson, K. G., and Wilkins, J. W., 1988, Phys. Rev. Lett. 60, 1719.

[12] Schmidt, K. E., and Moskowitz, J. W., 1990, J. Chem. Phys. 93, 4172.

[13] Huang, C.-J., Umrigar, C. J., and Nightingale, M. P., 1997, J. Chem. Phys. 107, 3007.

[14] Drummond, N. D., Towler, M. D., and Needs, R. J., 2004, Phys. Rev. B 70, 235119.

8

Page 8 of 9

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

[15] Lin, X., Zhang, H., and Rappe, A. M., 2000, J. Chem. Phys. 112, 2650.

[16] Umrigar, C. J., Toulouse, J., Filippi, C., Sorella, S., and Hennig, R. G., 2007, Phy. Rev. Lett. 98,
110201.

[17] Luo, H., Hackbusch, W., and Flad, H.-J., 2009, J. Chem. Phys. 131, 104106.

[18] Krotscheck, E., 1984, Ann. Phys. (N.Y.) 155, 1.

[19] Krotscheck, E., 1985, Phys. Rev. B 31, 4267.

[20] Klopper, W., Manby, F. R., Ten-No, S., and Valeev, E. F., 2006, Int. Rev. in Phys. Chem. 25, 427.

[21] Ten-no, S., 2000, Chem. Phys. Lett. 330, 169.

[22] Ten-no, S., 2000, Chem. Phys. Lett. 330, 175.

[23] Hino, O., Tanimura, Y., and Ten-no, S., 2001, J. Chem. Phys. 115, 7865.

[24] Ten-no, S., and Hino, O., 2002, Int. J. Mol. Sci. 3, 459.

[25] Hino, O., Tanimura, Y., and Ten-no, S., 2002, Chem. Phys. Lett. 353, 317.

[26] Umezawa, N., and Tsuneyuki, S., 2003, Int. J. Quantum Chem. 91, 184.

[27] Umezawa, N., and Tsuneyuki, S., 2003, J. Chem. Phys. 119, 10015.

[28] Umezawa, N., and Tsuneyuki, S., 2004, J. Chem. Phys. 121, 7070.

[29] Umezawa, N., Tsuneyuki, S., Ohno, T., Shiraishi, K., and Chikyow, T., 2005, J. Chem. Phys. 122,
224101.

[30] Flad, H.-J., Hackbusch, W., Luo, H., and Kolb, D., 2005, Phys. Rev. B 71, 125115.

[31] Chinnamsetty, S. R., Luo, H., Hackbusch, W., and Flad, H.-J., (to be published).

[32] Huang, C.-J., Filippi, C., Umrigar, C. J., 1998, J. Chem. Phys. 108, 8838.

[33] Clementi, E., and Roetti, C., 1974, Atomic Data and Nuclear Data Tables 14, 177.

[34] Molpro is a package of ab initio programs written by Werner, H.-J., and Knowles, P. J., with
contributions from Amos, R. D., Bernhardsson, A., Berning, A., Celani, P., Cooper, D. L., Deegan,
M. J. O., Dobbyn, A. J., Eckert, F., Hampel, C., Hetzer, G., Korona, T., Lindh, R., Lloyd, A. W.,
McNicholas, S. J., Manby, F. R., Meyer, W., Mura, M. E., Nicklass, A., Palmieri, P., Pitzer, R.,
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