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This paper deals with the problem of estimating the level sets L(c) = {F (x) ≥ c}, with c ∈ (0, 1), of an unknown distribution function F on R 2 + . A plug-in approach is followed. That is, given a consistent estimator Fn of F , we estimate L(c) by Ln(c) = {Fn(x) ≥ c}. In our setting, noncompactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by applications in multivariate risk theory. In particular we propose a new bivariate version of the Conditional Tail Expectation by conditioning the two-dimensional random vector to be in the level set L(c). We also present simulated and real examples which illustrate our theoretical results.

Introduction

The Conditional Tail Expectation (CTE) is a commonly used tool in the univariate risk theory. Given a random variable X with continuous and strictly monotonic distribution function F X , the CTE at level α is defined by

CTE α (X) = E[ X | X ≥ Q X (α) ], (1) 
with α ∈ (0, 1) and Q X (α) the univariate quantile function of X at level α. In other words the CTE α (X) is defined by the expectation value of X conditionally to the fact that X belongs to a certain one-dimensional level set of F X . For further details about this univariate risk measure we refer the reader e.g. to Denuit et al. [START_REF] Denuit | Actuarial Theory for Dependent Risks[END_REF].

In this paper we are interested to introduce a new bivariate generalization of CTE in [START_REF] Artzner | Coherent measures of risk[END_REF] and to provide a consistent procedure to estimate it. Consequently we essentially need a generalization of the notion of quantile in dimension higher than one. Therefore we remark that the quantile function is a relevant tool in statistics and probability, but its practical use is mostly confined to the univariate case where it is easily interpretable and calculable. The bivariate (or multivariate) characterization has received some attention however, it is much less common, due to a number of theoretical and practical reasons. In particular the main difficulty is that there does not exist a natural ordering in n-dimensions, for n > 1. For this reason, in the last decade several attempts have been made to provide a multidimensional generalization of the univariate quantile function. We refer to Serfling [START_REF] Serfling | Quantile functions for multivariate analysis: approaches and applications[END_REF] for a complete review on the topic. For example Massé and Theodorescu [START_REF] Massé | Halfplane trimming for bivariate distributions[END_REF] defined multivariate quantiles as halfplanes and Koltchinskii [START_REF] Koltchinskii | M -estimation, convexity and quantiles[END_REF] provided a general treatment of multivariate quantiles as inversions of mappings.

As a possible generalization of the univariate quantile function, Tibiletti [START_REF] Tibiletti | On a new notion of multidimensional quantile[END_REF], Fernández-Ponce and Suárez-Lloréns [START_REF] Fernández-Ponce | Central regions for bivariate distributions[END_REF] and Belzunce et al. [START_REF] Belzunce | Quantile curves and dependence structure for bivariate distributions[END_REF] defined a multivariate quantile as a set of points which accumulate the same probability for a fixed orthant. They called it level curves or quantile curves. In this sense de Haan and Huang [START_REF] De Haan | Large quantile estimation in a multivariate setting[END_REF] model a risk-problem of flood in the bivariate setting using an estimator of level curves of bivariate distribution function. In this paper we will follow this approach in order to propose a new risk measure which generalizes the CTE in [START_REF] Artzner | Coherent measures of risk[END_REF]. To this end we need to estimate the level sets of a bivariate distribution function F . This leads us into the general field of level sets estimation.

The problem of estimating level sets of an unknown function (for instance of a density function and more recently a regression function) has received attention recently. In particular the estimation of density level sets has been studied in Polonik [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters-an excess mass approach[END_REF], Tsybakov [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF], Baíllo et al. [START_REF] Baíllo | Convergence rates in nonparametric estimation of level sets[END_REF], Baíllo [START_REF] Baíllo | Total error in a plug-in estimator of level sets[END_REF], Cadre [START_REF] Cadre | Kernel estimation of density level sets[END_REF], Rigollet and Vert [START_REF] Rigollet | Optimal rates for plug-in estimators of density level sets[END_REF], Biau et al. [START_REF] Biau | A graph-based estimator of the number of clusters[END_REF]. The estimation of regression level sets in a compact setting has been analyzed in Cavalier [START_REF] Cavalier | Nonparametric estimation of regression level sets[END_REF], Laloë [START_REF] Laloë | Sur Quelques Problèmes d'Apprentissage Supervisé et Non Supervisé[END_REF]. An alternative approach, based on the geometric properties of the compact support sets, has been presented by Hartigan [START_REF] Hartigan | Estimation of a convex density contour in two dimensions[END_REF], Cuevas and Fraiman [START_REF] Cuevas | A plug-in approach to support estimation[END_REF], Cuevas and Rodríguez-Casal [START_REF] Cuevas | On boundary estimation[END_REF]. The problem of estimating general level sets under compactness assumptions has been discussed by Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF]. The asymptotic behavior of minimum volume sets and of a generalized quantile process is analyzed by Polonik [START_REF] Polonik | Minimum volume sets and generalized quantile processes[END_REF].

Considering the level sets of a bivariate distribution function, the commonly assumed property of compactness for these sets is no more reasonable. Then, differing from the literature cited above, we need to work in a non-compact setting and this requires special attention in the statement of our problem.

Our general approach will be the following: first, we provide a consistent estimator of the level set L(c) = {F (x) ≥ c}, for c ∈ (0, 1).

Therefore we consider a plug-in approach (e.g. see Baíllo et al. [START_REF] Baíllo | Convergence rates in nonparametric estimation of level sets[END_REF]; Rigollet and Vert [START_REF] Rigollet | Optimal rates for plug-in estimators of density level sets[END_REF]; Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF]), that is, L(c) is estimated by

L n (c) = {F n (x) ≥ c}, for c ∈ (0, 1),
where F n is a consistent estimator of F . The regularity properties of F and F n as well as the consistency properties of F n will be specified in the statements of our theorems.

In order to provide a consistency results we define two proximity criteria between sets. A standard choice is the volume of the symmetric difference. Another natural criterion is given by the Hausdorff distance that corresponds to an intuitive notion of "physical proximity" between sets. Our consistency properties are stated with respect to these two criteria under reasonable assumptions on F and F n (Theorems 2.1 -3.1). These results are based on a slight modification of Proposition 3.1 in the PhD Thesis of Rodríguez-Casal [START_REF] Rodríguez-Casal | Estimacíon de conjuntos y sus fronteras. Un enfoque geometrico[END_REF] (Proposition 1.1).

We then introduce our new bivariate version of the Conditional Tail Expectation by conditioning the twodimensional random vector to be in the level set L(c). This new risk measure is based on the bivariate Valueat-Risk proposed in Embrechts and Puccetti [START_REF] Embrechts | Bounds for functions of multivariate risks[END_REF] and Nappo and Spizzichino [START_REF] Nappo | Kendall distributions and level sets in bivariate exchangeable survival models[END_REF] and it is different from the existing bivariate generalizations of the univariate Conditional Tail Expectation (e.g. see Cai and Li [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF]). Indeed we do not use any aggregate risk in the portfolio in order to analyze the bivariate risk's issue. Our bivariate version of the CTE deals with the simultaneous joint damages considering the dependence structure of data in a bivariate specific risk's area (L(c)). We propose an estimator for this new risk measure using plug-in approach for level sets and provide a consistency result (Theorem 4.1).

The paper is organized as follows. We introduce some notation, tools and technical assumptions in Section 1.

Consistency and asymptotic properties of our estimator of L(c) are given in Sections 2 and 3. In Section 4 we introduce a new bivariate generalization of CTE in (1) and we provide a consistent estimator for this risk measure. Illustrations with simulated and real data are presented in Section 5. Section 6 summarizes and briefly mentions directions for future research. Finally, some auxiliary results and more technical proofs are postponed to Section 7.

Notation and preliminaries

In this section we introduce some notation and tools which will be useful later.

Let

N * = N \ {0}, R 2 + * = R 2 + \ (0, 0), F the set of continuous distribution functions R 2 + → [0, 1] and F ∈ F. Given an i.i.d sample {X i } n i=1 in R 2 + with distribution function F , we denote by F n (•) = F n (X 1 , X 2 , . . . , X n ,
•) an estimator of F based on the finite sample (X 1 , X 2 , . . . , X n ). We restrict ourselves to R 2 + for convenience but the following results are completely adaptable in R 2 . This choice is motivated essentially by our application in risk theory proposed in Section 4, where random variables will be losses then defined in a positive support.

Define, for c ∈ (0, 1), the upper c-level set of F ∈ F and its plug-in estimator

L(c) = {x ∈ R 2 + : F (x) ≥ c}, L n (c) = {x ∈ R 2 + : F n (x) ≥ c},
and

{F = c} = {x ∈ R 2 + : F (x) = c}. In addition, given T > 0, we set L(c) T = {x ∈ [0, T ] 2 : F (x) ≥ c}, L n (c) T = {x ∈ [0, T ] 2 : F n (x) ≥ c}, {F = c} T = {x ∈ [0, T ] 2 : F (x) = c}.
Furthermore, for any A ⊂ R 2 + we denote by ∂A its boundary.

Note that {F = c} can be a portion of quadrant R 2 + instead of a set of Lebesgue measure null in R 2 + (that is the presence of plateau at level c). In the following we will introduce suitable conditions in order to avoid the presence of plateau in the graph of F .

In the metric space (R 2 + , d), where d stands for the Euclidean distance, we denote by B(x, ρ) the closed ball centered on x and with positive radius ρ. Let B(S, ρ) = x∈S B(x, ρ), with S a closed set of R 2 + . For r > 0 and ζ > 0, define

E = B({x ∈ R 2 + : | F (x) -c |≤ r}, ζ)
, and, for a twice differentiable function F ,

m ▽ = inf x∈E (∇F ) x , M H = sup x∈E (HF ) x ,
where (∇F ) x is the gradient vector of F evaluated at x and (∇F ) x its Euclidean norm, (HF ) x the Hessian matrix evaluated in x and (HF ) x its matrix norm induced by the Euclidean norm.

For sake of completeness, we recall that if A 1 and A 2 are compact sets in (R 2 + , d), the Hausdorff distance between A 1 and A 2 is defined by

d H (A 1 , A 2 ) = inf{ρ > 0 : A 1 ⊂ B(A 2 , ρ), A 2 ⊂ B(A 1 , ρ)},
or equivalently by

d H (A 1 , A 2 ) = max sup x∈A1 d(x, A 2 ), sup x∈A2 d(x, A 1 ) , where d(x, A 2 ) = inf y∈A2 x -y .
The above expression is well-defined even when A 1 and A 2 are just closed (not necessarily compact) sets but in this case the value d H (A 1 , A 2 ) could be infinity. Then in our setting, in order to avoid these situations we need a truncated version of Assumption T in Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF] or Tsybakov [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF]. More precisely we introduce the following assumption.

H: There exist γ > 0 and

A > 0 such that, if | t -c | ≤ γ then ∀ T > 0 such that {F = c} T = ∅ and {F = t} T = ∅, d H ({F = c} T , {F = t} T ) ≤ A | t -c | .
Assumption H is satisfied under mild conditions. Proposition 1.1 below is a slight modification of Proposition 3.1 in the PhD Thesis of Rodríguez-Casal [START_REF] Rodríguez-Casal | Estimacíon de conjuntos y sus fronteras. Un enfoque geometrico[END_REF] in order to deal with non-compact sets.

Proposition 1.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R 2 * + . Assume there exist r > 0, ζ > 0 such that m ▽ > 0 and M H < ∞. Then F satisfies Assumption H, with A = 2 m ▽ . The proof is postponed to Section 7.

Remark 1. Under assumptions of Proposition 1.1, F is continuous and m ▽ > 0, there is no plateau in the graph of F for each level t such that | tc | ≤ r. Furthermore from Theorem 1 in Rossi [START_REF] Rossi | Proprietà geometriche delle superficie di ripartizione[END_REF] we know that each half-line in R 2 + , parallel to one of the axis, meets {F = t} in a connected set of points. As a consequence we obtain that {F = t} is a curve in the quadrant R 2 + . In particular, from m ▽ > 0, for a fixed x we have to consider all corresponding values y in a specific interval (we refer the interested reader to Remark 2.1 in Rossi [START_REF] Rossi | Proprietà geometriche delle superficie di ripartizione[END_REF] or Remark 3.1 in Rossi [START_REF] Rossi | Sulle curve di livello di una superficie di ripartizione in due variabili; on level curves of two dimensional distribution function[END_REF]). In this case the plane curve {F = t} is not the graph of a function but it has the following monotonic property. We consider (x, y), (x ′ , y ′ ) ∈ {F = t}, if x < x ′ then y ≥ y ′ , if y < y ′ then x ≥ x ′ . In particular if we suppose that each component of (∇F ) x is greater than zero in E then {F = t} is a monotone decreasing curve in R 2 + . Finally under assumptions of Proposition 1.1 we obtain ∂L(c) T = {F = c} T = {F = c} ∩ [0, T ] 2 (we refer for details to Theorem 3.2 in Rodríguez-Casal [START_REF] Rodríguez-Casal | Estimacíon de conjuntos y sus fronteras. Un enfoque geometrico[END_REF]).

Consistency in terms of the Hausdorff distance

In this section we study the consistency properties of L n (c) T with respect to the Hausdorff distance between ∂L n (c) T and ∂L(c) T . The Hausdorff distance corresponds to an intuitive notion of "physical proximity" between sets (see Figure 1(left) for a graphical illustration). However the metric d H is not always completely successful in capturing the shape properties: two sets can be very close in d H and still have quite different shapes. For instance in Figure 1(right) we have X, the outside ball, and Y the set of balls inside X. The distance d H (X, Y ) is small even if X and Y are quite different in many important aspects. In order to avoid these situations, following Cuevas and Rodríguez-Casal [START_REF] Cuevas | On boundary estimation[END_REF] and Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF], a way to reinforce the notion of visual proximity between two sets provided by d H is to impose the proximity of the respective boundaries. We will follow this approach in Theorem 2.1 below.

From now on we note, for n ∈ N * ,

F -F n ∞ = sup x ∈ R 2 + | F (x) -F n (x) |,
and for T > 0 F -F n T ∞ = sup x ∈ [0,T ] 2 | F (x) -F n (x) | .
The following result can be considered an adapted version of Theorem 2 in Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF].

Theorem 2.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R 2 * + . Assume that there exist r > 0, ζ > 0 such that m ▽ > 0 and M H < ∞. Let T 1 > 0 such that for all t : | tc | ≤ r, ∂L(t) T1 = ∅. Let (T n ) n∈N * be an increasing sequence of positive values. Assume that, for each n and for almost all samples of size n, F n is a continuous function and that

F -F n ∞ → 0, a.s. (2) 
Then d H (∂L(c) Tn , ∂L n (c) Tn ) = O( F -F n ∞ ), a.s.
The proof is postponed to Section 7. Under assumptions of Theorem 2.1, d H (∂L(c) Tn , ∂L n (c) Tn ) converges to zero and the quality of our plug-in estimator is obviously related to the quality of the estimator F n .

Remark 2. Theorem 2.1 provides an asymptotic result for a fixed level c. In particular following the proof of Theorem 2.1 (postponed to Section 7) we remark that, for n large enough,

d H (∂L(c) Tn , ∂L n (c) Tn ) ≤ 6 A F -F n Tn ∞ , a.s.,
where A = 2 m ▽ . Note that in the case c is close to one the constant A could be large. In this case, we will need a large number of data to get a reasonable estimation.

Note that the empirical distribution estimator does not satisfy continuity assumption imposed in Theorem 2.1. However, in order to overcome this problem it can be considered a smooth version of this estimator (e.g. see Chaubey and Sen [START_REF] Chaubey | Smooth estimation of multivariate survival and density functions[END_REF]), which satisfies convergence in [START_REF] Baíllo | Total error in a plug-in estimator of level sets[END_REF]. However we remark that the continuity assumption, imposed in Theorem 2.1, will not be necessary in the following results.

L 1 consistency

The previous section was devoted to the consistency of L n in terms of the Hausdorff distance. We consider now another consistency criterion: the consistency of the volume (in the Lebesgue measure sense) of the symmetric difference between L(c) Tn and L n (c) Tn . This means that we define the distance between two subsets A 1 and

A 2 of R + 2 by d λ (A 1 , A 2 ) = λ(A 1 △ A 2 ),
where λ stands for the Lebesgue measure on R 2 and △ for the symmetric difference.

Let us introduce the following assumption:

A1 There exist positive increasing sequences

(v n ) n∈N * and (T n ) n∈N * such that v n [0,Tn] 2 | F -F n | p λ(dx) P → n→∞ 0,
for some 1 ≤ p < ∞.

We now establish our consistency result in terms of the volume of the symmetric difference. We can interpret the following theorem as a generalization of Theorem 3 in Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF] (Section 3) in the case of non-compact level sets. In addition, we provide also a convergence rate for the symmetric difference between L(c) Tn and L n (c) Tn .

Theorem 3.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R 2 * + . Assume that there exist r > 0, ζ > 0 such that m ▽ > 0 and M H < ∞. Assume that for each n, with probability one, F n is measurable. Let (v n ) n∈N * and (T n ) n∈N * positive increasing sequences such that Assumption A1 is satisfied and that for all t : | t-c | ≤ r, ∂L(t) T1 = ∅. Then it holds that

p n d λ (L(c) Tn , L n (c) Tn ) P → n→∞ 0, with p n an increasing positive sequence such that p n = o v 1 p+1 n /T p p+1 n .
The proof is postponed to Section 7. Theorem 3.1 provides a convergence rate, which is closely related to the choice of the sequence T n . A sequence T n whose divergence rate is large implies a convergence rate p n quite slow. Note that, as in Theorem 3 in Cuevas et al. [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF], Theorem 3.1 above does not require any continuity assumption on F n . Remark 3. Assumptions on gradient vector and Hessian matrix of F , in Theorems 2.1 and 3.1, are satisfied for a quite large class of classical bivariate distribution functions; for instance independent copula and exponential marginals, Farlie-Gumbel-Morgenstern (FGM), Clayton or Survival Clayton copulas and Burr marginals.

We now suppose that there exists a positive increasing sequences

(v n ) n∈N * such that v n F -F n ∞ P → n→∞ 0. Then ∀ p ≥ 1, w n [0,Tn] 2 | F -F n | p λ(dx) P → n→∞ 0, with w n = v p n T 2 n .
In this case, from Theorem 3.1 we get

p n = o(w 1 p+1 n /T p p+1 n ) = o(v p p+1 n /T p+2 p+1 n ). (3) 
From these considerations we can introduce the following remark. n ). For instance, for F (x, y) = (1e -x ) (1e -2 y ) and using the bivariate empirical distribution function F n we obtain p n = o(n

1 3 / ln(n) 4 
3 ), with p = 2 and T n = ln(n).

Application in bivariate risk theory

From the usual definition in the univariate setting we know that the quantile function Q X provides a point which accumulates a probability α to the left tail and 1α to the right tail. More precisely, given an univariate continuous and strictly monotonic loss distribution function F X ,

Q X (α) = F -1 X (α), ∀ α ∈ (0, 1). ( 4 
)
The notion of univariate quantile function Q X is used in risk theory to define an univariate measure of risk: the Value-at-Risk (VaR). This measure is defined as

VaR α (X) = Q X (α), ∀ α ∈ (0, 1). ( 5 
)
As presented in the introduction of this paper, following the general ideas of Embrechts and Puccetti [START_REF] Embrechts | Bounds for functions of multivariate risks[END_REF] and Nappo and Spizzichino [START_REF] Nappo | Kendall distributions and level sets in bivariate exchangeable survival models[END_REF] an intuitive generalization of the VaR measure in the case of a bidimensional loss distribution function F is given by its α-quantile curves. More precisely: Definition 4.1. For α ∈ (0, 1) and F ∈ F, the bidimensional Value-at-Risk at probability level α is the boundary of its α-level set, i.e. VaR α (F ) = ∂L(α).

As pointed out in Tibiletti [START_REF] Tibiletti | On a new notion of multidimensional quantile[END_REF], imposing α = 1 2 in Definition 4.1, we get a natural extension of the bidimensional median. For details about a parametric formulation of the quantile curve ∂L(α) see Belzunce et al. [START_REF] Belzunce | Quantile curves and dependence structure for bivariate distributions[END_REF]. For details about its properties see for instance Fernández-Ponce and Suárez-Lloréns [START_REF] Fernández-Ponce | Central regions for bivariate distributions[END_REF] (and references therein) and Nappo and Spizzichino [START_REF] Nappo | Kendall distributions and level sets in bivariate exchangeable survival models[END_REF].

Then, using a bivariate estimator F n as in Sections 2 -3, we can define our plug-in estimator of the bivariate Value-at-Risk by VaR α (F n ) = ∂L n (α), for α ∈ (0, 1).

Moreover, under assumptions of Theorem 2.1, we obtain a consistency result, with respect to the Hausdorff distance, for the VaR α (F n ) on the quadrant R 2 + i.e.

d H (VaR α (F ) Tn , VaR α (F n ) Tn ) = O( F -F n ∞ ), a.s.
As in the univariate case, the two-dimensional VaR at a predetermined level α does not give any information about thickness of the upper tail of the distribution function. This is a considerable shortcoming of VaR measure because in practice we are not only concerned with frequency of the default but also with the severity of loss in case of default. In other words we are interested to analyze the behavior of X and Y not only on the boundary but also in the whole α-level set.

In dimension one, in order to overcome this problem, another risk measure has recently received growing attention in insurance and finance literature: Conditional Tail Expectation (CTE). Following Artzner et al. [START_REF] Artzner | Coherent measures of risk[END_REF] and Dedu and Ciumara [START_REF] Dedu | Restricted optimal retention in stop-loss reinsurance under VaR and CTE risk measures[END_REF], for a continuous loss distribution function F X the CTE at level α is defined by

CTE α (X) = E[ X | X ≥ VaR α (X) ],
where VaR α (X) is the univariate VaR in [START_REF] Biau | A graph-based estimator of the number of clusters[END_REF]. For a comprehensive treatment and for references to the extensive literature on VaR α (X) and CTE α (X) one may refer to Denuit et al. [START_REF] Denuit | Actuarial Theory for Dependent Risks[END_REF].

Several bivariate generalizations of the classical univariate CTE have been proposed; mainly using as conditioning events the total risk or some univariate aggregate extreme risk in the portfolio (for instance the sum, the max or the min between two risks):

E[ (X, Y ) | X + Y > Q X+Y (α) ], E[ (X, Y ) | min{X, Y } > Q min{X,Y } (α) ] and E[ (X, Y ) | max{X, Y } > Q max{X,Y } (α) ].
The interested reader is referred to Cai and Li [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF] for further details. Using the same approach of Definition 4.1, we are interested to preserve the complete information about dependence structure between X and Y and the bi-dimensional aspect of our problem. To this end, starting from these general considerations, we propose to study a new bivariate version of the Conditional Tail Expectation (Definition 4.2 below).

Let us first introduce the following assumption:

A2: X and Y are positive random variables fulfilling E(X 2 ) < ∞ and E(Y 2 ) < ∞. The random vector (X, Y ) has a λ-density function f such that f 1+r dλ < ∞, for some r > 0.

Definition 4.2. Consider a random vector (X, Y ) satisfying Assumption A2, with associate distribution function F ∈ F. For α ∈ (0, 1), we define

(1) the bivariate α-Conditional Tail Expectation

CTE α (X, Y ) = E[(X, Y )|(X, Y ) ∈ L(α)] = E[ X | (X, Y ) ∈ L(α) ] E[ Y | (X, Y ) ∈ L(α) ] .
(2) the estimated bivariate α-Conditional Tail Expectation

CTE α (X, Y ) =      n i=1 X i 1 {(Xi,Yi)∈Ln(α)} n i=1 1 {(Xi,Yi)∈Ln(α)} n i=1 Y i 1 {(Xi,Yi)∈Ln(α)} n i=1 1 {(Xi,Yi)∈Ln(α)}      . (6) 
Note that this bivariate Conditional Tail Expectation is a natural extension of the univariate one. Moreover, if X and Y are identically distributed with a symmetric copula then E

[ X | (X, Y ) ∈ L(α) ] = E[ Y | (X, Y ) ∈ L(α) ].
Contrarily to the generalizations of the univariate CTE above, our CTE α (X, Y ) does not use an aggregate variable (sum, min, max . . .) in order to analyze the bivariate risk's issue. By contrast, using a geometric approach, CTE α (X, Y ) rather deals with the simultaneous joint damages considering the bivariate dependence structure of data in a specific risk's area (L(α)).

Let α ∈ (0, 1) and F ∈ F. We introduce truncated versions of the theoretical and estimated CTE α :

CTE T α (X, Y ) = E[(X, Y )|(X, Y ) ∈ L(α) T ], CTE T α (X, Y ) =      n i=1 X i 1 {(Xi,Yi)∈Ln(α) T } n i=1 1 {(Xi,Yi)∈Ln(α) T } n i=1 Y i 1 {(Xi,Yi)∈Ln(α) T } n i=1 1 {(Xi,Yi)∈Ln(α) T }      ,
where L(α) T and L n (α) T are the truncated versions of theoretical and estimated upper α-level set defined in Section 1.

Theorem 4.1. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it holds that

β n CTE Tn α (X, Y ) -CTE Tn α (X, Y ) P → n→∞ 0, ( 7 
)
where

β n = min{ p r 2(1+r) n , a n }, with r > 0 satisfying Assumption A2 and a n = o ( √ n).
The convergence in [START_REF] Cadre | Kernel estimation of density level sets[END_REF] must be interpreted as a componentwise convergence. In the case of a bounded density function f (X, Y ) we obtain β n = min{ √ p n , a n }.

Using Theorem 4.1 and Remark 4, we obtain the following result in the case of the bivariate empirical distribution function. ), with a choice of sequence T n = ln(n). We remark that (P[X ≥ T n or Y ≥ T n ]) -1 is increasing in T n , whereas the speed of convergence is decreasing in T n . This kind of compromise provides an illustration on how to choose T n , apart from satisfying the assumptions of consistency results in Section 3 (see Section 5.2.1 for several numerical illustrations of this aspect).

Illustrations

Estimation of the level sets

In this section we confront our estimator of level sets of the distribution function with various simulated samples. The plug-in estimation of level sets is constructed using the empirical estimator F n . We consider two distribution functions which satisfy assumptions of Theorem 3.1: independent copula with exponential marginals and Survival Clayton copula with Burr marginals.

Following Remark 4 we consider T n = ln(n) and we obtain p n = o(n

1 3 / ln(n) 4 
3 ). We also take T n = n 0.45 . This second sequence provides an illustration for the case of T n too large (see Tables 1 We take a random grid of 10000 points in [0, T n ] 2 and a distribution with independent and exponentially distributed marginals with parameter 1 and 2 respectively. We provide a Monte Carlo approximation for λ(L(α) Tn △ L n (α) Tn ) (averaged on 100 iterations), for different values of α and n. The results are gathered in Table 1. 1. Distribution with independent and exponentially distributed marginals with parameter 1 and 2 respectively. Approximated λ(L(α) Tn △ L n (α) Tn ).

In order to illustrate the influence of the choice of T n , in Table 2 we show p n λ(L(α) Tn △ L n (α) Tn ), with p n = o(n

1 3 / ln(n) 4 
3 ) in the case T n = ln(n) (Table 2(a)) and

T n = n 0.45 (Table 2(b)). Results in Table 2(a) set out how p n = o(n 1 3 / ln(n) 4 
3 ) is at least the convergence rate of λ(L(α) Tn △ L n (α) Tn ) in this particular case. This illustrates not only the consistency property but also the speed of convergence of our plug-in estimator. As expected in Table 2(b) we see that taking T n too large, we can not expect to get a good approximation of λ(L(α) Tn △ L n (α) Tn ). 

3 ).

In Tables 3(a) and 3(b) we calculate the theoretical λ(L(α) Tn ), for T n = ln(n) and T n = n 0.45 respectively, and for different values of n and α. These quantities provide an illustration of the truncation of level sets L(α), with respect to T n and α. Table 4 provides a Monte Carlo approximation for λ(L(α) Tn △ L n (α) Tn ) (averaged on 100 iterations), in the case of a Survival Clayton copula with parameter 1 and Burr(2, 1) marginals. In Table 5 we show p n λ(L(α) Tn △ L n (α) Tn ), with p n = o(n

1 3 / ln(n) 4 
3 ) in the case T n = ln(n) (Table 5(a)) and T n = n 0.45 (Table 5(b)). We obtain results that are analogous to those Table 2. 

3 ).

As expected, the greater n is, the better the estimations are (see Tables 1(a) and 4(a)). Moreover we note that for big values of α we need more data to get a good estimation of the level sets. This may come from the fact that when α grows the gradient of the distribution function decreases to zero and the constant A grows significantly (see proof of Theorem 3.1 in Section 7).

Remark 6. As remarked in Section 3 the choice of the sequence T n is essentially a compromise: if T n is large we have a quite slow convergence rate p n for λ(L(α) Tn △ L n (α) Tn ) and if T n is quite small we obtain a faster convergence rate. However choosing T n too small we substantially truncate our level sets. This aspect can be problematic in the case c is close to one. Finally the theoretical optimal criterion for the choice of sequence T n in Theorem 3.

1 is an open interesting problem that we leave for a future work.

5.2. Estimation of CTE α (X, Y )

Simulated data

In order to evaluate the performance of our estimator we present here some simulated cases of estimation of CTE α (X, Y ), for different values of level α. To compare the estimated results with the theoretical ones we consider cases for which we can calculate (with Maple) the explicit value of the theoretical CTE α (X, Y ). However our estimator can be applied to much more general cases. By being able to get a good estimator for the level sets, we can expect a good estimator for CTE α (X, Y ).

In the following we compare CTE Tn α (X, Y ) with the theoretical CTE α (X, Y ), for different distributions: Independent copula with exponentially distributed marginals; Clayton copula with parameter 1, with exponential and Burr(4, 1) univariate marginals. The plug-in estimation of level sets is constructed using the empirical estimator F n of the bivariate distribution function, with n = 1000.

In the following we denote CTE α Tn (X, Y ) = CTE α Tn,1 (X, Y ), CTE α Tn,2 (X, Y ) the mean (coordinate by coordinate) of CTE Tn α (X, Y ) on 100 simulations. We denote σ = ( σ 1 , σ 2 ) the empirical standard deviation (coordinate by coordinate) with

σ 1 = 1 99 100 j=1 CTE α Tn,1 (X, Y ) j -CTE α Tn,1 (X, Y ) 2
relatives to the first coordinate (resp. σ 2 relatives to the second one).

We denote RMSE = (RMSE 1 , RMSE 2 ) the relative mean square error (coordinate by coordinate) with

RMSE 1 = 1 100 100 j=1 CTE Tn ,1 α (X,Y )j -CTE Tn ,1 α (X,Y ) CTE Tn ,1 α (X,Y ) 2
relatives to the first coordinate of CTE Tn α (X, Y ) (resp. RMSE 2 relatives to the second one).

For the Independent copula with exponentially distributed marginals, from Corollary 4.1 and Remark 5, we take T n = ln(n) (see Tables 6 and8). This choice provides a convergence rate β n = o(n

1 6 / ln(n) 2 
3 ). Furthermore, as in Section 5.1, we consider the case with T n = n 0.45 . This second sequence provides an illustration for the case of T n too large (see Tables 7 and9). Following the same approach of Remark 5, in the case of Clayton copula with parameter 1, with exponential and Burr(4, 1) univariate marginals we have

β n = o(n 1 6 /(n 0.2 ) 2 3
), with a sequence T n = n 0.2 (see Table 10). Also in this case, we show the behavior of our estimator for T n = n 0.45 (see Table 11. (X, Y ) with Clayton copula with parameter 1, F X exponential distribution with parameter 1, F Y Burr(4, 1) distribution; T n = n 0.45 .

Following we show that for high levels (here α = 0.9), one needs to use large samples to get reasonable estimates of CTE α . We consider for the purpose (X, Y ) independent and exponentially distributed with respective parameters 1 and 2. The theoretical value is CTE 0.9 (X, Y ) = (3.78, 1.89). We take T n = ln(n) (see Table 12).

In this case we need between 2000 and 2500 data to get the same performances as for lower level (see Table 8 above). Furthermore we consider the case T n = n 0.45 (see Table 13). In this case we need between 2500 and 5000 data to get the same performances as for lower level (see 13. Evolution of σ and RMSE in terms of sample size n for α = 0.9; (X, Y ) independent and exponentially distributed components with parameter 1 and 2 respectively. T n = n 0.45 .

The bad properties of the estimate for sample sizes less than 2000 (in the case of T n = ln(n)) can be explained by the fact that for high levels, the constant A is large (see proof of Theorem 3.1 in Section 7), but also by the fact that for large values of α the empirical estimate F n of F may not be the most appropriate.

Real data

We consider here the estimation of CTE α in a real case: Loss-ALAE data in the log scale (for details see Frees and Valdez [START_REF] Frees | Understanding relationships using copulas[END_REF]). Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment expense (ALAE, Y ). Examples of ALAE are the fees paid to outside attorneys, experts, and investigators used to defend claims.

The data size is n = 1500. Let T n = n 0.4 . Again our estimator is constructed using the empirical estimator F n . Results about the estimation of CTE Tn α are gathered in Table 14. In Figure 2 In this real setting the estimation of CTE α can be used in order to quantify the mean of the Loss (resp. ALAE) in the log scale conditionally to the fact that Loss and ALAE data belong jointly to the specific risk's area L(α). (star) for different values of α.

Conclusion

In this paper we have provided convergence results for the plug-in estimator of the level sets of an unknown distribution function on R 2 + in terms of Hausdorff distance and volume of the symmetric difference. In this setting we have proposed and estimated a new bivariate risk measure: CTE α (X, Y ). A future work comparing our bivariate Conditional Tail Expectation with existing bivariate generalizations of the CTE in terms of classical properties (monotonicity, translation invariance, homogeneity, . . .), dependence structure, behavior with respect to different risk scenarios, is in preparation.

Proofs

Proof of Proposition 1.1 Take T > 0 such that for all t : | tc | ≤ r, {F = t} T = ∅, (from assumptions of Proposition 1.1 we know that such an T there exists).

Let x ∈ {z ∈ [0, T ] 2 : | F (z) -c |≤ r}. Define for λ ∈ R y λ ≡ y λ,x = x + λ (∇F ) x (∇F ) x , so y λ -x =| λ |.
From the differentiability properties of F and using Taylor's formula we have, for

| λ |< ζ F (y λ ) = F (x) + (∇F ) T x (y λ -x) + 1 2 (y λ -x) T (HF ) x (y λ -x),
with x a point on the segment between x and y λ . So

F (y λ ) = F (x) + λ (∇F ) x + λ 2 2 (∇F ) x 2 (∇F ) T x (HF ) x (∇F ) x .
By the Cauchy Schwarz Inequality we obtain

F (y λ ) ≥ F (x) + λ (∇F ) x - λ 2 2 (∇F ) x (HF ) x (∇F ) x and 
F (y λ ) ≤ F (x) + λ (∇F ) x + λ 2 2 (∇F ) x (HF ) x (∇F ) x .
Since (HF ) x (∇F ) x ≤ (HF ) x (∇F ) x , we have

F (x) + λ (∇F ) x - λ 2 2 (HF ) x ≤ F (y λ ) ≤ F (x) + λ (∇F ) x + λ 2 2 (HF ) x . Since x ∈ E and M H < ∞ we obtain F (x) + λ (∇F ) x - λ 2 2 M H ≤ F (y λ ) ≤ F (x) + λ (∇F ) x + λ 2 2 M H . (8) 
For 0 < λ < ζ, we have from the left side of ( 8)

F (y λ ) ≥ F (x) + λ (∇F ) x - λ 2 2 M H ≥ F (x) + λm ▽ - λ 2 2 M H .
We assume now that M H > 0 (the case M H = 0 is trivial).

For x ∈ {z ∈ [0, T ] 2 : | F (z) -c |≤ r} and 0 < λ < ζ ∧ m ▽ M H we have then F (y λ ) ≥ F (x) + λ 2 m ▽ , (9) 
Similarly using the right side of ( 8) we obtain for 0

< λ < ζ ∧ m ▽ M H and x ∈ {z ∈ [0, T ] 2 : | F (z) -c |≤ r}, F (y -λ ) ≤ F (x) - λ 2 m ▽ . ( 10 
) Define γ = m ▽ 4 ζ ∧ m ▽ M H ∧ r > 0. Suppose that t = c + ε, 0 < ε ≤ γ. Let x ∈ [0, T ] 2 such that F (x) = t = c + ε then x ∈ {z ∈ [0, T ] 2 : | F (z) -c |≤ r}. Take now 0 < λ = 2ε m ▽ < ζ ∧ m ▽ M H .
We obtain from ( 10)

F (y -λ ) ≤ F (x) - λ 2 m ▽ = c + ε -ε = c.
From the continuity property of F , we deduce that there exists y between x and y -λ such that F (y) = c and we have

x -y ≤ x -y -λ =| λ |= 2ε m ▽ = 2 m ▽ | t -c | . So we have proved that sup x∈{F =t} T d(x, {F = c} T ) ≤ 2 m ▽ | t -c | .
Similarly, take x ∈ [0, T ] 2 such that F (x) = c and use [START_REF] Cavalier | Nonparametric estimation of regression level sets[END_REF] to obtain sup

x∈{F =c} T d(x, {F = t} T ) ≤ 2 m ▽ | t -c | .
The proof in case t < c is completely analogous. So F satisfies Assumption H (see Section 1) with A = 2 m ▽ .

Proof of Theorem 2.1

Under assumptions of Theorem 2.1, we can always take T 1 > 0 such that for all t : | tc | ≤ r, ∂L(t) T1 = ∅. Then for each n, for all t : | tc | ≤ r, ∂L(t) Tn is a non-empty (and compact) set on R 2 + . In each [0, T n ] 2 , from Proposition 1.1, Assumption H (Section 1) is satisfied with

γ = m ▽ 4 ζ ∧ m ▽ M H ∧ r > 0 and A = 2 m ▽ .
First we have to find a bound for sup x∈∂L(c) Tn d(x, ∂L n (c) Tn ).

Take x ∈ ∂L(c) Tn and define ε n = 2 F -F n Tn ∞ . Using F -F n ∞ → 0, a.s., for n → ∞, then ε n → 0, a.s., for n → ∞. So with probability one there exists n 0 such that ∀ n ≥ n 0 , ε n ≤ γ.

Since for all t : | tc | ≤ r ∂L(t) Tn = ∅, from Assumption H, there exist u n ≡ u εn x and

l n ≡ l εn x in [0, T n ] 2 such that F (u n ) = c + ε n ; d(x, u n ) ≤ A ε n , F (l n ) = c -ε n ; d(x, l n ) ≤ A ε n .
Suppose now F -F n Tn ∞ > 0 (the other case is a trivial one). In this case

F n (u n ) = c + ε n + F n (u n ) -F (u n ) ≥ c + ε n -F -F n Tn ∞ = c + 2 F -F n Tn ∞ -F -F n Tn ∞ > c,
and in a similar way we can prove that F n (l n ) < c.

As F n (l n ) < c and F n (u n ) > c, with u n and l n in [0, T n ] 2 , there exists

z n ∈ ∂L n (c) Tn ∩ B(u n , d(u n , l n )) with d(z n , x) ≤ d(z n , u n )+d(u n , x) ≤ d(u n , l n )+d(u n , x) ≤ d(u n , x)+d(x, l n )+d(u n , x) ≤ 3 A ε n = 6 A F -F n Tn ∞ .
Hence, for n ≥ n 0 sup

x∈∂L(c) Tn d(x, ∂L n (c) Tn ) ≤ 6 A F -F n Tn ∞ .
Let us now bound sup x∈∂Ln(c) Tn d(x, ∂L(c) Tn ).

Take x ∈ ∂L n (c) Tn . From the a.s. continuity of F n we obtain F n (x) = c, a.s., so 

| F (x) -c | ≤ | F (x) -F n (x) | ≤ F -F n Tn ∞ ≤ ε n , a.s. Remember that ∀ n ≥ n 0 , ε n ≤ γ, a.s. Then from Assumption H d(x, ∂L(c) Tn ) ≤ A | F (x)-c |≤ A F -F n
Take ε n such that

ε n = p n v n 1 p . ( 14 
)
Then, from Assumption A1, in Section 3, we obtain p n λ( Q εn ) We only prove the result for the first coordinate of CTE α (X, Y ) (the proof is similar for the second one). First we remark that, in the following, probabilities involving events which depend on L n (α) Tn , are conditional probabilities to the sample (X i , Y i ), for i = 1, . . . n. We will denote P[(X, Y ) ∈ L n (α) Tn ] purely for reasons of notational convenience.

We introduce these two preliminary results (Lemma 7.1 and 7. Using ( 15)-( 16) we obtain that (17) converges to zero in probability, for n → ∞. Hence the result. Hence the result. Then to prove Theorem 4.1 we can write (7) as

Figure 1 .

 1 Figure 1. (left) Hausdorff distance between sets; (right) particular case where d H (X, Y ) does not capture the shape properties of X and Y .

Remark 4 .

 4 Let F n the bivariate empirical distribution function. Then it holds that v n F -F n ∞ P → n→∞ 0, with v n = o( √ n). From Theorem 3.1 and using the convergence rate in (3) with p = 2, we obtain p n = o(n

Corollary 4 . 1 .,Remark 5 . 1 6

 4151 Let F n the bivariate empirical distribution function. Under Assumptions Theorem 4.1 and with the notation of Theorem 4.1, it holds that β n CTE Tn α (X, Y ) -CTE Tn α (X, Y ) with r > 0 satisfying Assumption A2.In the case of a bounded density function f (X,Y ) , β n = o n Starting from Corollary 4.1, it could be interesting to consider the convergenceCTE α (X, Y ) -CTE Tn α (X, Y ) .We remark that in this case the speed of convergence will also depend on the convergence rate to zero of CTEα (X, Y ) -CTE Tn α (X, Y ) , then, in particular of P[(X, Y ) ∈ L(α) \ L(α) Tn ] for n → ∞. More precisely CTE α (X, Y ) -CTE Tnα (X, Y ) decays to zero at least with a convergence rate (P[X ≥ T n or Y ≥ T n ]) -1 . We now provide an illustration (in a simple case) on how to choose T n in order toconsider the convergence CTE α (X, Y ) -CTE Tn α (X, Y ) . Let F (x, y) = (1e -x )(1e -y ), i.e. independent and exponentially distributed marginals with parameter 1, with bounded density function in R 2 + . Let F n the bivariate empirical distribution function. In this case all assumptions of Corollary 4.1 are satisfied. Then we obtain that CTE α (X, Y ) -CTE Tn α (X, Y ) decays to zero at least with a convergence rate β n = o(n / ln(n) 2 3

  (b)-2(b) and 4(b)-5(b)).

  (a) Tn = ln(n) α n= 500 n= 1000 n= 2000 0.10 0

( a )

 a Tn = ln(n) α n= 500 n= 1000 n= 2000 0.10 0

Figure 2 .

 2 Figure 2. Loss-ALAE data in log scale: boundary of estimated level sets (line) and CTE Tn α

2 |

 2 can conclude that with probability one, for n ≥ n 0 sup x∈∂Ln(c) Tn d(x, ∂L(c) Tn ) ≤ A F -F n Tn ∞ . We obtain for n ≥ n 0 , d H (∂L(c) Tn , ∂L n (c) Tn ) ≤ 6 A F -F n Tn ∞ , then d H (∂L(c) Tn , ∂L n (c) Tn ) = O( F -F n Tn ∞ ), a.s. Hence the result. Proof of Theorem 3.1Under assumptions of Theorem 3.1, we can always take T 1 > 0 such that for all t : | tc | ≤ r, ∂L(t) T1 = ∅. Then for each n, for all t : | tc | ≤ r, ∂L(t) Tn is a non-empty (and compact) set on R 2 + . We consider a positive sequence ε n such that ε n → n→∞ 0. For each n ≥ 1 the random sets L(c) Tn △ L n (c) Tn ,Q εn = {x ∈ [0, T n ] 2 : | F -F n |≤ ε n } and Q εn = {x ∈ [0, T n ] 2 : | F -F n |> ε n } are measurable and λ(L(c) Tn △ L n (c) Tn ) = λ(L(c) Tn △ L n (c) Tn ∩ Q εn ) + λ(L(c) Tn △ L n (c) Tn ∩ Q εn ). (11) Since L(c) Tn △ L n (c) Tn ∩ Q εn ⊂ {x ∈ [0, T n ] 2 : cε n ≤ F < c + ε n } we obtain λ(L(c) Tn △ L n (c) Tn ) ≤ λ({x ∈ [0, T n ] 2 : cε n ≤ F < c + ε n }) + λ( Q εn ).From Assumption H (Section 1) and Proposition 1.1, if 2 ε n ≤ γ then d H (∂L(c + ε n ) Tn , ∂L(cε n ) Tn ) ≤ 2 ε n A. So we can write λ({x ∈ [0, T n ] 2 : cε n ≤ F < c + ε n }) ≤ 2 ε n A 2 T n . If we now choose ε n = o 1 p n T n(12)we obtain that for n large enough 2 ε n ≤ γ andp n λ({x ∈ [0, T n ] 2 : cε n ≤ F < c + ε n }) → n→∞ 0.Let us now prove that p n λ( Q εn ) write p n λ( Q εn ) = p n 1 {x∈[0,Tn] 2 : |F -Fn|>εn} λ(dx) F -F n | p λ(dx).

  ε n that satisfies (12) and (14). Hence the result.Proof of Theorem 4.1

2 ): Lemma 7 . 1 . 1 From 1 2

 27111 Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it holds thatp r 2(1+r) n E[ X | (X, Y ) ∈ L(α) Tn ] -E[ X | (X, Y ) ∈ L n (α) Tn ] r > 0 satisfying Assumption A2.Proof of Lemma 7.Assumption A2 and Theorem 3.1 we obtainp r 2(1+r) n P[(X, Y ) ∈ L(α) Tn △ L n (α) Tn ] ≤ p r 2(1+r) n d λ L(α) Tn , L n (α) Tn r X, Y ) ∈ L(α) Tn ] -P[(X, Y ) ∈ L n (α) Tn ] Tn x f X,Y (x, y)λ(dx dy) -Ln(α) Tnx f X,Y (x, y)λ(dx dy) d λ L(α) Tn , L n (α)Tn 

1 -

 1 (X, Y ) ∈ L(α) Tn ] -E[X|(X, Y ) ∈ L n (α) Tn ] Tn x f X,Y (x, y)λ(dx dy) P[(X, Y ) ∈ L(α) Tn ] -Ln(α) Tn x f X,Y (x, y)λ(dx dy) P[(X, Y ) ∈ L n (α) Tn ] X, Y ) ∈ L(α) Tn ] P[(X, Y ) ∈ L n (α) Tn ] P[(X, Y ) ∈ L(α) Tn ] L(α) Tnx f X,Y (x, y)λ(dx dy) -Ln(α) Tn x f X,Y (x, y)λ(dx dy) + L(α) Tn x f X,Y (x, y)λ(dx dy) P[(X, Y ) ∈ L(α) Tn ] -P[(X, Y ) ∈ L n (α) Tn ] .(17)

Lemma 7 . 2 . 2 X i 1 { 1 {

 72211 Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it holds thata n E[ X | (X, Y ) ∈ L n (α) Tn ] -n i=1 X i 1 {(Xi,Yi)∈Ln(α) Tn } n i=1 1 {(Xi,Yi)∈Ln(α) Tn }We can writea n E[X|(X, Y ) ∈ L n (α) Tn ] -n i=1 (Xi,Yi)∈Ln(α) Tn } n i=1 1 {(Xi,Yi)∈Ln(α) Tn } = a n Ln(α) Tn x f X,Y (x, y)λ(dx dy) P[(X, Y ) ∈ L n (α) Tn ] -n i=1 X i 1 {(Xi,Yi)∈Ln(α) Tn } n i=1 (Xi,Yi)∈Ln(α) Tn } .Under assumptions of Lemma 7.2, from the central limit theorem for triangular arrays (e.g. Theorem 27.2 in Billingsley[START_REF] Billingsley | Probability and measure[END_REF]) we obtaina n P[(X, Y ) ∈ L n (α) Tn ] -Tn x f X,Y (x, y)λ(dx dy) -1 n n i=1X i 1 {(Xi,Yi)∈Ln(α) Tn } P → n→∞ 0.

Table 2 .

 2 Distribution

				(b) Tn = n 0.45	
				α n= 500 n= 1000 n= 2000
	.069	0.068	0.065	0.10 0.229	0.248	0.188
	0.24 0.156	0.134	0.063	0.24 0.361	0.298	0.209
	0.38 0.172	0.139	0.121	0.38 0.411	0.357	0.339
	0.52 0.225	0.169	0.183	0.52 0.734	0.689	0.743
	0.66 0.298	0.199	0.195	0.66 0.849	0.752	0.762
	0.80 0.426	0.282	0.279	0.80 1.071	1.039	1.124

with independent and exponentially distributed marginals with parameter 1 and 2 respectively. Approximated p n λ(L(α) Tn △ L n (α) Tn ), with p n = o(n 1

3 

/ ln(n)

Table 3 .

 3 Theoretical λ(L(α) Tn ), for different values of n and α. Distribution with independent and exponentially distributed marginals with parameter 1 and 2 respectively.

				(b) Tn = n 0.45
				α n= 500 n= 1000 n= 2000
	10 37.472	46.459	56.405	0.10 142.205 248.516 433.872
	0.24 35.777	44.588	54.358	0.24 139.039 244.378 428.449
	0.38 33.837	42.436	51.995	0.38 135.328 239.495 422.021
	0.52 31.505	39.837	49.129	0.52 130.771 233.464 414.045
	0.66 28.513	36.487	45.421	0.66 124.779 225.488 403.451
	0.80 24.201	31.621	40.003	0.80 115.851 213.505 387.436

Table 4 .

 4 Distribution with Survival Clayton copula with parameter 1 and Burr(2, 1) marginals. Approximated λ(L(α) Tn △ L n (α) Tn ).

				(b) Tn = n 0.45	
				α n= 500 n= 1000 n= 2000
	.208	0.171	0.126	0.10 0.697	0.633	0.536
	0.24 0.252	0.241	0.149	0.24 0.893	0.872	0.809
	0.38 0.339	0.288	0.132	0.38 0.971	0.911	0.879
	0.52 0.349	0.335	0.245	0.52 1.001	0.982	1.229
	0.66 0.499	0.364	0.353	0.66 1.569	1.522	1.413
	0.80 0.771	0.644	0.605	0.80 2.377	2.269	2.175
	(a) Tn = ln(n)		(b) Tn = n 0.45	
	α n= 500 n= 1000 n= 2000	α n= 500 n= 1000 n= 2000
	0.10 0.144	0.129	0.106	0.10 0.484	0.481	0.452
	0.24 0.175	0.183	0.126	0.24 0.620	0.663	0.682
	0.38 0.235	0.219	0.111	0.38 0.674	0.692	0.741
	0.52 0.242	0.254	0.206	0.52 0.695	0.746	1.036
	0.66 0.347	0.277	0.297	0.66 1.089	1.157	1.191
	0.80 0.535	0.489	0.501	0.80 1.651	1.725	1.834

Table 5 .

 5 Distribution

with Survival Clayton copula with parameter 1 and Burr(2, 1) marginals. Approximated p n λ(L(α) Tn △ L n (α) Tn ), with p n = o(n 1 3 / ln(n)

Table 11 )

 11 .

	α	CTE α (X, Y )	CTE α	Tn	(X, Y )	σ	RMSE
	0.10 (0.627, 0.627)	(0.585, 0.637)	(0.022, 0.021) (0.035, 0.039)
	0.24 (0.761, 0.761)	(0.766, 0.759)	(0.031, 0.031) (0.041, 0.046)
	0.38 (0.896, 0.896)	(0.864, 0.917)	(0.036, 0.037) (0.053, 0.049)
	0.52 (1.051, 1.051)	(1.027, 1.071)	(0.051, 0.053) (0.055, 0.052)
	0.66 (1.246, 1.246)	(1.252, 1.238)	(0.075, 0.067) (0.063, 0.065)
	0.80 (1.531, 1.531)	(1.497, 1.549)	(0.123, 0.117) (0.083, 0.077)

Table 6 .

 6 (X, Y ) with independent and exponentially distributed components with parameter 2; T n = ln(n).

	α	CTE α (X, Y )	CTE α	Tn	(X, Y )	σ	RMSE
	0.10 (0.627, 0.627)	(0.603, 0.656)	(0.031, 0.031) (0.062, 0.068)
	0.24 (0.761, 0.761)	(0.774, 0.731)	(0.061, 0.071) (0.082, 0.130)
	0.38 (0.896, 0.896)	(0.927, 0.871)	(0.072, 0.076) (0.087, 0.119)
	0.52 (1.051, 1.051)	(1.086, 1.128)	(0.094, 0.082) (0.095, 0.107)
	0.66 (1.246, 1.246)	(1.281, 1.322)	(0.127, 0.101) (0.102, 0.101)
	0.80 (1.531, 1.531)	(1.545, 1.611)	(0.157, 0.161) (0.105, 0.117)

Table 7 .

 7 (X, Y ) with independent and exponentially distributed components with parameter 2; T n = n 0.45 .

	α	CTE α (X, Y )	CTE α	Tn	(X, Y )	σ	RMSE
	0.10 (1.255, 0.627)	(1.222, 0.638)	(0.044, 0.022) (0.043, 0.039)
	0.24 (1.521, 0.761)	(1.488, 0.811)	(0.069, 0.023) (0.051, 0.042)
	0.38 (1.792, 0.896)	(1.797, 0.911)	(0.075, 0.038) (0.044, 0.046)
	0.52 (2.102, 1.051)	(2.082, 1.047)	(0.104, 0.052) (0.052, 0.052)
	0.66 (2.492, 1.246)	(2.461, 1.255)	(0.139, 0.071) (0.057, 0.056)
	0.80 (3.061, 1.531)	(3.011, 1.544)	(0.251, 0.125) (0.084, 0.082)

Table 8 .

 8 (X, Y ) with independent and exponentially distributed components with parameter 1 and 2 respectively; T n = ln(n).

	α	CTE α (X, Y )	CTE α	Tn	(X, Y )	σ	RMSE
	0.10 (1.255, 0.627)	(1.253, 0.624)	(0.061, 0.043) (0.051, 0.054)
	0.24 (1.521, 0.761)	(1.514, 0.803)	(0.074, 0.049) (0.048, 0.075)
	0.38 (1.792, 0.896)	(1.793, 0.948)	(0.096, 0.055) (0.053, 0.084)
	0.52 (2.102, 1.051)	(2.087, 1.111)	(0.118, 0.076) (0.056, 0.092)
	0.66 (2.492, 1.246)	(2.497, 1.311)	(0.169, 0.108) (0.068, 0.101)
	0.80 (3.061, 1.531)	(3.056, 1.602)	(0.313, 0.153) (0.102, 0.111)

Table 9 .

 9 (X, Y ) with independent and exponentially distributed components with parameter 1 and 2 respectively; T n = n 0.45 .

	α	CTE α (X, Y )	CTE α	Tn	(X, Y )	σ	RMSE
	0.10 (1.188, 1.229)	(1.049, 1.192)	(0.032, 0.021) (0.019, 0.033)
	0.24 (1.448, 1.366)	(1.283, 1.379)	(0.053, 0.224) (0.019, 0.063)
	0.38 (1.727, 1.505)	(1.525, 1.471)	(0.046, 0.031) (0.019, 0.031)
	0.52 (2.049, 1.666)	(1.803, 1.625)	(0.058, 0.041) (0.023, 0.034)
	0.66 (2.454, 1.875)	(2.129, 1.823)	(0.071, 0.054) (0.035, 0.039)
	0.80 (3.039, 2.202)	(2.591, 2.144)	(0.111, 0.105) (0.055, 0.054)

Table 10 .

 10 (X, Y ) with Clayton copula with parameter 1, F X exponential distribution with parameter 1, F Y Burr(4, 1) distribution; T n = n 0.2 .

	α	CTE α (X, Y )	CTE α	Tn	(X, Y )	σ	RMSE
	0.10 (1.188, 1.229)	(1.189, 1.238)	(0.061, 0.035) (0.039, 0.029)
	0.24 (1.448, 1.366)	(1.462, 1.365)	(0.065, 0.037) (0.046, 0.031)
	0.38 (1.727, 1.505)	(1.751, 1.536)	(0.082, 0.046) (0.049, 0.037)
	0.52 (2.049, 1.666)	(2.063, 1.713)	(0.091, 0.061) (0.051, 0.045)
	0.66 (2.454, 1.875)	(2.457, 1.951)	(0.117, 0.104) (0.057, 0.068)
	0.80 (3.039, 2.202)	(3.037, 2.322)	(0.192, 0.165) (0.063, 0.108)

Table 12 .

 12 Table 9 above). Evolution of σ and RMSE in terms of sample size n for α = 0.9; (X, Y ) independent and exponentially distributed components with parameter 1 and 2 respectively. T n = ln(n).

	n	500	1000	1500	2000	2500	5000
	σ	(0.614, 0.359) (0.444, 0.308) (0.431, 0.295) (0.377, 0.168) (0.241, 0.123) (0.216, 0.121)
	RMSE (0.168, 0.189) (0.123, 0.163) (0.115, 0.161) (0.099, 0.089) (0.077, 0.079) (0.063, 0.057)
	n	500	1000	1500	2000	2500	5000
	σ	(0.919, 0.419) (0.568, 0.319) (0.511, 0.294) (0.382, 0.239) (0.348, 0.223) (0.307, 0.151)
	RMSE (0.242, 0.221) (0.151, 0.172) (0.133, 0.165) (0.101, 0.144) (0.093, 0.129) (0.092, 0.108)
		Table					

Table 14 .

 14 we represent data, estimated level sets and estimated bivariate Conditional Tail Expectation for several values of α. CTE Tn α for Loss-ALAE data in log scale, with different values of level α.

	α		0.10	0.24	0.38
	CTE	Tn α	(9.937, 9.252)	(10.361, 9.566)	(10.731, 9.728)
	α		0.52	0.66	0.80
	CTE	Tn α	(11.096, 10.011) (11.518, 10.315) (12.057, 10.758)
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The result is a straightforward application of Lemma 7.1 and Lemma 7.2.