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Abstract The discrete plane B(a, b, ¢, p, w) is the set of points (x,y, z) €
72 satistying 0 < ax+by-+cz+p < w. In the case w = max(|al, |b], |c|), the
discrete plane is said naive and is well-known to be functional on a coordi-
nate plane. The aim of our paper is to extend the notion of functionality
to a larger family of arithmetic discrete planes by introducing a suitable
orthogonal projection direction (o, 3,7) satisfying aa + 8b+ vc = w. We
then apply this functionality property to the enumeration of some local
configurations, that is, the (m,n)-cubes such as introduced in [VC99].

The discrete plane B(a, b, c, j1,w) is the set of integer points (z,vy,2) € Z3
satisfying 0 < ax + by + ¢z + ¢ < w. In the case w = max(|al,|b],]|c|),
the discrete plane is said naive and is well-known to be functional on one of
the coordinate planes, that is, for any point of P of this coordinate plane,
there exists a unique point in the discrete plane obtained by adding to P
a third coordinate. Naive planes have been widely studied, see for instance
[Rev91,DRR94,DR95,A AS97,VC97,Col02,BB02].

The present paper extends the notion of functionality for naive discrete planes
to a larger family of arithmetic discrete planes. For that purpose, instead of pro-
jecting on a coordinate space, we introduce a suitable orthogonal projection
on a plane along a direction («,(3,7), in some sense dual to the normal vec-
tor of the discrete plane PB(a,b, ¢, 4, w), that is, aa + Bb + y¢ = w, so that the
projection of Z3 and the points of the discrete plane are in one-to-one corre-
spondence. One interest of the notion of functionality is that it reduces a three-
dimensional problem to a two-dimensional one, allowing a better understanding
of the combinatorial and geometric properties of discrete planes. We thus ap-
ply this functionality property to the enumeration of some local configurations,
the (m,n)-cubes, for a large family of arithmetic discrete planes, following the
approach of [Vui99,BV01].

For clarity issues, we have chosen to work here in a three-dimensional space

but all the results and methods presented extend in a natural way to R", with
n > 2, as well as to arithmetic discrete lines.



1 Basic notions and arithmetic discrete planes

Let (a,b,c) € R?, u € Rand w € R%; the arithmetic discrete plane PB(a,b, ¢, p,w)
is defined as follows:

Bla,b, e, p,w) = {(x,y,2) € Z° | 0 < ax + by +cz + p < w}.

Moreover, if w = max{|al, |b], |c|} (resp. w = |a| + |b| + |c|) then P(a, b, ¢, u,w) is
said to be naive (resp. standard).

In the present paper, in order to simplify the notation and to facilitate the
generalization of our results to higher dimensions, we use a vector-based repre-
sentation. Let {e7, €3, e3} be the canonical basis of the R-vector space R>. Let

7 and o' be two vectors of R%. The notation (v, 7) stands for the usual scalar
product in R3. Let i € {1,2,3}, we denote by v; = (¥, ¢;) the i-th coordinate
of ¥ related to the basis {e7, €3, €3 }.

Hence, for any arithmetic discrete plane B, there exist a vector v € R? and
two real numbers 1 € R and w € R? such that

P={TcZ|0<(7,0)+p<w}

In the sequel of this paper, we denote such a plane by PB(7, i, w). For a given
o € Z3%let Iy : R3 — {7 € R3 | (d,72) = 0} stand for the orthogonal
projection map onto the plane (@, @) = 0. We furthermore use the notation
= when we consider the restriction of the projection IT+ to a subset of R3, as
for instance 75 : P — {7 € R? | (&, @) = 0}, for a discrete plane P.

Let us recall a classical property of naive discrete planes having a positive
normal vector:

Theorem 1. [DRR9/] Let S = P(V', u,w) be a naive discrete plane. If v; = w,
for i = 1,2 or 3, then P is in bijection with the integer points of the plane
(e;, @) = 0 by the projection map I, that is, the restriction map g - P —
I (Z3) is a bijection. The plane (e;, @) = 0 is called a functional plane of B.

An analogous result holds for standard discrete planes:

Theorem 2. [BV00] Let P = P(7', y,w) be a standard discrete plane. Let o =
€1 + ez + e3. Then, the restriction map 5 : B — I+ (Z3) is a bijection.

2 Generalized functionality

First, let us notice that in each of the two cases investigated in Theorem 1 and 2,
the following property holds: let ‘B3 be a naive or a standard discrete plane with
normal vector v and with thickness w; then there exists a vector @ in Z* such
that the restriction map 7w : % — ITw(Z?) is a bijection, and (@', V') = w.
In this section, we extend this property to any discrete plane PB(7, u,w)
whatever its thickness w by introducing a dual vector @ € Z® such that
(¥, @) = w. Furthermore, we improve this result by showing that the projec-
tions 7 are the only ones which provide a one-to-one correspondence between
the discrete plane B( 7, i1, w) and the projection of Z?; this will then yield a one-
to-one correspondence between a discrete plane and a two-dimensional lattice.



2.1 A bijective projection for arithmetic discrete planes

Theorem 3. Let P = P(7, u,w) be a discrete plane where v € R? is a non-
zero vector, i € R and w € R, Let o € 73 such that ged(ay, g, a3) = 1 and
(&, W) #0. Then, g : B — 5 (Z?) is a bijection if and only if |(&', V)| =
w.

The proof of Theorem 3 first requires a technical lemma:

Lemma 1. Let P = P(V, p, w) be a discrete plane with (v, p,w) € R3 XRxR%.

—

1. If dimg(v1,v2,v3) = 1, then there exists (v',1/,w') € Z3 x Z x N such that

P = %(ﬁ,u’,w') and ged(vy, vh,v5) = 1.
2. If dimg(v1, ve,v3) > 1, then the family (7, V) + 1)z ey 15 dense in [0, wl.

Proof. 1. Let us suppose that dimg(vi,vs,v3) = 1. Then, there exists ¢ €
R* such that (Cvi,Cvs,Cvs) € Z3. Let o/ = ¢, 4 = [—Cy] and o' =
[Cw — ] — [—C¢p]- An easy computation gives B(7', u,w) = P(v', ', w’).
Finally, according to [AAS97], ¥ can be chosen with ged(vy, v, vs) = 1.

2. If dimg(v1,v2,v3) > 1, then we conclude by the classical following result:
the set {m + na | (m,n) € Z?} is dense in R if a ¢ Q.
|

—

With the hypothesis of Lemma 1, let us observe that P(v’, ', w’) is a naive
(resp. standard) discrete plane, if so is P(V', u, w).

Proof of Theorem 3. We assume w.lo.g that (o, v) > 0. Let 7 =
(1'1,1'2,1'3),;/) = (2),2h,74) € 7% n5(7) = ngz(2’) if and only if there ex-
ists (k,k’) € Z? such that k’(? — 7)) = ka. With no loss of generality we
can suppose that ged(k, k') = 1; then, k' divides ged(ay, s, a3) and |K'| = 1.

|

In other words, 74 (7') = 773(?) if and only if there exists k € Z such that

-
' =7 + ka. Moreover,  + ka € if and only if
—

v

—((Z, V) + ) w—((Z,7)+p)
G B )

1) Let us first assume that (o, v') = w. Then,

and we have proved that 7 : p — II5(Z3) is a bijection.
2) Conversely, let us assume that 75 : P — Il (Z?) is a bijection.
i. If dimg(v1,v2,v3) = 1, then, thanks to Lemma 1, we can suppose that
v € 73, with ged(vi, v2,v2) = 1, and (u,w) € Z x N*. Let @ € Z* such

that (7', v)+p =0. Then ¥ € Pand (7 + @, 7)) +pu=(7,7)+
(&, V) +p = (a,v) > 0. Moreover, 75 (7 + @) = mg (7). Since



7w is injective then ¥ + @ ¢ P, and hence (@, v’) > w. On the other
- 7 — Y s g
hand, let ' € Z? such that (2/, V') +u = —1. Then, (2/ + @, V) +u =

B
(z/,V)+ (a,?)+p = (d,v) -1 > 0. Since 74 is surjective and
(@, W) >0, then 7 + @ € P, that is, (o, v) — 1 < w, or equivalently,

—

(d,7) < w.
ii. Let us suppose that dimg(vi,ve,v3) > 2. Then, each interval

(&, 0)+p) w—((F,0)+p)
(@,v) (@, )

, with 7 € B, contains one and exactly one

integer if and only if (@, v') = w by Lemma, 1.

Projecting according to @ corresponds to looking at the plane along a di-
rection parallel to @. Moreover, Theorem 3 states that, looking at the discrete
plane B(7, u,w) along this direction, one can see all points of P(7', u,w) as
if they were on the plane (@, ) = 0. In Section 2.3, we show that a natural
regular lattice structure emerges from this point of view.

As a generalization of functional planes for naive discrete planes, we define:

Definition 1. Let P = P(v, u,w) be a discrete plane with v € R a non-zero
vector, p € R and w € R} . Let o € 7% such that mg : P — 5 (Z3) is a
bijection. The plane (&', V') = 0 is called a (generalized) functional plane of 5.

2.2 Existence of a dual vector

In the case of an arithmetic discrete plane with normal vector ¥ € R? and
thickness w € R, there is no reason for a vector o € 73 to exist satisfying
(@, W) = w (consider the case (vy,vs,vs,w) is Q-free). However, if P(7, p, w)
is an arithmetic discrete plane with normal vector v € Z3, then, according to
Lemma 1, we can suppose that w € Z and ged(vy,ve,v3) = 1. We then deduce
from Bezout’s Lemma that there exists a vector @ € Z3 such that (@, v) = w.
Let us prove now that @ € Z® can be chosen such that ged (g, g, a3) = 1.
Theorem 4. Let (v, p,w) be an arithmetic discrete plane with (U, u,w) €
73 X7, x 7% and ged(vi,va,v3) = 1. There exists o € 73 such that (3, 7) =w
and ged(aq, a0, a3) = 1. In other words, there ewists o € 7> such that ng :
BV, p,w) — I (Z3) is a bijection.

Proof. Let 3 € 73 such that (ﬁ, 7') = 1. Then, (wﬁ,?) =w. Let W € {7 ¢
73 | (T, 7) = 0}, let d = ged(u1, uz, us) and let @ = w f + d—' . Then, an
easy computation gives (@, ') = w and ged(ay, g, a3) = 1. We end the proof
by applying Theorem 3. |

We have illustrated Theorem 4 in Figure 1 in the case of a discrete line for a
better visualisation of the situation.



Fig. 1. Generalized functionality: the orthogonal projection of the discrete line 0 <
Tx1 + 10z2 + 1 < 24 onto the line 2z + y = 0.

2.3 Functional regular lattice associated to an arithmetic discrete
plane

Let us see now how any arithmetic discrete plane 3 can be recoded in a functional
way on a regular two-dimensional lattice, despite its three-dimensional structure.

Let B = P(7, u,w) be an arithmetic discrete plane. Let @ € Z* such that
ged(ag, ag,a3) = 1 and (@, 7) = w (in case (V,pu,w) € Z3 x Z x N*, and
ged(vr,va,v3) = 1, the existence of such a vector o comes from Theorem 4).
One of the coefficients «;, for i € {1,2,3} being non-zero, we assume in this
section that as # 0 with no loss of generality.

First, let us notice that since II (@) = 0, then, for all T € Z3,

(e (0%
II5(€3) = —a—;ﬂa(e_f) - a—iﬂa’(e_ﬁ)-

Then, for all 2" € Z3,

II5(7) = 21117 (€1) + w2l (e3) + w31l (€3)

_ (O&g.fcl — 041563) H—>(6_1>) + <0431'2 — 0421'3> H—>(6—2>)

a3 as
and _ o
Iz R — {7 eR®|(d,7)=0}
T — a3z1_a113? + 043962—042963?> (1)
ged(ag,a3) 1 ged(az,a3) 2
with 4 .
i = 2O (@) and T = B2 ),
3 3

We thus deduce that Iy = I15(Z%) = II5(*B) is a sub-lattice of the two-

— —

dimensional lattice Z f1 + Z f». The lattice I'5 is called a functional lattice of .
This generalizes the concept of functionality defined for naive discrete planes as
a projection onto the integer points of one of the coordinate planes.



3 From a functional lattice to the associated discrete
plane

Let P = P(7, 1, w) be an arithmetic discrete plane and 'y be a functional
lattice of P (see Section 2.3). A natural question is: “given an element 7 € I',
how can we recover the unique vector @ € % such that 7 (7') = ¥? ” In
the following, we investigate this question for the classical classes of arithmetic
discrete planes, namely the naive, the standard [Rev91,DRR94,DR95] and the
graceful ones [BB99,BB02].

3.1 Generalized functionality for a particular class of discrete planes

Let B(7’,p,w) be an arithmetic discrete plane and let @ € Z® such that
(@, W) = w. In this section, we assume that there exists i € {1,2,3} such
that «; = 1. This condition includes the set of naive, standard and graceful
arithmetic planes (see Section 3.2). Let us thus suppose that a3 = 1. In this

. — —
case, let us notice that I'y =Zf1 + Z f.

Let ¥ € I'z. From now on, if no confusion is possible with the representation
of Y related to the basis {e1, €3, e3}, we will denote (y1,y2) the unique pair of
integers such that 3 = w1 1+ yo fo-

Let 7 € P and let ¥ = 75(7) € I'y. According to (1), one has z; =
Y1 + a1z and 2 = yo + agxs. Hence, (7', V') + 1 = y1v1 + yave + x3(0qv1 +
asve + v3) + p and

0<(Z,7)+p=uv1y1 +vays + T3w + o1 < w. (2)

Thus, given any y € Z?, we can easily recover the unique vector 7’ € 8 such

that 7 (%) = 7. Indeed, let us first note that (2) yields an explicit formula

for the height x5 of the points of P, that is, x5 = — [ 2228 F | Tet us call
=

N
Hy w @ I'y — Z the function which to any point y1 f1 + y2f2 € Iz associates
the height 23 of the corresponding point @ € B, that is, the unique point 7 € B

—

such that 7 (7)) = ¥:

Hyw: 7 — — Vly1+v2y2+ﬂJ
m7a. ) .

One thus obtains:

Proposition 1. If as = 1, then the function ﬂ%l : ' — 5B is defined by, for
all ? el :

t t
Y1 (€3]

2 Y) = (w2 | + Hypa(ye) a2 (3)
0 1



3.2 Classical examples

Let us suppose that © € N3, and v3 = max{vi,ve,v3}. If P is a naive or a
standard discrete plane, then we can suppose as = 1, since v; > 0fori € {1,2,3}.
In the special case of naive discrete planes, we recover the already known formula:

Corollary 1. If B is a naive discrete plane, then o = es, for all T € B,
7w (T) =x16] + 2205 and for all § € 'z,

{mm + voyo + MJ -
— = | e3.

77:31 (?) = y1e_1> + y2e_2> — "
3

e3
Concerning the case of the standard discrete planes, we obtain, as a direct con-
sequence of Proposition 1:

Corollary 2. If B is a standard discrete plane, then & = e] + es + e3, for all
T EP, 7 (T) = (x1 —x3)er + (22 — x3)es, and for all § € 'y,

t t
1

7l (?) _ Zy/; | vy vyt p 1
€3 0 U1 + V2 + U3 1

Let us suppose now that S = B(7', u,w) is a graceful plane, that is, 0 < vy, <
vy < vz and w = max(vy +ve, v3). If v1 +v9 < v3, then P is a naive discrete plane
and this case has already been studied. Let us then assume that w = v + vs.
Let @ = €] + e5. Then, for all 7 € P, 75 (7) = (1 — z2)e; + x3€3.

Up to a permutation on the set {a1, as, a3}, we recover the following from
Proposition 1:

Proposition 2. If P is a graceful plane. Then & = €] + e> and the function

ﬂ%,l : s — P is defined by, for all y € I'z,

t t

0
7r71(_)) = ||+ VoY1 — V3Y2 + K
e y; V1t vz

4 Plane partitions and local configurations

The aim of this section is to apply the previous results to the study of (m,n)-
cubes and local configurations, generalizing the study performed for naive planes
in [VC97,5¢h97,Gér99,vC99,Col02]. For the sake of consistency, we call them
here 7i-cubes rather than (m,n)-cubes.

Let B = PB(7, i1, w) be an arithmetic discrete plane and let @ € Z?* such that
ged(ag, ag,a3) = 1 and (@, 7)) = w (recall that if ¥ € Z3 and ged(vy, v, v3) =
1, then the existence of @ is ensured by Theorem 4). Let us assume furthermore
that a3 = 1.

Let m € (N*)2 be given. By mi-cube, we mean a local configuration in the
discrete plane that can be observed thanks to 75 through an mi-window in the
projection lattice I's. More precisely,



Definition 2. Let m € (N*)2. The mi-cube C(y,m), with i € Iy, is defined
as the following subset of B:
e ) = {=3'(7 +

-\
2 2

)a

In order to enumerate the different types of mi-cubes that occur in 3, we repre-
sent them as local configurations as follows.

Definition 3. The mi-local configuration LC(
(N*)2, is defined as follows:

LC(Y,m) = [Hy z(7) — Hy z (V)]

€ [[O,ml[[x[[(),mg[[}.

Y, m), with ¥ € Z? and m €
Ze[0,mi—1[fi+[0,ma—1[f5 °
We say that 7 is an index of occurrence of the local configuration LC (7, m).

Let us note that a local configuration is a plane partition.

Example 1. For instance, let us consider the arithmetic discrete plane P =

B(V, u,w) with ¥ = 4eg + 2e5 + 5ez, p=0and w = 9. Let @ = ¢; + e3. We
- —

illustrate the local configuration LC(f; + f2,3(e1 + €3)) of B and its preimage

by n—" in Fig. 2.

Fig. 2. From left to right: a local configuration of the discrete plane (4e; + 2es +

5e3,0,7) and its corresponding preimage by 7re;21+e_5

We follow here the approach developed in [Vui99]. For a naive discrete plane 3, it
is well known that, given two points = and ;} of 3 such that their projections
by mg are 4-connected in the functional plane, then |z3 — x%| < 1. In other
words, the difference between the height of 7 and ;; is at most 1. A quite
unexpected fact is that this property holds for any arithmetic discrete plane with
as = 1. More precisely, it is easy to see that, for all 3/ € I, Hy 5 (? + ?1)) -
Hy = () takes only two values, namely — [ ] and — |2 | — 1. In the same
way, Hy = (7 + E) — Hy = ()) takes only the values — | %] and — |2 | —1.
In each case, one of these values is odd, whereas the other one is even; we define

U1

Ej, and Oy, to be respectively the even and the odd value taken by —[<] and
—| 2| — 1; we similarly define E, and O,. It is now natural to introduce the
following two-dimensional sequence:

2
U= (Uy)yer. = Hpz(¥) mod2)5cr. €{0,1}7.



By definition, it is easily seen that the sequence U satisfies:

Y101 + Y2v2 +

Vy €Iy, U = 0if and only if —
w

mod 2 € [0, 1].
Let w = [wy]ye[o,m,—1]x[0,ms—1] D€ @ word of size m1 x my over {0, 1}. We define
the complement w of w as follows: W = [Wy]yec[o,m;—1]x[0,mz—1], Where 1T =0
and 0 = 1. Let us recall [Vui99,BV00] that the set of factors of the sequence U
is stable under complementation. We thus introduce the following equivalence
relation:

v ~ w if and only if v € {w, w}.

We have the following theorem, inspired by [Vui99]:

Theorem 5. There is a natural bijection between the equivalence classes of the
relation ~ of the factors of the sequence U and the mi-local configurations of 5B.

Proof. Consider the local configuration L = LC(7%, 7 ); we can associate to it
the m1 X mo word

-
[L(Z) mod 2]76[[o,ml—1[[JT{Jr[[o,mr1[[ﬁ’7

that we denote for short L mod 2. If Hy () is even, then L mod 2 is a factor

of the two-dimensional sequence U; otherwise, Hy (/) is odd and L mod 2
is a factor of U and so is L mod 2, by stability of the set of factors of U by
complementation.

Conversely, let us show how we can canonically reconstruct a mi-local config-
uration, with m € (N*)Q, from a given my X ma-factor w of the two-dimensional
sequence U. Let us first assume that wy = 0. We define a plane partition
H=[H(Z

)]76[[0 1 11T +[0:ma—1]Fa by induction as follows: we set H(ﬁ) =0;

i
let 2 € [0,m1 — 1] f1 + [0, m2 — 1]]?2) be a non-zero vector. If w_, , = = w~, then

we set H(Z + f1) = H(Z) + Ep. Otherwise, we set H(Z + f1) = H(Z) + On.

Similarly, if w—, 7 = w=, then we set H(Z' + f2) = H(Z') + E,. Otherwise, we

—
set H(Z + f2) = H(Z) + O,.

The plane partition H is a local configuration of B; indeed, if w occurs at
index 7 in U, then H = LC(y,m) and w = (H mod 2) since H(%') is even
(we have wg = 0). Now, if wy =1, we apply the same reconstruction process to
w. We recover again a local configuration LC (7%, n7) such that @ = (LC(%, m)

mod 2). |

One deduces, in particular, from Theorem 5 that any local configuration of
the discrete plane 93 occurs at least twice: once at an index y with H(7Y') even
and second, at an index 3 such that H(") is even.

Let us now investigate the enumeration of mi-cubes occuring in a given arith-
metic plane. The number of (3,3)-cubes included in a given naive arithmetic
discrete plane has been proved to be at most 9 in [VC97]. More generally, in

[Rev95,Gér99], the authors proved that, given a naive arithmetic discrete plane
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B, P contains at most mimsy m-cubes. In the following theorem, we show that
this property also holds for mi-local configurations in an arithmetic discrete plane
B(W', u,w), which is non-necessarily naive.

Theorem 6. Let P = P(v,pu,w) be a discrete plane, o € 7> such that
(a, V) =w and a3 = 1, and let m € (N*)2. Then, P contains at most mimo
mi-local configurations.

Proof. According to [Vui99,BV00], the factors of size m; X mg of the sequence U
are in one-to-one correspondence with the intervals of R/27Z of extremal points
—hoitiave gpd —Atiave 4 with (iy,42) € [0,m1 — 1] x [0, ma — 1]. There are
at most 2mims such points and the result follows from Theorem 5. [ |

5 Conclusion and perspectives

The aim of the present work was to introduce suitable tools generalizing the
classical ones used in the study of arithmetic discrete planes. We have exhibited
a generalized functionality for arithmetic discrete planes (7, i, w) and proved
that, as soon as |(@, ¥')| = w and ged(ay, s, a3) = 1, there is a one-to-one
correspondence between ‘B3 and a two-dimensional lattice [,. Thanks to these
results, we have shown for various classes of arithmetic discrete planes, how to
recover Z € ‘P in correspondence with any i € I',. We also have investigated
plane partitions and local configurations and extended the well-known result on
the number of (m,n)-configurations in a naive plane, that is, there are at most
mn such configurations.

This approach offers new perspectives to investigate further general prop-
erties of arithmetic discrete planes of any thickness. In particular, we plan
to use it to generate arbitrarily large parts of discrete planes via symbolic
substitutions following [ABS04], to recover the corresponding Farey tessela-
tion as well as the symmetry properties of 7i-local configurations of a discrete
plane [VC99], and finally as a new approach to the recognition problem of dis-
crete planes [FST96,FP99,VC00].
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