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A CeVeFE DDFV scheme for discontinuous

anisotropic permeability tensors

Yves Coudière, Florence Hubert and Gianmarco Manzini

Abstract In this work we derive a formulation for discontinuous diffusion tensor

for the Discrete Duality Finite Volume (DDFV) framework that is exact for affine

solutions. In fact, DDFV methods can naturally handle anisotropic or non-linear

problems on general distorded meshes. Nonetheless, a special treatment is required

when the diffusion tensor is discontinuous across an internal interfaces shared by

two control volumes of the mesh. In such a case, two different gradients are consid-

ered in the two subdiamonds centered at that interface and the flux conservation is

imposed through an auxiliary variable at the interface.
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1 Introduction

In this proceeding we propose a Discrete Duality Finite Volume (DDFV) method

that can handle discontinuous permeability coefficients. This method is a variant

of the DDFV formulation proposed by Y. Coudière and F. Hubert in [6] to ex-

tend to three-dimensional (3D) problems the original two-dimensional finite volume

schemes by F. Hermeline [11] and K. Domelevo and P. Omnès [9]. In the DDFV ap-

proach the diffusive flux is approximated using a piecewise constant approximation

of the solution gradient over a set of edge-based cells called diamond cells. In the
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two dimensional formulation, the gradient is approximated by a formula that re-

quires the vertex values of the scalar solution. Following the DDFV approach, such

vertex values are the solution of another finite volume method whose control vol-

umes are built around the vertices. Therefore, the resulting scheme combines two

distinct finite volume methods for the cell unknowns and the vertex unknowns on

two overlapping meshes. Effectiveness and efficiency of such coupled finite volume

formulation are documented in [5, 10].

Several generalizations of the two-dimensional DDFV formulation have been

proposed in the literature; it is worth mentioning the works by F. Hermeline in [12],

C. Pierre in [13, 8], and B. Andreianov and collaborators in [3, 4, 2, 1]. Here, we

consider the alternative construction proposed in [6], which uses two families of

additional unknowns. In the first family, the unknowns are located at the vertices of

the mesh and are the solution of a finite volume method whose control volumes are

built around the vertices. In the second family, the unknowns are located at the cen-

ters of mesh edges and faces and are the solution of a finite volume method whose

control volumes are built around such geometric objects. Therefore, the resulting

scheme couples three distinct finite volume methods through a 3D gradient formula

that generalizes the 2D one on a set of special cells, the so called diamond cells,

built around edges and faces as will be discussed in the next sub-section.

The outline of the paper is as follows. In Section 2 we present a short review of

the DDFV method. In Section 3 we present the numerical treatment that we propose

for the case of discontinuous permeabilities. In Section 4 we offer final remarks and

conclusions.

2 The Discrete Duality Finite volume formulation

Meshes

Given a general finite volume mesh M of the computational domain Ω , composed

of polyhedra, three additional polyhedral partitions of Ω are built, denoted by N ,

FE and D , hereafter described.

We denote the control volumes of the initial mesh M by K or L. The set ∂M

gathers the boundary faces, which we consider as degenerated control volumes, and

we complete the initial mesh as M = M ∪∂M . We associate a set of points xK ∈ K

with the control volumes in M ; specifically, in the current applications we use the

arithmetic average of the vertex position vectors for each polyhedral cell. We denote

the vertices, the edges, and the faces of mesh M by xA, E and F, respectively, and

we define some additional points: the center of gravity xF of each face F and the

midpoint xE of each edge E. These points are ordered following the relation

xA ≺ xE ≺ xF ≺ xK which means that xA ⊂ ∂ E, E ⊂ ∂ F, F ⊂ ∂ K.
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The 3D gradient formula that we will introduce in the next subsection provides

a piecewise constant approximation of the solution gradient on the mesh D , which

is the set of diamond cells D. To each one of the pairs “(edge, face)” (E, F) related

by xE ≺ xF there corresponds a different diamond cell D that we define as follows.

Cell D is the convex polyhedra with vertices xA,xB,xE,xF,xK,xL, where xA and xB

denote the endpoints of E, K and L the two cells sharing the common face F. Specif-

ically, it holds that D = hull(xA,xF,xB,xK)∪ hull(xA,xF,xB,xL). We associate with

each diamond cell D the point xD = 1
2
(xE + xF) ∈ D.

We partition each diamond cell into eight tetrahedra sharing xD as common vertex

and having the remaining three vertices chosen within the pairs (xA,xB), (xE,xF) and

(xK,xL), respectively. Formally, we denote the eight possible combinations by

D = hull

(

xD,

(

xA

xB

)

,

(

xE

xF

)

,

(

xK

xL

))

, with

(

xA

xB

)

≺ xE ≺ xF ≺

(

xK

xL

)

.

We assume the six vertices xK,xL, xA,xB and xE,xF of the diamond cell D(E, F) to

be ordered in such a way that ∆EF := det(xB − xA,xF − xE,xL − xK) > 0. Thus, the

measure of D is |D| = 1
6
∆EF.

We denote the control volume associated with a vertex xA of the mesh by A.

This control volume is built by gathering the contributions (i.e., sub-tetraedra) of

the diamond cells that share vertex xA as:

A = ∪
D∈DA

hull

(

xD,xA,

(

xE

xF

)

,

(

xK

xL

))

,

where DA = {D ∈ D , such that xA ≺ xE ≺ xF} for xA fixed. The resulting finite vol-

ume partition of Ω , denoted by N , forms the vertex mesh. The vertex mesh is split

into interior and boundary controls volumes, respectively denoted by N and ∂N ;

formally, it holds that N = N ∪∂N .

Similarly, we associate a control volume denoted either by F or by E, with the

point xF (face center) or the point xE (edge midpoint) in accordance with the follow-

ing formula:

E = ∪
D∈DE

hull

(

xD,

(

xA

xB

)

,xE,

(

xK

xL

))

, F = ∪
D∈DF

hull

(

xD,

(

xA

xB

)

,xF,

(

xK

xL

))

,

where DE = {D ∈ D , with xE ≺ xF} with xE fixed and DF = {D ∈ D , with xE ≺ xF}
with xF fixed. The resulting finite volume partition of Ω , denoted by FE , is the

face-edge mesh. This partition contains both control volumes associated with the

faces and the edges of the initial mesh and is split into the interior and boundary

controls volumes, respectively denoted by FE and ∂FE ; formally, it holds that

FE = FE ∪∂FE .
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The 3D “Cell-Vertex-Face/Edge” DDFV Scheme

We say that uT = (uM ,uN ,uFE ) is a discrete function on Ω whenever its three

components are piecewise constant functions on the meshes M , N and FE , re-

spectively, and take the form

uM = ∑
K∈M

uKχK, uN = ∑
A∈N

uAχA, uFE = ∑
F∈F

uFχF + ∑
E∈E

uEχE.

Let X denote the set of the degrees of freedom of the form

uT =
(

(uK)K∈M ,(uA)A∈N ,(uE)E∈E ,(uF)F∈F

)

.

In order to take into account the Dirichlet boundary conditions, this set is supple-

mented by the boundary data

δuT =
(

(uK)xK∈∂M , (uA)xA∈∂N , (uE)xE∈∂FE , (uF)xF∈∂FE

)

,

which form the set ∂X . We will search the numerical approximation to the scalar

solution field u in the product set (uT ,δuT )∈X×∂X . Note that X , ∂X , and X×∂X

can be given the algebraic structure of a linear space after introducing (in the obvious

way) the addition of two elements of the set and the multiplication of an element of

the set by a real number.

The gradient of the discrete unknown uT , denoted by ∇T uT , is a constant vector

field on each diamond cell and is identified with a piecewise constant vector field

on mesh D . It depends on the boundary data δuT and can be written as ∇T

δu
uT =

∑D∈D ∇D

δu
uT χD where

∇D

δuuT =
1

3|D|

(

(uL −uK)NKL +(uB −uA)NAB +(uF −uE)NEF

)

. (1)

for any D ∈ D and with the vectors NKL = 1
2
(xB − xA)× (xF − xE), NAB = 1

2
(xF −

xE)× (xL − xK) and NEF = 1
2
(xL − xK)× (xB − xA). This procedure defines a gradi-

ent operator, denoted by ∇T

δu
, mapping the discrete space X onto the space of the

discrete vector fields ∇T uT , which we conveniently denote by Q.

Using the gradient formula we define the flux through each interface of the con-

trol volumes of the three meshes M , N and FE . The three finite volume schemes

are written by using a discrete divergence operator that maps each vector field in Q

to a triple of scalar functions in X . Formally, we introduce the operator

divT : ξ = (ξD)D∈D ∈ Q 7→ (divM ξ ,divN ξ ,divFE ξ ) ∈ X

where divM ξ =(divK ξ )K, divN ξ =(divA ξ )A and divFE ξ = {(divE ξ )E,(divF ξ )F}
are given by
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|K|divK ξ = ∑
D∈DK

ξD ·NKL, |A|divA ξ = ∑
D∈DA

ξD ·NAB, (2)

|E|divE ξ = ∑
D∈DE

ξD ·NEF, |F|divF ξ = ∑
D∈DF

ξD · (−NEF) . (3)

In the previous statements, the symbols DK, DA, DE, DF refer to the diamond cells

which overlap the cells labeled by the corresponding subscripted indices K, A, E,

and L.

Since each of the divC ξ approximates 1
|C|

∫

C
divξ (for C = K, A, E, F), the right

hand side of the discrete problem is given by the piecewise constant projection of

the function f onto the space X , πT f = {( fK)K∈M ,( fA)A∈N ,( fE, fF)E∈E ,F∈F } with

fC = 1
|C|

∫

C
f (x)dx for any cell C = K ∈ M or A ∈ N or F or E ∈ FE .

Finally, the DDFV scheme reads as

−divT (KD∇D

δuuT ) = πT f (4)

where KD = 1
|D|

∫

D
K(x)dx is defined piecewise on the diamond cells. The scheme

in (4) originates a symmetric and positive-definite linear system of equations (see

[6] for a thourough discussion of the other properties). Assembling the matrix of the

system amounts to gathering the local contributions of the discrete gradient associ-

ated to each diamond cell. These contributions are explicitly taken into account by

the local Gram matrix

KD =





KDNKL ·NKL KDNKL ·NAB KDNKL ·NEF

KDNAB ·NKL KDNAB ·NAB KDNAB ·NEF

KDNEF ·NKL KDNEF ·NAB KDNEF ·NEF





The right hand side in (4) is split similarly in elementary contributions on the eight

tetrahedra that compose the diamond cells D.

3 Treatment of discontinuous permeability tensors

The case of a discontinuous permeability tensor in the DDFV framework deserves

a special treatment that we discuss in this subsection. Let us suppose that the per-

meability tensor is discontinuous across the interfaces of the control volumes of

mesh M . We decompose each diamond cell into two sub-diamonds DK and DL, i.e.,

D = DK ∪ DL, where DK is the union of the four tetrahedra with vertices xD, xK, the

third vertex being xA or xB, and the fourth vertex being xE or xF.

Then, we introduce an additional degree of freedom at xD, the center of the dia-

mond cell, and we write a gradient formula that is exact for affine functions on the

two sub-diamonds. We obtain the two following formulas



6 Yves Coudière, Florence Hubert and Gianmarco Manzini

∇T

K uT =
1

3|DK|

(

(uD −uK)NKL +(uB −uA)NK
AB +(uF −uE)N

K
EF

)

∇T

L uT =
1

3|DL|

(

(uL −uD)NKL +(uB −uA)NL
AB +(uF −uE)N

L
EF

)

using the geometric vectors NK
AB = 1

2
(xF −xE)×(xD −xK), NL

AB = 1
2
(xF −xE)×(xL −

xD), NK
EF = 1

2
(xD − xK)× (xB − xA), NL

EF = 1
2
(xL − xD)× (xB − xA), and introducing

the two volume factors |DK| =
1
6

det(xB −xA,xF −xE,xD −xK) and |DL| =
1
6

det(xB −
xA,xF −xE,xL −xD). Also, we remark that |D|= |DK|+ |DL|, NAB = NK

AB +NL
AB NEF =

NK
EF +NL

EF and it holds that |DK|N
L
AB −|DL|N

K
AB = |DK|NAB −|D|NL

AB.

Let KDK
= 1

|DK |

∫

DK
K(x)dx and KDL

= 1
|DL |

∫

DL
K(x)dx be the constant approxi-

mation of the diffusion tensor on the two sub-diamonds DK and DL. We determine

the additional unknown uD in terms of the other local degrees of freedom uK, uL, uA,

uB, uE and uF by imposing that

KDK
∇T

K uT ·NKL = KDL
∇T

L uT ·NKL,

which is the flux conservation through the common face DK |DL. Moreover, let us

introduce the following geometric factors that also depend on the permeability co-

efficients:

βKL = +|DL|KDK
NKL ·NKL + |DK|KDL

NKL ·NKL

βAB = −|DL|KDK
NK

AB ·NKL + |DK|KDL
NL

AB ·NKL

βEF = −|DL|KDK
NK

EF ·NKL + |DK|KDL
NL

EF ·NKL

A straightforward calculation yields the formula for uD

uD =
|DL|KDK

NKL ·NKL

βKL

uK +
|DK|KDL

NKL ·NKL

βKL

uL +
βAB

βKL

(

uB −uA

)

+
βEF

βKL

(

uF −uE

)

,

and the formulas for the numerical gradients:

3∇T

K uT =
KDL

NKL ·NKL

βKL

NKL

(

uL −uK

)

+

(

βAB

|DK|βKL

NKL +
1

|DK|
NK

AB

)

(uB −uA)

+

(

βEF

|DK|βKL

NKL +
1

|DK|
NK

EF

)

(uF −uE),

3∇T

L uT =
KDK

NKL ·NKL

βKL

NKL

(

uL −uK

)

+

(

βAB

|DL|βKL

NKL +
1

|DL|
NL

AB

)

(uB −uA)

+

(

βEF

|DL|βKL

NKL +
1

|DL|
NL

EF

)

(uF −uE).

Finally, we define the divergence operator for a discrete vector field which is

piecewise constant on DK ∩DL and may be discontinuous across DK |DL as
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|K|divK ξ D = ∑
D|K

ξDK
·NKL = ∑

D|K

ξDL
·NKL = ∑

D|K

(

|DK|

|D|
ξDK

+
|DL|

|D|
ξDL

)

·NKL, (5)

|A|divA ξ D = ∑
D|A

(ξDK
·NK

AB +ξDL
·NL

AB), (6)

|E|divE ξ D = ∑
D|E

(ξDK
·NK

EF +ξDL
·NL

EF), (7)

|F|divF ξ D = ∑
D|DF

(ξDK
·
(

−NK
EF

)

−ξDL
·
(

−NL
EF

)

). (8)

The DDFV method for the discontinuous case follows by using (5)-(8) with the

approximate permeability tensors KDK
and KDL

instead of (2)-(3) in the scheme

formulation (4). Let ξ D = KD∇T uT and evaluate the quantities:

(

|DK|

|D|
ξDK

+
|DL|

|D|
ξDL

)

·NKL = αKL·KL(uL −uK)+αKL·AB(uB −uA)+αKL·EF(uF −uE)

ξDK
·NK

AB +ξDL
·NL

AB = αAB·KL(uL −uK)+αAB·AB(uB −uA)+αAB·EF(uF −uE)

ξDK
·NK

EF +ξDL
·NL

EF = αEF·KL(uL −uK)+αEF·AB(uB −uA)+αEF·EF(uF −uE)

using the entries of the coefficient matrix

Knew
D =





αKL·KL αKL·AB αKL·EF

αAB·KL αAB·AB αAB·EF

αEF·KL αEF·AB αEF·EF



 .

Since Knew
D is a 3× 3 symmetric elements we have only six independent entries,

which after a straightforward calculations are given by:

αKL·KL =
1

3

KDK
NKL ·NKL KDL

NKL ·NKL

βKL

,

αKL·AB =
KDK

NKL ·N
K
AB KDL

NKL ·NKL +KDL
NKL ·N

L
AB KDK

NKL ·NKL

βKL

,

αKL·EF =
1

3

KDK
NKL ·N

K
EF KDL

NKL ·NKL +KDL
NKL ·N

L
EF KDK

NKL ·NKL

βKL

,

αAB·AB =
1

3

(

−
β 2

AB

|DK||DL|βKL

+
1

|DK|
KDK

NK
AB ·N

K
AB +

1

|DL|
KDL

NL
AB ·N

L
AB

)

,

αAB·EF =
1

3

(

−
βABβEF

|DK||DL|βKL

+
1

|DK|
KDK

NK
EF ·N

K
AB +

1

|DL|
KDL

NL
EF ·N

L
AB

)

,

αEF·EF =
1

3

(

−
β 2

EF

|DK||DL|βKL

+
1

|DK|
KDK

NK
EF ·N

K
EF +

1

|DL|
KDL

NL
EF ·N

L
EF

)

.

and the remaining coefficients are determined by symmetry, i.e., αAB·KL = αKL·AB,

αEF·KL = αKL·EF, and αEF·AB = αAB·EF.
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4 Conclusions

In this work, we discussed how a discontinuous permeability can be treated in the

numerical framework offered by the DDFV method. Whenever the discontinuity is

across an internal interfaces shared by two control volumes of the primal mesh, two

different gradients are considered on the two subdiamonds centered at that interface.

Introducing an auxiliary variable at the interface and imposing flux conservation

makes it possible to derive a formula for both gradients that is exact for affine func-

tions. Then, a DDFV method can be formulated using a discrete divergence operator

to express the flux balance on the overlapping meshes for primal control volumes,

vertex control volumes and face-edge control volumes. The numerical experiments

in [7] show the effectiveness of the method.
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