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Abstract— As human listeners, it seems that we should be 
experts in processing vocal sounds. Here we present new 
behavioral data that confirm and quantify a voice-processing 
advantage in a range of natural sound recognition tasks. The 
experiments focus on time: the reaction-time for recognition, 
and the shortest sound segment required for recognition. Our 
behavioral results provide constraints on the features used by 
listeners to process voice sounds. Such features are likely to be 
jointly spectro-temporal, over multiple time scales. 

I. INTRODUCTION 
The ecological importance of voice processing for human 

listeners is obvious. Voice not only conveys speech, it also 
provides information on talker gender, identity, and emotional 
state [1]. Neural imaging studies confirm that there is neural 
circuitry specialized for vocal sounds [2]. Also, automated 
discrimination of voice and non-voice sounds would be useful 
for many applications. For instance, speech-recognition or 
keyword-spotting software could ignore the sections of a noisy 
auditory scene that are dominated by non-vocal sounds. 

However, there is a paucity of psychophysical measures of 
natural sound recognition in humans. Here we provide an 
overview of three experiments that used reaction-time and 
gating techniques to map listeners’ performance on a sound 
recognition task. Reaction times tell us how fast a listener can 
recognize a sound. Gating, that is, extracting segments from 
sound samples, shows how short a sound can be and still 
support recognition. The sounds used in the experiments were 
recorded samples from musical instruments and the singing 
voice, for which the only cue to recognition was timbre (as 
opposed to pitch, loudness, and duration). In this brief report 
we focus on the essential findings and try to relate them to the 

features and processing schemes that might be useful for 
mimicking human processing of vocal sounds. Overall, we 
find that the voice is indeed processed very fast and can be 
recognized above chance with short samples.  

II. EXPERIMENT 1: VOICE RECOGNITION TIME 
Reaction times (RTs) were collected to measure the time it 

takes to distinguish a set of target sounds from a set of 
distractor sounds. In one experimental condition, target sounds 
were the human voice. The target set comprised two different 
vowels, /a/ or /i/, sung at twelve different pitches (A3 to G#4). 
Any of these 24 sounds was a target. The distractor set 
consisted of single notes from the bassoon, clarinet, oboe, 
piano, saxophone, trumpet, and trombone, over the same pitch 
range (84 distractors). In another experimental condition, the 
same distractors were used but the target set now comprised 
two percussion instruments (marimba and vibraphone), over 
the same pitch range. In a final condition, the target set was 
two bowed string instruments (violin and cello) again with the 
same distractors and pitch range.   

Listeners performed a “go/no-go” recognition task in 
which they had to respond as quickly as possible when they 
heard any one of the target sounds, but had to withhold 
responses to any distractor sounds. The target and distractor 
sounds were presented one at a time, in random order. All 
sounds had the same intensity and duration, and they were 
distributed across the same range of pitches. Listeners 
therefore had to use timbre cues to perform the task. As a 
baseline, “simple RTs” were measured, for which listeners had 
to respond to all sounds as soon as they were detected, i.e., 
without any required recognition of the sound source.  
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A. Method details 
All stimuli were recordings taken from the RWC Music 

Database [3], using staccato notes at medium volume, from 
A3 to G#4. Each note was edited into a separate sound file, 
truncated to a 250-ms duration, and normalized in RMS 
power. 

A trial was initiated by the participant holding down a 
response button. After a pause of random duration (50 ms to 
850 ms), a single sound was presented. In the “go/no-go” task, 
listeners had to respond to targets by releasing the button as 
fast as possible, and ignore the distractors. There were 96 
target trials per block, randomly interleaved with 84 
distractors. Blocks were run for the three categories of target 
(voices, percussion, or strings). Simple RTs were also 
measured for 96 target stimuli without distractors, so listeners 
simply had to respond quickly on every single trial.  

The stimuli were presented over headphones in a double-
walled IAC sound booth. No feedback was provided. There 
were 18 participants, aged between 19 and 45 (M = 26 years), 
all with self-reported normal-hearing.  

B. Results 
Figure 1 shows the log-averaged RTs for the go/no-go 

tasks and the simple RTs. For the go/no-go task, there were 
large significant differences of over 50 ms between each of the 
target types (p < 0.004). There were only small differences 
(< 8 ms) between the average simple RTs. The number of 
false alarms (< 12%; not shown) also varied significantly with 
the target stimuli, with the least false-alarms for voices and the 
most for strings.  

C. Discussion 
Listeners were fast at processing the voice. When 

expressed relative to simple detection, it only took an extra 
145 ms to recognize voice targets. Listeners were also faster to 
respond selectively to the voice than either the percussion or 
the strings. This could not be solely because they rushed their 
responses to the voice, as they were also more accurate for the 
voice. Moreover, the differences were large: the average 
difference between voice and strings was 105 ms. Therefore 
this reflects a real voice-processing advantage.  
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Figure 1.  Reaction times for Experiment 1. Error bars are 95% confidence 
intervals about the means. The voice targets were recognized fast, and faster 

than strings or percussion targets. 

There are many possible reasons why the listeners were 
faster to respond to the voice compared to the instruments: the 
voice would be particularly familiar to the listeners, or it may 
stand out from the distractors as semantically belonging to a 
different category of sounds. However, all of these 
explanations posit that we first somehow recognize a voice, 
and then process it differently from other sounds. In the 
following experiment, we were interested in the basic features 
that are able to trigger a voice-processing advantage. 

III. EXPERIMENT 2: CHIMERAS 
Which acoustical features may distinguish the voice from 

other sounds? The long-term average spectra of vowels 
contain characteristic formants. Alternatively, the pitch of the 
voice may be less steady than that of musical instruments. 
These exemplify two broad classes of features: spectral 
features and temporal features.  

We pitted spectral and temporal features against each other 
by using a morphing technique. The voice stimuli were 
morphed with the musical instruments to form auditory 
chimeras, some of which had the spectral features of the voice, 
others which had the temporal features of the voice, but not 
both. We then used the RT technique again: which chimera 
type is processed faster should indicate which feature is 
sufficient for fast, voice-like processing. 

A. Method details 
The chimeras were formed from pairs of sounds used in 

Expt. 1. A peripheral auditory model was used to exchange 
spectral and temporal cues for these sounds. The “spectral 
features” (SF) sound of the pair was split into 60 frequency 
bands using a gammatone filterbank [4]. The RMS power was 
measured for each frequency band, producing what is known 
as an excitation pattern. The “temporal features” (TF) sound 
was filtered by the same filterbank, but gains were then 
applied to each channel so that the excitation pattern of the 
chimera would now match that of the SF sound. Thus the 
chimera preserved the temporal detail of the TF sound, but 
with the long-term spectral features of the SF sound. 

Two sets of chimeras were formed from crossing voices 
with strings (voice-TF/string-SF, and vice versa), and two sets 
from strings and percussion. The unprocessed voice stimuli 
from the previous experiment were also included for 
comparison with Expt. 1. There were two types of distractors, 
either the unprocessed distractors which were used in Expt. 1, 
or pairwise-morphed distractors, with each instrument being 
used exactly once as TF and once as SF.  

The reaction-time task was the same as in Expt. 1, except 
for the choice of targets and distractors which could now be 
chimera in certain blocks. Listeners heard several examples of 
the target stimulus before each block, until they felt confident 
that they understood the target type. No feedback was 
provided. Simple RTs were also measured. There were 9 
participants, aged between 20 and 31 (M = 23 years). All 
listeners had self-reported  normal  hearing.  
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Figure 2.  Reaction times for Experiment 2. No chimera is recognized as fast 
as the unprocessed voice. The presence of either spectral or temporal features 
of the voice alone did not produce any advantage over other chimeras. Error 

bars are 95% confidence intervals about the means. 

B. Results 
The log-averaged RTs for recognition of the natural voice 

and the morphed target sounds ranged from 431 ms to 567 ms. 
The fastest RTs were observed for the natural voice. The 
responses to the two voice-string chimeras were comparable to 
those of the percussion-string chimeras. A 5 × 2 repeated-
measures ANOVA showed an effect of target (F4,32 = 30.68, 
p < 0.001) but no effect of distractor type. Figure 2 displays 
the RTs averaged for those two distractor types. Post hoc 
comparisons showed that the responses to natural voices were 
significantly faster than each of the morphed stimuli 
(p ≤ 0.001), but there were no other significant differences. 
The error rates followed the same trend as the RTs, with the 
fewest errors for the natural voice. The simple RTs to each 
target type (not shown) were broadly similar to each other, 
ranging between 284 ms and 304 ms. 

C. Discussion 
The RTs to the natural unprocessed voice in Expt. 2 

replicate those of Expt. 1. However, responses to chimeras 
containing spectral or temporal voice features were slower 
than for the natural voice, and not faster than chimeras 
containing no voice features at all. This strongly suggests that 
the features supporting a voice-processing advantage cannot 
be reduced to either spectral or temporal cues. They must 
recruit joint spectro-temporal cues [5]. 

IV. EXPERIMENT 3: SHORT-SAMPLE RECOGNITION 
We now ask a complementary question to that of the 

recognition time: how short can a sound be and still support 
recognition, in a non-speeded paradigm? In this new 
experiment, we used the same sound set as in Expt. 1. 
However, sounds were gated in time, restricting their duration, 
by applying short windows to the original signal. 

A. Method details 
As in Expt. 1, the targets sets were voices, percussion, or 

string instruments, with a one-octave pitch range (12 pitches 
from A3 to G#4). Distractors were other musical instruments, 
also as in Expt. 1. The stimuli were gated in time, using 
Hanning windows with durations of 2, 4, 8, 16, 32, 64, or 
128 ms. The starting point of the gating was either chosen 

randomly between 0 ms and 100 ms of the original sample, or 
the onset of the sound was preserved (0 ms starting point, no 
fade-in). The fade-out started at the midpoint of the time 
window, using half a Hanning window. In each trial, listeners 
heard a short sound and had to indicate whether it was part of 
the target set or not. Target sets were presented in different 
blocks. Distractors were the same on all blocks. Targets were 
presented on 50% of the trials. Each block thus included 14 
conditions (7 gate durations × 2 starting points) interleaved in 
a random order. Fifty repeats per point were collected in a 
counterbalanced ordering. Feedback was provided. There were 
9 participants, aged between 19 and 38. All listeners had self-
reported normal-hearing.  

B. Results 
Data were analyzed using the d' sensitivity index of signal 

detection theory [6]. High d' represents reliable recognition of 
the target set. Figure 3A shows d' for each target type and 
gating time, averaged for the two starting points and for all 
participants.  

The ANOVA revealed significant main effects of sound 
source (F2,16 = 45.36, p < 0.001), duration (F6,48 = 229.09, 
p < 0.001), and starting point (F1,8 = 23.49, p = 0.001). In 
addition, there were significant interactions of sound source 
and duration (F12,96 = 11.87, p < 0.001), duration and starting 
point (F6,48 = 6.39, p < 0.001), and sound source and starting 
point (F2,16 = 12.55, p < 0.001). Post hoc t-tests showed that 
the starting point had no effect for the voices, whereas onset 
trials were slightly better recognized for percussions and 
strings (p < 0.001). Overall, the voices were most accurately 
recognized, and strings the least  (p < 0.001).  

Reducing the length of the gates generally reduced the 
accuracy for all instruments. At 16 ms, all of the target stimuli 
were recognized significantly above chance (i.e., d' > 0). At 
4 ms, only the voice was significantly recognizable 
(p < 0.005), and nothing was above chance at 2 ms.  

C. Discussion 
The results here again showed a specificity of the voice: 

we can accurately recognize a voice with only 4 ms of a 
signal. Recognition for short samples has been reported before 
[7], but this is the first experiment that used natural sounds 
which varied randomly in pitch and starting point. In spite of 
such large acoustical variations, listeners were remarkably 
able to recognize very short samples. 

We also found that the onset of the sound influenced the 
recognition accuracy only for the percussion and the strings, 
with a larger advantage for the onset trials at longer durations 
(> 32 ms). This finding seems coherent with subjective 
judgments of musical instruments sounds, for which the attack 
time is one of the major timbre dimensions [8]. However, no 
onset advantage was found for the voice samples, pointing 
again towards a specificity of the human voice. Overall, we 
showed that listeners performed well on a complex 
recognition task, with or without the attack.  

Figure 3B shows the median excitation patterns (and 
interquartile ranges) for each set of targets and distractors at 
the 8 ms duration. Excitation patterns of targets and distractors 
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Figure 3.  A. Recognition accuracy for Experiment 3. Targets as short as 
4 ms were recognized above chance for the voice. All target types were 

recognized above chance for longer durations. The strings were less 
accurately recognized. Error bars are standard errors. B. Average log-

excitation patterns and interquartile ranges for the different sound sets of 
duration 8 ms (voice, red; percussion, blue; strings, green;  distractors, black) 

were generally similar, and those of the voice were on average 
most similar to the distractors. Therefore, it seems that 
listeners did not base their judgment only on these excitation 
patterns, as we should then have observed best performance 
for percussion and strings, and poorer performance for voice. 
This clearly was not the case. Note that the 8-ms samples 
could not support spectro-temporal modulations below 
100 Hz, which implies that listeners used either faster 
modulations or higher-order aspects of the spectrum. 

Finally, we tested whether the benefit of longer durations 
was merely that listeners could observe features for longer. 
We applied the multiple looks model [9] to the data, which 
assumes that an ideal observer uses multiple independent 
looks of a given feature. The model predicts that d' would 
increase as the square-root of duration. Between 4 ms and 
16 ms, the increase of d's with duration achieved by listeners 
was greater than that predicted by the model. This suggests 
that different acoustical features were combined, with some 
only becoming available at longer time-scales.  

V. GENERAL DISCUSSION 
These behavioral experiments show how efficient listeners 

are when they process natural sounds, and the human voice in 
particular. RTs in Expt. 1 showed that the human voice was 

recognized particularly quickly, on the scale of 100s of 
milliseconds. Similar finding have been made for the 
recognition of flashed visual images [10]. Interestingly, fast 
RTs were used to argue in favor of a processing scheme based 
on timing in neural spiking networks, which has then been 
applied to artificial image processing [11]. Our findings 
suggest that a similar approach may be appropriate for 
auditory-recognition tasks. 

The chimeras used in Expt. 2 showed that spectral or 
temporal features alone did not support a voice-like processing 
advantage in human listeners. This is consistent with the 
acoustical analyses of the gated stimuli of Expt. 3, where 
spectral features alone could not explain the pattern of results. 
Therefore, the features that make a voice are likely to be joint 
spectro-temporal. In addition, the performance of listeners on 
the gating task outperformed a model based on multiple 
independent looks. Thus, listeners were able to combine 
features appearing over multiple time-scales. 

Relating these results to biologically inspired speech 
processing, we suggest that features computed on a single time 
scale, or features that are purely spectral, may not capture the 
highly efficient processing achieved by human listeners when 
dealing with natural sounds. This was found for stimuli which 
were relatively simple, and of short duration. It is highly likely 
that even more complex features would emerge from behavior 
measured for richer sound sets. Finally, it is interesting to note 
that multiscale strategies are now being explored, with some 
success, for sound classification systems [12].  
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