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Abstract

Following a recent semiclassical investigation by Bacchus-Montabonel M C and Talbi D

(2008 Chem. Phys. Lett. 467, 28), the C+(2s22p)2P + S(3s23p4)3P charge transfer process

involved in the modellisation of the interstellar medium chemistry and its reverse reaction are

revisited by combining a wave packet approach and semiclassical dynamics in a

quasimolecular approach for doublet and quartet states. New radial non adiabatic coupling

matrix elements have been calculated and the mixed treatment gives access to new precise

values of the rate coefficients for the direct and reverse charge transfer processes. For this

system, quantum and semiclassical results are in good agreement even at low collision kinetic

energies. The dominance of the quartet states in the process is confirmed. In the quantum

treatment, the collision matrix elements are extracted from wave packets by the flux method

with an absorbing potential. The formation of resonances due to a centrifugal barrier is

illustrated.
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1. Introduction

A quantitative analysis of the emission-line spectra of ionized astronomical objects

requires reliable data on the microscopic ionization and recombination processes involved.

Recombination may occur either by radiative or dielectronic capture or by charge transfer

from neutral species. The charge transfer recombination process with atomic and molecular

hydrogen or atomic helium is particularly important in astrophysical plasmas for many

multiply-charged ions, whose emission lines are used to provide direct information of the

ionization structure of astronomical objects [1,2,3,4,5,6,7,8]. Such processes have anyway to

be enlarged in order to describe the formation of more complex molecules. In that sense, the

charge transfer C+ + S has been shown to be one of the key reactions for the chemistry of

sulphur and carbon species in the interstellar medium. Indeed, this reaction plays an important

role in the formation and abundance of H2CS in the dense interstellar clouds. It is a crucial

process for the chemistry of photon dominated regions (PDR’s) [9,10] since it allows the

enhancement of the ionic carbon chemistry at the origin of the formation of the complex

carbon molecules observed in the PDR’s.

In astrochemical models, the rate constant of the C+ + S charge transfer is generally

estimated by a single value of 1.5×10-9 cm3s-1 [11] for the 10K- 41000K temperature range.

This value is uncertain for such a large temperature domain and detailed calculations had to

be performed. In a previous paper [12], an ab initio molecular treatment of the direct

C+(2s22p)2P + S(3s23p4)3P process and its reverse C + S+ reaction has been carried out by

using a semi-classical dynamical method. Such an approach, largely used in the 100eV-keV

energy range may be however questionable in the low eV energy range. The direct charge

transfer has thus been revisited using a quantum wave packet propagation method and a

comparison of both approaches has been developed. An evaluation of the rate coefficients for

the reverse process C(2s22p2)3P + S+(3s23p3)4P has also been deduced using the symmetry

properties of the collision matrix.

2. Theoretical treatment

2. 1. Molecular Hamiltonian

The Hamiltonian of the CS+ molecular ion is the sum of the radial and rotational parts of

the kinetic energy and the electronic Hamiltonian
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el
R rotH T T H= + + .

The spin-orbit effects are neglected in this work so doublet and quartet manifolds are

considered separately. The spin is decoupled and taken into account only via its multiplicity

when calculating the charge transfer cross section. The total time dependent wave function is

expanded in a parity adapted ro-electronic basis set which therefore corresponds to the

expression for singlet states [13, 14]

( ) ,1/2

0

1
( 1) ,

2 1

K
mKM m mKM KMζ ψ εψ

δ
Ω Λ −Λ

Λ

 = Ω + − −Ω  + 
 (1-1)  

where m numbers the electronic states mψ Λ and Λ is the quantum number for the projection

on the molecular axis of the total electronic orbital angular momentum L . We consider here

Σ (Λ = 0) and Π (Λ = 1) states. The total angular momentum is here K = N + L where N is

the rotational angular momentum. KM Ω are the states of the total angular momentum

representation of quantum number K. M and Ω are the projection of the total angular

momentum on the laboratory Z axis and on the internuclear z axis respectively [13]. The two

cases ε = 1and ε = -1 correspond to e and f states.

The adiabatic electronic functions adia
mψ Λ diagonalize elH . The charge transfer process is

driven mainly by non-adiabatic interactions in the vicinity of avoided crossings [15]. The

corresponding radial coupling matrix elements between all pairs of states of the same

symmetry and multiplicity were calculated by means of the finite difference technique:

, 0

1
( ) lim ( ) ( )ψ ψ ψ ψΛ Λ Λ Λ Λ Λ∆→

= ∂ = + ∆
∆

adia adia adia adia
m n m R n m nF R R R , (1-2)

with the parameter ∆=0.0012 a.u. previously tested [16]. For reasons of numerical accuracy,

we performed a three-point numerical differentiation using calculations at R + ∆ and R - ∆ for

a very large number of interatomic distances in the avoided-crossing region. In a diatomic

system, this F matrix enables us to build diabatic states dia
Kψ Λ which rigorously remove all the

interactions due to RT and are coupled by smooth potential elements of elH [17]. The

adiabatic-to-diabatic transformation matrix ( )RD is obtained by solving the equation

( ) ( ) 0∂ + =R R RD F.D with the asymptotic condition ( )R∞ =D I where I is the identity

matrix.
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The rotational part of the kinetic energy is written by neglecting all the spin-orbit or

spin-rotation couplings. As in a pure b Hund case, the spin projection Σ on the intermolecular

axis is zero and Ω = Λ +Σ = Λ . With these assumptions rotT reads: [13]

( )2 2 2 2rot z zT N B K L K L K L K L B+ − − += = + − − − (1-3)

where 2 2/ 2B Rµ= h and µ is the reduced mass. By applying the usual expressions of the

ladder operators for L± and the unusual ones for K±

( [ ]1/2
( 1) ( 1) , 1,K K M K K K M± Λ = + −Λ Λ Λm m  [18]), the matrix elements in the ro-

electronic basis set can be related to the matrix elements 1y mnm iL nB aΣ = and

2x mnm iL nB aΣ = − with ( )1 2

1
1

2
n nB i nBΛ = ± = ± + computed by the MOLPRO

software [19]. One finally gets from Eq.(1-3) by neglecting the contribution from 2 2
x yL L+ :

' ' ' ',

2
' ' , ' ' , ' ''( 1) ( 1)2

m K M mKM

adia
rot mm K K MM K K MMmmT K K B K K a Bδ δ δ δ δ δ δ

Λ Λ ΛΛ ΣΠ = + −Λ + + .

The matrix is transformed to the diabatic representation by the ( )RD matrix. The total

angular momentum and its projection on the Z axis being conserved, the coupled equations

for the radial part of the nuclear functions are decoupled according to K and M. We consider

the M = 0 manifold and this quantum number will be omitted throughout. For each value of K,

the coupled equations for the radial functions , ( , )dia K
m R tχ Λ corresponding to the electronic

channels in the diabatic representation take the form
,

0( )
, ,

0( , ) ( , )

dia Ki t t
dia K dia KR t e R t

− −

=
H

χ χh (1-4)

where

, 2 , ,1 ² ( 1) ²
( ) ( ) ( )

2 ² 2 ²
dia K el dia dia K

rot

K K
R R R

R Rµ µ
 ∂ + −Λ= − + × + + ∂ 

H I H Th (1-5)

, ( )dia K
rot RT contains the rotational off diagonal elements in the diabatic representation.

In the semi-classical collision treatment, the rotational coupling matrix elements

'm y niLψ ψΛ Λ between Σ-Π molecular states are determined directly from the quadrupole

moment tensor using also the MOLPRO software [19]. This allows the determination of

translation effects knowing the quadrupole moment tensor [20]. In the approximation of the



5

common translation factor [21], the radial and rotational coupling matrix elements between

states adia
mψ Λ and '

adia
nψ Λ may indeed be transformed respectively into

2
' '( ) / 2adia adia

m R m n nz Rψ ε ε ψΛ Λ Λ Λ∂ − − and ' '( )adia adia
m y m n niL zxψ ε ε ψΛ Λ Λ Λ+ − ,

where mε Λ and 'nε Λ are the electronic energies of states adia
mψ Λ and '

adia
nψ Λ and z2 and zx are the

component of the quadrupole moment tensor.

2. 2. Collision dynamics

In the quantum approach, the square modulus of the collision matrix elements

2

', ( )K
n mS EΛ Λ are computed from the flux operator in the asymptotic region where the diffusion

eigenstates take the form

, , ,
', '

, '

( ) ( ) ( ) ( )K K K K
m m n m nR

n

E E S E E+ − +
Λ Λ Λ Λ Λ→∞

Λ

Ψ   → Φ − Φ∑

where , ( ) ( )
2

K
m K m

m
m KE h k R

kπ
ζµ± ±

Λ ΛΛ
Λ

Φ =
h

. mk Λ is the wave number in the ro-electronic

channel mΛΚ and ( )K mh k R±
Λ is the Hankel-Riccati function imposed by the long range

2( 1) /K K R+ potential [22]. The elements
2

', ( )K
n mS EΛ Λ are related to the average value of the

flux operator ( )( ( ) )
2 R as as R

i
F R R R Rδ δ

µ
−= ∂ − + − ∂h

at an asymptotic coordinate Ras

computed with the radial parts in an exit channel ,
' '( , ) ( )n

K K
n mKR E Eζχ +

ΛΛΛ = Ψ where

integration is over electronic coordinates and angles. One has:

2

' ' ',

1
( , ) ( , ) ( )

2
K K K
n n n mR E F R E S Eχ χ

πΛ Λ Λ Λ= (2-1)

These radial parts for all the electronic exit channels and a given K are represented by a vector

( , )K R Eχ . They are obtained by Fourier transforming the components of a radial wave packet

when it comes back in the asymptotic region after the collision. The initial radial wave packet

( , 0)K R t =χ has a Gaussian component in the entrance channel m Kζ Λ with no outgoing

momentum ( , 0) ( )K
m R t g Rχ Λ = = , with

( )2

0
2

1
( ) exp

2 /
m

R R
g R ik R

σσ π
Λ

 −
= − 

  
(2-2)

and zero component in all other channels. One then has
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,/ /1
( , ) ( , 0)

2 ( , )

dia KK iEt i t KR E e e R t dt
c K Eπ

∞ −

−∞
= =∫ Hχ χh h  (2-3)

where the ,dia KH matrix has been defined in Eq. (1-5) and ( , )c K E is the amplitude of the

stationary states in the initial wave packet

, *

0
( , ) ( ) ( ) ( ) ( )

2
K

m K m
m

mKc K E E g R h k R g R dR
k

µ
π

ζ
∞+ −

Λ Λ
Λ

Λ= Ψ = ∫h
. (2-4)

The average of the flux operator is then computed by using the properties of a complex

absorbing potential (CAP) in the asymptotic region as suggested by Jäckle and Meyer [23]

and already implemented in different systems [24, 25]. The flux operator is expressed as

[ ],
i

F H= Θ
h

where Θ(R) = 0 for R < Ras and Θ(R) = 1 for R > Ras. The Hamiltonian is

modified by adding a complex absorbing potential H H iW→ − where 2( ) ( )asW R R Rη= − .

The final expression for
2

', ( )K
n mS EΛ Λ is then the average of the absorbing potential computed

with the functions (2-3)  

2

', ' '( ) 2 ( , ) ( , )K K K
n m n nS E R E W R Eχ χΛ Λ Λ Λ= . (2-5)

The procedure can be summarized as follows: a Gaussian wave packet in entrance channel

m Kζ Λ is propagated by the coupled equations in the diabatic representation by using the split

operator formalism [26] extended to take into account non adiabatic interactions [27]. On exit,

when the norm begins to decreases due to the CAP, the functions ' ( , )K
n R tχ Λ are recorded in

the range R > Ras. The propagation is stopped when the norm is smaller than a threshold fixed

to 10-6 ensuring that all the wave packet has been absorbed. The ' ( , )K
n R tχ Λ for R > Ras are

Fourier transformed to get the eigenstates ' ( , )K
n R Eχ Λ in the same domain by using the

amplitude ( , )c K E [Eq. (2-3)] and finally
2

', ( )K
n mS EΛ Λ is given by Eq. (2-5).

The cross section for the transfer of an electron from an initial state mψ Λ to a final state 'nψ Λ

is obtained by summing over the total angular momentum values up to convergence

( )', ', '2
( ) 2 1 ( )

( )
K

n m n m nm
Km

E K S E
k E

πσ δ δ
2

Λ Λ Λ Λ Λ Λ
Λ

= + −∑ (2-6)

Note that the propagations for different K are independent so that this summation can be

expanded in parallel on several processors.
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In the semiclassical approach, the nuclei are considered to follow a classical trajectory

vtbtR +=)( with regard to the impact parameter b and the velocity v [28]. The time-

Schrödinger equation reduces thus to:

[ ] 0),,,()(, =Ψ×







∂
∂

− tvbr
t

itRrH el (2-7)

where r are for the electronic coordinates. It may be solved for each velocity v and impact

parameter b by expanding the total wave function on the eigenfunctions adia
mΛψ of elH with

eigenvalues mε Λ :

[ ] [ ]
0

( , , , ) ( , , ) , ( ) exp ( ') '
t

adia
m m m

m

r b v t a b v t r R t i R t dtψ εΛ Λ Λ
Λ

 
Ψ = × − 

 
∑ ∫ .

By integration of equation (2-7), the capture probabilities are given by

2
),,(),( ∞=∑

Λ
Λ vbavbP

m
m with summation over all charge exchange channels. The cross

section is then defined by:

dbvbPv ),(
4

1
)( ∫=

π
σ (2-8)

The collision dynamics was treated from keV to eV energies by a semi-classical

approach using the EIKONXS program [29]. Both radial and rotational coupling matrix

elements were taken into account, as well as translation effects, although they are expected to

be low at these energies.

2. 3. Thermal rate constant

The rate constants k(T) were calculated by averaging the cross sections σ(E) over a

Maxwellian velocity distribution at temperature T:

dE
Tk

E
EE

Tk
Tk

BB
∫
∞









−×
















=

0

2/32/1

exp)(
18

)( σ
πµ

(2-9) 
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The rate constant for the reverse ionization process )(Tkrev may be determined easily by

means of the micro reversibility relation from the corresponding charge transfer rate constant

)(Tk :

( ) exp ( )rev

B

E
k T g k T

k T

 ∆= − 
 

, (2-8)

where g is the ratio of the statistical weights of initial and final states, and ∆E is the energy

gain of the charge transfer reaction.

3. Charge transfer in the CS+ system

3. 1. Adiabatic states and couplings

The adiabatic potential energy curves have been calculated using the MOLPRO suite

of ab-initio programs [19] at the state average CASSCF-MRCI level of theory. The active

space includes the n = 2 orbitals for carbon and n = 3 orbitals for sulphur. The ECP10sdf

relativistic pseudo-potential has been used to describe the 10 core-electrons of sulphur [30]

with the correlation-consistent aug-cc-pVQZ basis sets of Dunning [31] for all atoms. The

molecular treatment has been revisited with a very detailed analysis in order to avoid artefacts

for the determination of the radial coupling matrix elements. In that sense, the calculation has

been performed for a very great number of internuclear distances in order to assure the

continuity between the successive geometries and provide the maximum precision for the

determination of the radial coupling matrix elements which are therefore more accurate than

the previous values given in ref.12.

The process occurring at low temperatures, the different species are supposed to be

present in their ground state. With regard to the correlation diagram [12], only two molecular

states {C+(2s22p)2P + S(3s23p4)3P} and {C(2s22p2)3P + S+(3s23p3)4S} corresponding to the

ground atomic levels would be involved in the charge transfer reaction. Table I displays the

lowest levels of the correlation diagram:

Table I : Correlation diagram

Configuration Molecular states Asymptotic energy (eV) [32]
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C(2s22p2)1D + S+(3s23p3)4S 4Σ, 4Π, 4∆ 1.26

C+(2s22p)2P + S(3s23p4)3P 2,4Σ, 2,4Π, 2,4∆ 0.92

C(2s22p2)3P + S+(3s23p3)4S 2,4,6Σ, 2,4,6Π 0.0

Effectively, two states only are involved in the doublet manifold presented in Fig.1a and

no significant interaction occurs with higher levels. The 2Σ and 2Π potentials show a smooth

avoided crossing around R = 5 a.u., in agreement with the previous calculations of Larsson

[33] and Honjou [34]. The corresponding radial coupling matrix elements displayed in Fig. 2a

are, respectively, 0.823 a.u. and 0.459 a.u. high for 2Σ and 2Π states. A detailed calculation at

short range exhibits besides a sharp radial coupling peak, 6.475 a.u. high, at R = 1.8 a.u. in the

repulsive part of the potential energy curves between the 2Π states. Such interaction has, of

course, to be taken into account but would probably appear as quasi-diabatic in the collision

dynamics.

Fig. 1: Adiabatic potential energy curves for the Σ (full lines) and Π (dashed lines) states of the CS+ molecular

system. (a) doublet manifold; (b) quartet manifold.

1. { C(2s22p2)3P + S+(3s23p3)4S}

2. { C+(2s22p)2P + S(3s23p4)3P} entry channel

3. { C(2s22p2)1D + S+(3s23p3)4S}

For the quartet manifold, a similar smooth avoided crossing is observed for the 4Σ

potential energy curves around R = 5 a.u.. However, for the 4Π states, a strong interaction

(a) (b)
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with the higher 4Π{C(2s22p2)1D + S+(3s23p3)4S} channel corresponding to the excited 1D state

of the carbon atom occurs around R = 4 a.u. as shown on Fig. 1b, and three 4Π states have to

be considered in the calculation. Such interaction is not observed between the 4Σ levels and

only the two lowest 4Σ levels are involved in the charge transfer process. The corresponding

radial coupling matrix elements are presented in Fig. 2b. A smooth peak, 0.915 a.u. high is

observed for the radial coupling between the 4Σ states, relatively similar to the interaction

between 2Σ levels. However, the radial coupling between the entry channel and the
4Π{C(2s22p2)1D + S+(3s23p3)4S} state reaches up to 10.093 a.u. in absolute value at R = 3.87

a.u. and may be determinant in the collision dynamics. An extremely sharp radial coupling

matrix element between the two lowest 4Π levels is also exhibited at short range. Such

interaction in the repulsive part of the potential energy curve would certainly be considered as

quasi-diabatic in the collision dynamics. The 2,4∆ states correlated by means of rotational

coupling have not been considered in the calculation as the corresponding entry channel could

be correlated only to excited states. The 6Σ, 6Π{C(2s22p2)3P + S+(3s23p3)4S} levels cannot be

involved in the process for spin symmetry reasons.

Fig. 2: Radial coupling matrix elements between Σ (rad12, red lines) and Π (radp12, radp23, blue lines) states of

the CS+ molecular system. (a) doublet manifold; (b) quartet manifold (same labels as in Fig. 1)

3. 2. Cross section by wave packet dynamics

Numerous parameters must be controlled to ensure convergence of the cross section.

The main point is that the whole wave packet be smoothly and totally absorbed in the CAP

(a) (b)
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after the collision. The spreading of the Gaussian wave packet in the entrance channel and a

very low average kinetic energy are two unfavourable factors. In principle a thin Gaussian

wave packet would contain information on a broad range of energy. However such wave

packets are difficult to treat numerically due to their early spreading. It appears more

convenient to use large wave packet with a width of about σ ≈ 1.5 a.u. [Eq.(2-2)]. The

spreading is then slow and the wave packet remains more compact even after the collision.

The length of the grid is fixed by verifying that the populations in the different electronic

states reach a constant value before entering the CAP. Some rotational couplings are not

peaked as radial couplings and they induce small Rabi oscillations which damp very slowly

enforcing long grids. The initial position R0 of the wave packet and the abscissa Ras of the

CAP are shifted towards large R with increasing K (for a relative kinetic energy of 1 eV,

convergence is reached for K ≈ 300 and for 10eV around K ≈ 900). We have used grid up to

200 bohr. For each collision energy and grid length, the number of grid points is determined

by dR < π/kmax where kmax is the largest wave number. We check that
2

',
'

( ) 1K
n m

n

S EΛ Λ
Λ

=∑ for

each K with a tolerance of 0.01%. The propagation duration is automatically determined by

the criterion that the norm becomes smaller than 10-6.

Another crucial situation is the formation of quasi bound states with long lifetimes

which prevent the norm from decaying below this threshold. Fig. 3 gives the probability to be

in the exit channel 41 Σ {C(2s22p2)3P + S+(3s23p3)4S} when the entrance channel is

42 Σ {C+(2s22p)2P + S(3s23p4)3P} for different values of the total angular momentum K. One

observes the constant asymptotic values excepted for some K (for instance K = 220) when

shape resonances due to a barrier in the effective potential are populated. Then the population

oscillates because some components remain in the bound part of the effective potential for a

long time and too long computational times should be necessary to satisfy the criterion of a

norm smaller than 10-6.
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Fig. 3. Probability of occupying the exit channel 14Σ{C(2s22p2)3P + S+(3s23p3)4S} when the entrance channel is

24Σ {C+(2s22p)2P + S(3s23p4)3P}for a mean kinetic energy ECM = 1eV and different values of the total angular

momentum K. Lower panel: zoom on the low probabilities

The process is illustrated in Figs. 4 and 5. The effective potential of the entry channel 42 Σ

{C+(2s22p)2P + S(3s23p4)3P} and exit channel 41 Σ {C(2s22p2)3P + S+(3s23p3)4S} for K = 220

are drawn in Fig. 4. The mean kinetic energy is ECM = 1 eV and is represented by a dashed

line. The arrow shows the region of non-adiabatic radial coupling (see Fig. 2). One sees that

shape resonance can be formed in the entry channel since for this energy the well behind the

barrier due to the centrifugal term can be reached by tunnelling. The metastable states occur

roughly at the energies of bound states in the corresponding uncoupled well. The precise

determination of the resonances is not the subject of this work and time dependent methods

are not appropriate because too long propagation times should be necessary. However, we

have observed the process and verify that the contribution to the cross section is negligible in

this case. In this example the trapped population in the metastable state in the entrance

channel will interact with the exit channel 41 Σ by the non adiabatic radial coupling around R

= 6 a.u.. This component remains trapped again in the well in the effective potential of 41 Σ .

This behaviour is illustrated in Fig.5.
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Fig. 4. Effective potential for the entrance channel 24Σ {C+(2s22p)2P + S(3s23p4)3P}and the exit channel 14Σ

{C(2s22p2)3P + S+(3s23p3)4S} for a mean relative kinetic energy of ECM = 1eV (dahed line KE = 1eV) and a total

angular momentum K = 220. The arrow indicates the location of the radial non adiabatic coupling.

Fig. 5 shows the components of the wave packet for K = 220 in the entrance 24Σ (upper

panels) and 14Σ (lower panels) channels for two times during the collision. The initial

position is R0 = 60 a.u. [Eq. (2-2)]. One observes the trapped populations in both channels.

However, this quasibound component is very small and should contribute very few to the

cross section. At this collision energy, the most populated channel is the 24Π state which is

not a charge transfer channel. When metastable states are formed in an exit channel, the test

of a final norm smaller than 10-6 to stop the propagation becomes inefficient and a careful

analysis is necessary.
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Fig. 5. Components of the wave packets during the collision for a mean relative kinetic energy of ECM = 1eV

and K = 220 in the quartet manifold. Upper panels: population in the entrance channel 24Σ { C+(2s22p)2P +

S(3s23p4)3P}(full line) and in the most populated exit channel 24Π (dashed line) which is not a charge exchange

channel; lower panels: zoom on the population in the exit channel 14Σ { C(2s22p2)3P + S+(3s23p3)4S} leading to

the formation of metastable states. The initial wave packet is a Gaussian [Eq. (2-2)] centered at R0 = 60 bohr.

The initial width is σ = 1.5 bohr.

Some examples of computations are given for the doublet manifold in Figs. 6 and 7.

Partial cross sections towards exit electronic channels 22Σ → 12Σ and 22Σ → 12Π as a function

of K are drawn in Fig. 6a and 6b respectively. The relative energy ECM is 2 eV. Convergence

of the summation in Eq. (2-6) is reached around K = 320 in this case. The cross section of the

process driven by radial coupling 22Σ → 12Σ exceeds that due to rotational coupling

22Σ → 12Π by two orders of magnitude. However the radial coupling is not always the main

factor for charge exchange as shown in Fig. 7.
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Fig. 6. Partial cross section as a function of the total angular momentum K for a relative energy ECM = 2eV. The

entrance channel is 22Σ { C(2s22p2)3P + S+(3s23p3)2D}. Panel (a): exit channel 12Σ { C+(2s22p)2P + S(3s23p4)1D}

(radial coupling), panel (b) 12Π { C+(2s22p)2P + S(3s23p4)1D} (rotational coupling).

The cross sections for each exit channel computed by Eq. (2-6) are given in Fig. 7 for two

entry channels in the range 0.5 to 10 eV. One observes that the cross sections involving radial

couplings have a relative value in agreement with the strength of the interaction (see Fig. 2).

For instance, there is a factor 102 between the cross sections for 22Σ → 12Σ (Fig. 7a) and 22Π

→ 12Π (Fig. 7b). In the doublet manifold the rotational coupling may be the dominant one as

illustrated in Fig. 7b. Indeed, the cross section of the 22Π → 12Σ transition exceeds that of

the 22Π → 12Σ process.
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Fig. 7. Total cross section computed by Eq. (2-6) for a relative energy ECM in the range 0.5 to 10 eV. Panel (a):

entrance channel 22Σ { C(2s22p2)3P + S+(3s23p3)2D}, panel (b): entrance channel 22Π { C(2s22p2)3P +

S+(3s23p3)2D}. Primary axis: exit channel 12Σ { C+(2s22p)2P + S(3s23p4)1D}, secondary axis: exit channel

12Π { C+(2s22p)2P + S(3s23p4)1D}.

As discussed in the following sections, the total charge transfer cross section taking into

account the statistical weights is dominated by the quartet manifold (see Figs. 10 and 11).

Some characteristics can be pointed out. For a given initial ECM in an entry channel, the

partial cross section involving Σ states is always larger for the quartets than for the doublets.

This can be related to the different shapes of the potential energy curves (see Fig. 1) leading

to very different kinetic energy at the crossing points and thus to different transition

probabilities even if the radial couplings are quite similar. In the quartet manifold, the cross

sections driven by radial couplings follow the order: σ(24Π → 34Π) > σ(24Σ → 14Σ) > σ(24Π

→ 14Π). The magnitude of the first two ones is in agreement with the strength of the

interaction (see Fig.2b) and the smallness of the third one is due to the quasi completely

diabatic behaviour at each passage at the peaked coupling at R = 2.7 u.a.. All the cross

sections of the quartets due to rotational couplings have the same order of magnitude and are

smaller than the sections involving radial couplings.

3. 3. Semi-classical cross section

In order to compare with quantum wave packet cross sections, the collision dynamics

has been performed for the direct reaction C+(2s22p)2P + S(3s23p4)3P → C(2s22p2)3P +

S+(3s23p3)4S for a wide range of collision velocities from keV to eV collision energies. At

such low velocities, the approximation of a straight-line trajectory for the nucleus motion may
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be questionable and trajectory effects should be considered. Effectively, the approximation of

a classical motion for the nucleus requires that the wavelength λ associated to the nuclear

motion remains small compared with the size of the interacting region. In terms of the

incident velocityv , this could be achieved if vµπλ /2= remains small over a distance about

0 1a.u.a = [28] and semiclassical approaches may be considered as valid down to incident

energies of a few eV/amu [5], corresponding to velocities down to 0.02 a.u. (ECM ≈ 80 eV) or

a bit lower. In our calculation, the method has been extended to its limit and results at very

low collision energies have to be considered as qualitative.

Fig. 8. Transition probabilities of occupying the exit channel 1{C(2s22p2)3P + S+(3s23p3)4S} when the entrance

channel is 2{C+(2s22p)2P + S(3s23p4)3P} as a function of the impact parameter b for a collision velocity

v=0.00677 a.u. (Ecm=10 eV). Panel (a): doublet manifold; red-full line, 22Σ→12Σ; blue-dashed line, 22Π→12Π.

Panel (b): quartet manifold; red-full line, 24Σ→14Σ; blue-dashed line, 24Π→14Π; green-dotted line,

24Π→34Π{C(2s22p2)1D + S+(3s23p3)4S}.

The transition probabilities with regard to the impact parameter b are presented in Fig. 8a,b

for the doublet and quartet manifolds respectively for a relative collision energy Ecm = 10 eV.

The transition probabilities between entry and exit 2Σ channels decrease rapidly with b. They

remain small for all impact parameters, in agreement with the smooth avoided crossing

between both states. The corresponding probability between 2Π channels is almost zero all

over the impact parameter range showing the diabatic behaviour of the short range avoided

(a) (b)
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crossing. The behaviour of the transition probabilities for quartet states appears quite

different. The probabilities remain around 0.1 a.u. for the 24Σ{C+(2s22p)2P +

S(3s23p4)3P}→14Σ{C(2s22p2)3P + S+(3s23p3)4S} charge transfer for impact parameters up to b

≈ 6. a.u.. However, the most important transition probability appears between the

24Π{C+(2s22p)2P + S(3s23p4)3P} and 34Π{C(2s22p2)1D + S+(3s23p3)4S} channels. It may be

relied directly to the strong avoided crossing between these states and show the importance of

the excited C(1D) + S+(4S) exit channel in the quartet manifold. The corresponding transition

probability is enhanced up to 0.37 a.u. for impact parameters around 4. a.u. On the contrary,

the transition probability between 24Π and 14Π remains small as already noticed for the 2Π

states. As pointed out in previous paragraph, the sharp peaks presented by the radial coupling

matrix elements between 2,4Π states, radp12, at short range appear as quasi-diabatic in the

collision dynamics. This is the case for the 2Π states, but also for the 4Π levels which present

however an extremely sharp radial coupling radp12.

These semi-classical transition probabilities may be compared to the corresponding

probabilities extracted from the quantal wave packet approach. The results are presented in

Fig. 9a,b where the
2

ifS elements are drawn as a function of ( 1) /b K K vµ= + h

Fig. 9.
2

ifS matrix elements drawn as a function of the classical impact parameter b for the exit channel

1{C(2s22p2)3P + S+(3s23p3)4S} when the entrance channel is 2{C+(2s22p)2P + S(3s23p4)3P} for a collision relative

kinetic energy Ecm=10 eV. Panel (a): doublet manifold; red-full line, 22Σ→12Σ; blue-dashed line, 22Π→12Π.

Panel (b): quartet manifold; red-full line, 24Σ→14Σ; blue-dashed line, 24Π→14Π; green-dotted line,

24Π→34Π{C(2s22p2)1D + S+(3s23p3)4S}.

The general behaviour is quite the same in both calculations, showing a rapid decrease with

increasing impact parameter for the probability between the entry and exit 2Σ channels. The

(a) (b) 
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transition probabilities reach about 0.006 a.u. at the maximum and are almost zero for impact

parameters above 5 a.u. (K > 550), in quite good agreement with the previous semi-classical

results. As previously noticed, the probability between 2Π channels is almost zero. The

importance of the strong avoided crossing between 24Π{C+(2s22p)2P + S(3s23p4)3P} and

34Π{C(2s22p2)1D + S+(3s23p3)4S} is also observable with a regular increase of the transition

probability up to about 0.4 a.u. for impact parameter around 4. a.u. ( K ≈ 390) The

corresponding transition probabilities for the 24Σ{C+(2s22p)2P +

S(3s23p4)3P}→14Σ{C(2s22p2)3P + S+(3s23p3)4S} remain around 0.1 a.u. up to b ≈ 6. a.u. (K ≈

640) as previously noticed on the semi-classical calculation and the transition probability

between 24Π and 14Π remains very small, as already pointed out for the 2Π states.

With consideration of statistical weights between Σ and Π states, the cross sections Σσ

and Πσ for Σ and Π states respectively

=σ4,2 ⅓ +Σσ ⅔ Πσ .

The total cross section taking account simultaneously of doublet and quartet channels may

then be expressed by:

=totσ ⅓ +σ2 ⅔ σ4 .

taking account of the statistical weights between doublet and quartet manifolds.

The semi-classical partial and total cross sections are presented in Fig. 10. With regard

to statistical weights, the quartet states provide the main contribution to the total cross section

at low collision energies. As shown clearly from the transition probabilities, the consideration

of the upper 4Π{C(2s22p2)1D + S+(3s23p3)4S} level is necessary for an accurate description of

the system and the corresponding interaction is determinant for a correct determination of the

partial cross section. The quartet cross sections remain above 10-16 cm2, even at low energies.

On the contrary, the doublet cross sections decrease strongly at lower collision energies.
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Fig. 10: Semiclassical partial (doublets: s2, quartets:s4) and total cross sections (stot) for the the CS+ molecular

system in the 0.5eV-10keV ECM energy range: doublet manifold (dashed line); quartet manifold (dotted line);

total cross section (solid line).

3. 4. Cross sections and rate constant

In order to analyze the validity of the semiclassical method at low energy, a comparison

of the semiclassical and quantal wave packet dynamics approaches may be driven in the

energy range where both calculations are available. The objective is also, for astrophysical

interest, to extract precise cross sections in the low to medium energy domain in order to

determine with the best accuracy possible the rate constants for the direct charge transfer

process C+(2s22p)2P + S(3s23p4)3P→ C(2s22p2)3P + S+(3s23p3)4P and its reverse reaction.

The wave packet dynamics has been performed in the 0.5-20 eV centre-of-mass energy

range, where the semiclassical method has been extended. A zoom of the cross sections in this

energy domain is presented in Fig. 11.
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Fig. 11: Semiclassical (blue) and wave packet (red) partial and total cross sections for the CS+ molecular system

in the 0.5eV-50 eV ECM energy range: doublet manifold (solid line); quartet manifold (dotted line); total cross

section (solid line).

The semiclassical partial cross sections for the doublet manifold appear in excellent

agreement with the quantal wave packet approach for collision energies higher than 8-10 eV.

This is a very interesting result as it allows the use of such semiclassical approaches far below

the generally accepted domain of accuracy. As expected, the quantal calculation deviates at

lower energies from the semiclassical one. The variation is less sensitive for the quartet cross

sections; the wave packet values remain always close to the previous semiclassical ones, even

at energies down to 1eV. As the quartet manifold corresponds to a statistical weight two times

higher than the doublet one, the total cross sections remain close in wave packet and

semiclassical approaches, even at energies low with regard to the domain of validity of the

semiclassical method. Such a result is very encouraging in order to have, at low price, an

order of magnitude of cross sections, and consequently rate coefficients, for a number of

astrophysical processes, in particular charge transfer processes, and validates our previous

semiclassical treatment.
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Anyway, in order to have the most precise evaluation for the present C+(2s22p)2P +

S(3s23p4)3P → C(2s22p2)3P + S+(3s23p3)4P charge transfer process, the calculation of rate

constants has been performed using for doublet and quartet manifolds, the cross sections

determined by means of the wave packet quantal approach in the 0.5-10eV collision range,

completed by the semiclassical values at higher collision energies. The rate constants for the

direct reaction C+(2s22p)2P + S(3s23p4)3P → C(2s22p2)3P + S+(3s23p3)4S are presented in

Table 2 and compared to a full semiclassical calculation.

Table 2. Rate coefficients for the C+ + S and reverse reaction (in cm3s-1)

T(K) C+(2P) + S(3P) → C(3P) + S+(4S) C(3P) + S+(4S) → C+(2P) + S(3P)

Semiclassic wave packet semiclassic wavepacket

500 1.8×10-11 1.3×10-11 − −

1000 3.8×10-11 3.7×10-11 2.6×10-15 2.5×10-15

5000 7.3×10-11 8.7×10-11 2.6×10-11 3.1×10-11

10000 7.3×10-11 1.0×10-10 7.5×10-11 1.3×10-10

50000 1.3×10-10 1.5×10-10 3.1×10-10 3.6×10-10

100000 2.0×10-10 2.2×10-10 5.5×10-10 5.9×10-10

As expected from the cross section calculations, the difference between semiclassical

and quantal wave packet rate coefficients is relatively weak. The relative error bar is about

10-20% for most of the temperatures with anyway a higher error of 37% at 10000K and a

exceptionally good agreement at 1000K. Considering absolute values, rate constants for the

direct process are small, about 8.×10-11 cm3s-1 at 5000K. Such a value is significantly lower

than the suggested one 1.5×10-9 cm3s-1 given in the UMIST data base [11] for the 10K-

41000K temperature range. However, the variation of the calculated rate coefficients is

relatively weak in a wide temperature domain and a value of about 1.×10-10 cm3s-1 may be

assumed in the 5000-50000K temperature range with a reasonable accuracy. This result is in

accordance with the constant value considered in astrophysical models; the usual value seems

to be overestimated by about a power of 10.
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The total rate constant for the reverse process C(3P) + S+(4S) → C+(2s22p)2P +

S(3s23p4)3P has been deduced from the symmetry properties of the S-matrix following

equation (2-8). The degeneracy is g = 3 with regard to the multiplicity of initial and final

states and the energy gain is ∆E = 0.92eV. The rate constants are presented in Table 2. As

noticed for the direct process, the relative error between semiclassical and wavepacket values

are about 10-20% with anyway a maximum at 10000K. The rate constants increase

significantly with temperature. They are about 3.×10-10 cm3s-1 at 5000K but become rapidly

negligible for lower temperatures because of the exponential factor.

4. Concluding remarks

The C+(2s22p)2P + S(3s23p4)3P charge transfer process and its reverse reaction have

been studied by means of quantum dynamics wave packet methods and compared to

semiclassical results. The present quantum approach provides a precise determination of cross

sections in the low energy domain and shows an excellent correlation with the semiclassical

calculations, valid at higher energies. These semiclassical values slightly differ from the

previous results given in ref 12 since new radial non adiabatic couplings have been used in

this work. However, the general behaviour remains the same and we confirm the dominant

role of the quartet manifold in the charge transfer. Such a treatment gives access to precise

values of the rate coefficients for the direct C+(2s22p)2P + S(3s23p4)3P and reverse charge

transfer processes. Furthermore, in this case, it validates the semiclassical approach in an

extended energy domain which could be a useful tool for rate constant determination of such

processes. The wave packet approach is indeed computational-time consuming and efficient

only in a limited range of relative kinetic energy from 0.5 or 1eV to 20 eV. At very low

energy, spreading and formation of shape resonances are unfavourable factors. At higher

energy the number of partial waves K to ensure convergence of the cross section and thus the

number of propagations become very large. The computational time also increases

particularly when the process involves a lot of electronic states so that parallelization is

advised. However, time dependent methods remain appealing to decipher some mechanisms,

for instance the formation of metastable states in exit channels during the collisions as it has

been illustrated here.
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