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The only available quantitative description of the slowing down of the dynamics upon approaching
the glass transition has been, so far, the mode-coupling theory, developed in the 80’s by Götze and
collaborators. The standard derivation of this theory does not result from a systematic expansion.
We present a field theoretic formulation that arrives at very similar mode-coupling equation but
which is based on a variational principle and on a controlled expansion in a small dimensioneless
parameter. Our approach applies to such physical systems as colloids interacting via a mildly
repulsive potential. It can in principle, with moderate efforts, be extended to higher orders and to
multipoint correlation functions.

When a suspension of polymer particles is cooled or
compressed, a rapid slowing down of the dynamics oc-
curs, and the suspension gradually becomes solid on ex-
perimental time scales, without any apparent change in
structure [1]. This phenomenon is called the colloidal
glass transition, and it is reminiscent of the phenomenol-
ogy of molecular glasses. However colloids are concep-
tually simpler to analyze: the interaction potential often
has a simple repulsive character (instead of a Lennard-
Jones form) and their effective dynamics is Brownian (in-
stead of Newtonian). They are also experimentally sim-
pler to probe, since colloids are much larger (∼ 1 µm)
than molecules in simple liquids. An important class of
colloids are those who interact via a bounded, repulsive
potential. These colloids, due to the existence of a fi-
nite energy scale in the potential, exhibit a re-entrant
behaviour at high density –the glass melts upon increas-
ing the density– and the non-interacting liquid is recov-
ered in the limit of infinite density [2–4]. In such colloids,
all particles evolve in a thermal bath (the solution) and
thus undergo individual Brownian motions, while also
interacting via a given pair-potential v. To make our ap-
proach explicit, we chose to study the harmonic spheres
model, where the pair-potential v is taken to be of the

form: v(r) = ε
(

1− r
σ

)2
θ
(

1− r
σ

)

, but most of the rea-
soning will be carried out for an arbitrary, sufficiently
well-behaved fonction v. This model was introduced by
Durian [5] in the context of foam mechanics, where v(r)
plays the role of an effective interaction potential that
arises from a coarse-graining procedure, but experimen-
tal realizations in colloids [6, 7] exist, and it became a
model system to study glassy structure and dynamics [8].
The position ~ri(t) of each of the N particles composing

the colloidal suspension evolve under Brownian dynam-
ics, encoded in the following Langevin equations:

d~ri
dt

(t) = −
∑

j 6=i

~∇riv (~ri(t)− ~rj(t)) + ~ξi(t), (1)

〈

ξαi (t)ξ
β
j (t

′)
〉

= 2T δij δαβ δ(t− t′), (2)

where T is the temperature of the bath, ξαi is a Gaus-

sian white noise, i, j are particle indices and α, β are
space direction indices. It is our goal to obtain quan-
titative predictions for the dynamics of the dense liq-
uid phase of such colloidal suspensions upon approach-
ing the glass transition; this is a very difficult task which
is the subject of active research. And in fact the only
successful first-principles theory to this day is the Mode-
Coupling Theory (MCT) developped by Götze and col-
laborators [9, 10]. This is a closed, self-consistent equa-
tion of evolution for the relaxation of density fluctuations
in equilibrium supercooled liquids. This theory was ini-
tially applied to particles evolving under Hamiltonian dy-
namics, but was later extended by Szamel and Löwen [11]
to the physically relevant case of interacting Brownian
particles. No significant difference between these descrip-
tions [12] emerges, at least within the MCT approxima-
tion. In both frameworks MCT predicts a strict dynam-
ical arrest, so that below a critical temperature, density
fluctuations are prevented from relaxing at long times,
and ergodicity is spontaneously broken. While successes
and failures of MCT are now well documented [13], a
systematic way of improving this approximation scheme
to overcome the listed pitfalls is still lacking, since the
original kinetic formulation of MCT involves physically
motivated, but mathematically ill controlled approxima-
tions bearing on high-order correlation functions, and it
contains no a priori small parameter.

The purpose of this letter is to present a new derivation
of an MCT equation that bypasses several known pitfalls
at the same time: non-interacting particles (v = 0) are
exactly dealt with. In our work, there exists a small
dimensionless parameter, the strength of the potential
ε/T . It follows from a well defined variational principle.
It can in principle easily be extrapolated to higher-orders,
and finally calculations for four-point quantities as well
as for sheared systems can easily be implemented.

In order to gain insight into what could be a sec-
ond order MCT, the idea of formulating MCT in a
field theoretic formulation is a very appealing one, since
one can then make contact with the toolbox of dia-
grammatic expansions à la Feynman and standard ap-
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proximations developped in hard condensed matter and
particle physics. Several crucial steps have been made
over the past ten years in this direction. Preliminary
works [13, 14] have soon been shown to be inconsis-
tent with micro-reversibility, a property which is neither
automatically conserved by standard approximations in
field theory. Since MCT predicts an ergodic-nonergodic
transition, it is crucial to ensure that this transition to
a non-ergodic phase does not result from a symmetry
breaking approximation. Further attempts [15–17] have
considerably progressed into the conservation of micro-
reversibility, but technical difficulties led to either a non
closed equation for density correlations, or to non physi-
cal behavior of the solutions to the equations.
In recent years, Kawasaki and Kim [18] obtained a re-

sult consistent with reversibility, and which led to the
same equation as that of the original MCT, but this re-
sult stems from a very cumbersome calculation, giving
little hope of extending this result to higher orders. In
the present letter, we suggest to further exploit the many-
body theory tools used in condensed matter, by formally
treating our classical particles as bosons. We will see that
this approach automatically solves several of the prob-
lems encountered in previous attempts of the formulation
of a field-theoretic MCT, and provides a transparent way
to carry the approximations to next order, or to extend
the calculation to different quantities, such as four-point
correlators, or to non equilibrium settings, such as in
sheared systems. We now proceed with a step-by-step
presentation of our approach.
The N coupled Langevin equations Eq. (2) can be de-

scribed by a Fokker-Planck equation governing the evo-
lution of the probability P ({~ri}, t) of finding each par-
ticle i at a given position ~ri at a time t. As a conse-
quence of micro-reversibility, the Fokker-Planck equation
converges towards a Gibbsian equilibrium distribution
P ({~ri}, t → ∞) = e−U({~ri})/T , U =

∑

i<j v(~ri − ~rj) be-
ing the total potential energy of the system. A standard
result [19] shows that the knowledge of the equilibrium
distribution allows one to symmetrize the Fokker-Planck
operator, making it Hermitian in the proper basis (this
is often called the Darboux or supersymmetry transfor-
mation). Hermiticity allows one to interpret this new
Fokker-Planck equation as a quantum mechanical prob-
lem for interacting bosons. From there we use standard
methods of quantum field theory [20] to describe the dy-
namics of the system, which is encoded in the following
action:

S[a, a] =

∫

t,~x

[

a ∂ta+ ~∇a · ~∇a
]

+ Veff[aa]/T. (3)

which is expressed in terms of a pair of complex and
conjugate fields a and a. The kinetic term reflects the free
diffusion of particles, and the two-body interactions with
potential v are expressed, in the quantum formulation,
by the effective potential that now contains not only two

but also three-body interactions as follows:

Veff[ρ] =
1

4T

∫

t,~x,~y,~z

ρ(~x)~∇~yv (~x− ~y) ρ(~y) · ~∇~zv (~x− ~z) ρ(~z)

− 1

2

∫

t,~x,~y

ρ(~x)∆~xv (~x− ~y) ρ(~y), (4)

where ρ = aa is the physical density and v is the pair
potential between the colloids.

It is important to notice that the symmetrization corre-
sponds to a change of basis, so that this field theory does
not represent directly the physical problem anymore. It
was shown long ago [21, 22] that the micro-reversibility
of usual dynamical field-theories obtained from the reg-
ular Fokker-Planck equation is represented by a compli-
cated, non linear transformation, making it very difficult
to preserve when performing mode-coupling approxima-
tions [16]. In the symmetrized theory, micro-reversibility
is simply encoded in the hermiticity of the symmetrized
operator, which is a symmetry property that is very easy
to check and conserve even when performing approxi-
mations. Furthermore, setting the pair-potential to 0
cancels the effective potential in Eq. (4) and one recov-
ers, without approximation, the free diffusion of colloids.
Furthermore, even if the dynamics described by the ac-
tion Eq. (3) is only related to the real dynamics by a
change of basis, careful analysis of the theory shows that
far from initial and final conditions (in the “bulk” of the
time window), the difference between the modified dy-
namics and the real dynamics vanishes. Finally, keeping
in mind that the pair potential v(r) has an energy scale
ε, we see that this approach gives a satisfactory basis for
a perturbation expansion in powers of the potential, i.e.
in powers of ε/T . Our approach yields a theory that is
expressed with ladder operators a and a that do not di-
rectly represent the physical density ρ = aa. Introducing
it by hand via a Lagrange multiplier (a ghost field) λ, we
arrive at a field theory involving four independent fields.
To conclude the layout for the diagrammatic expansion
to come, we prefer working with fields defined by devia-
tions around the saddle of the action, which describe a
homogeneous and isotropic liquid state of mean density
ρ0. Thus we set ρ(~x, t) = ρ0 + δρ(~x, t), and obtain:

Z =

∫

Dφ exp (−S0[φ]−∆S[φ]) , (5)

S0[φ] =
1

2

∫

dωdk φ(−k,−ω)G−1
0 (k, ω)φ(k, ω), (6)

, (7)
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G−1
0 (k, ω) =









0 iω + k2 −√
ρ0 0

−iω + k2 0 −√
ρ0 0

−√
ρ0 −√

ρ0 0 1
0 0 1 u(k)









, (8)

u(k) =
k2

2ρ0

[

(

1 +
ρ0v(k)

T

)2

− 1

]

, (9)

γ(k1, k2, k3) =
1

2T 2
[k1 · k2 v(k1)v(k2) + perms.] . (10)

In our diagrammatic representation (7), a straight line
stands for the fluctuations of a, an arrowed line stands
for the fluctuations of a, a dashed line stands for λ the
Lagrange multiplier and a wiggly line stands for the den-
sity fluctuations field δρ. We now turn to the procedure
allowing us to determine the correlations of our fields.

The physical quantity that we are ultimately interested
in is the matrix element of the two point correlator of
the theory G that describes density-density correlations.
Since our theory contains four fields, G is a 4 by 4 ma-
trix, with 10 independant entries. Our goal is to obtain a
closed equation bearing on the δρ–δρ element only. Per-
forming a double Legendre transform of the dynamical
partition function, one obtains a functional of the corre-
lator G, called the 2PI or the Luttinger-Ward functional,
Φ[G]. A careful analysis of this functional, which can
be found in modern field theory and condensed matter
textbooks [23, 24], shows that it has several remarkable
properties. First it provides a variational principle to ob-
tain the correlatorG: the functional attains its maximum
when evaluated at the true correlator. It provides an easy
way to compute the inverse of the correlator, since it is
obtained as the functional derivative of Φ[G] with re-
spect to G. Diagrammatically, it is composed of all two
particle irreducible diagrams (2PI), allowing for simple
truncations of the complete expression of Φ: one can for
example decide to retain only the simpler diagram, or
try to resum a certain subclass of diagrams. Finally, any
truncation of Φ can be shown to preserve the symmetries
included in the action, in our case we use this property to
conserve micro-reversibility when performing approxima-
tions. To obtain a self-consistent approximation for the
two point correlator, one constructs an approximation for
the Luttinger-Ward functional by selecting a certain sub-
class of diagrams that contribute to it. In our theory one
must construct all 2PI diagrams from the vertices drawn
in Eq. (7). For example, the two simplest diagrams that
contribute have the following topology:

Φ[G] = + + . . . (11)

Then an expression for the vertex function Σ (the inverse
of the correlator) is obtained by functionally differentiat-

ing with respect to G:

Σ[G] = + + . . . (12)

Finally, a self consistent equation is obtained by exploit-
ing the inverse relationship that exists between Σ and
G (sometimes referred to as the Schwinger-Dyson equa-
tion):

(

G−1
0 − Σ[G]

)

G = 1 (13)

This variational approach can be seen as the dynamical
counterpart to the density functional theory of liquids:
one constructs a diagrammatic expression for the grand
potential that involves the unknown correlation function.
A truncation of this expression is performed, and an ap-
proximation for the direct correlation function (the static
counterpart of Σ) is obtained by differentiation of this
truncation. Finally this approximation is inserted into
the Ornstein-Zernike equation (static counterpart to the
Schwinger-Dyson equation) to yield a closed, self con-
sistent equation for the correlation function. Very suc-
cessful approximations like the hyper-netted chain or the
Percus-Yevick approximations of liquid theory have, in
the past, been derived in this way [25].
So far, all these considerations are in principle exact.

In the following we present the simplest self-consistent
approximation that can be obtained within this formal-
ism, and we will see that we obtain an equation that has
the exact same structure as that of the Mode-Coupling
equation. We can now exploit the fact that our theory
contains a small parameter, namely the strength of the
potential, to select the lowest order beyond mean-field.
We have two vertices in the theory, one that is of order 4
in ε, and one that is of order 0. We want to stay to the
lowest non-trivial order, so we can neglect the former.
We only retain the simplest diagram in the expression

of the Luttinger-Ward functional Eq. (11), and will jus-
tify this a posteriori. We obtain an expression for the
vertex function in the following form:

Σ[G](~k, τ) =

∫

~q

Γ(~k, ~q)G(~k − ~q, τ)G(~q), (14)

where Γ is a vertex than must be calculated from Eq. (7).
Insertion into the Schwinger-Dyson equation then yields

G−1
0 G(~k, τ)=

∫

t′,~q

Γ(~k, ~q)G(~k − ~q, τ − t′)G(~q, τ − t′)G(~k, t′)

(15)

This equation must be understood in the matrix sense,
so that, a priori, all correlators appear. Note that (15)
in itself already has the structure of the mode-coupling
equation, in which the memory kernel is itself a quadratic
functional of the correlators, except that it applies to
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a matrix instead of a scalar. In order to write down
an equation that involves only the density-density cor-
relator, we must express all other correlators in terms

of C(~k, t − t′) =
〈

δρ(−~k, t′)δρ(~k, t)
〉

. At the mean-field

level, all correlators are proportional, and we use these
proportionality relations and insert them into Eq. (15).
The proportionality coefficients involve various powers
of ε/T , and one can then verify that, when inserting
the proportionality relations into the expression of the
Luttinger-Ward functional, all contributions coming from
the diagrams that we neglected are indeed of higher order
in ε/T .
In Eq.(11) only the topology of the diagrams is repre-

sented, but one has to draw all possible diagrams from
the vertices of the theory. Even for the simplest water-
melon diagram, this involves 11 independent diagrams.
Fortunately, to lowest order (order 2 in ε/T ) only one
diagram is involved, and the final evolution equation for
C is:

0 = −∂2
τC(~k, τ) + Ω(k)2C(~k, τ) (16)

+
1

2ρ0

∫

t′,~q

M(~k, ~q)C(~q, τ − t′)C(~k − ~q, τ − t′)∂t′C(~k, t′),

where the memory kernel has the following expression:

M(~k, ~q) =
[

~q2c(~q) + (~k − ~q)2c(~k − ~q)
]2

(17)

Note that, as usual in field theoretic formulations, one
has to resort to a further approximation, i.e. setting
c(~k) = −v(~k)/T . This results from the treatment on
equal footing of the statics and the dynamics by the ap-
proximation we made. The statics of equation (17) is
closely similar to the original mode-coupling equation,
apart from the slightly different wave-vector dependence
that the original mode-coupling approach predicts, in
which the factors ~q2 and (~k − ~q)2 in the rhs of (17)

are replaced with ~k · ~q and ~k · (~k − ~q), respectively. Fo-
cusing on the long-time behaviour of this equation, and
assuming that the density density correlation function
does not decay to zero, one makes the usual ansatz:
limt→∞ C(~k, t) = ρ0S(~k)f(~k), and seek an equation for

the non-ergodicity parameter f(~k). By Laplace trans-
form methods one easily obtains:

f(k)

1− f(k)
=

ρ0S(k)

8π2k4

∫

~q

M(~k, ~q)S(~q)S(~k − ~q)f(~q)f(~k − ~q)

(18)
One can then numerically solve this equation with an
iterative procedure. The inputs are c(k) and S(k) for
the equilibrium liquid, than can be calculated within the
Hyper-Netted Chain approximation for example. Ex-
actly as in the case of standard MCT, one finds that there
exists a transition line TMCT (ρ) above which f(k) = 0
is the only solution, whereas below TMCT (ρ), a nonzero
f(k) is found, i.e. ergodicity is spontaneously broken.

A posteriori, we are inclined to view the MCT equa-
tion as a high-temperature expansion. In Fig. 1 we show
the resulting f(k) at packing fraction 0.53 and tempera-
ture 10−4. The qualitative behavior is very similar, ex-

Calculation with modified kernel
Standard MCT calculation

k

f
(k
)

302520151050
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FIG. 1: Non-ergodicity parameter f(k) calculated with the
regular MCT kernel (full line) and within our modified kernel
(dotted line), at packing fraction 0.53 and temperature 10−4.

cept for the limit k → 0, where Eq. (18)) is found to
give f(k) ∼

k→0
1. The modification of the kernel implies

that the absolute value of the transition temperature is
slightly modified. For example at the packing fraction
0.53, the regular MCT transition, as calculated in [26]
is located approximately at TMCT ≈ 10−4, whereas our
rough numerical estimate is TMCT ≈ 8.10−4.

In this letter we have presented a comprehensive ap-
proach to write down mode-coupling equations based on
a variational principle. In the example of bounded in-
teractions, we have shown that when the strength of the
interaction is taken as an expansion parameter, it is pos-
sible to write down, to lowest-order, a mode-coupling
equation that is similar to the regular MCT equation.
We believe that the present strategy can be extended
in a variety of directions. The most obvious one is re-
taining higher orders in the expansion parameter ε/T .
The resulting equation for the 7-dimensional order pa-
rameter G will pick up a G5 contribution to its memory
kernel. Retaining, after appropriate substitutions based
on the leading order expansion (15), the next order in
ǫ/T seems a tedious yet quite accessible task. But it
would also be of interest to examine whether qualitative
differences show up if the full set of ten equations (15)
were solved. Among the self-consistency check of our ap-
proach, we mention that the Bethe-Salpeter equation for
the four point correlation function could allow us to work
without the density field and its conjugate Lagrange mul-
tiplier. Beyond the previous technical matters, on our to-
do list we also have more pressing wishes. One of them is
to implement the so-called ”thermodynamic of histories”
formalism [27, 28] and to probe the relationships between
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ergodicity breaking and dynamic phase transitions. The
fate of ergodicity breaking and dynamic phase transitions
under shear also belongs to our open questions.
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