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OMP-type Algorithm with Structured Sparsity

Patterns for Multipath Radar Signals
Tabea Rebafka, Céline Lévy-Leduc and Maurice Charbit,Member, IEEE.

Abstract

A transmitted, unknown radar signal is observed at the receiver through more than one path in additive

noise. The aim is to recover the waveform of the intercepted signal and to simultaneously estimate

the direction of arrival (DOA). We propose an approach exploiting the parsimonious time-frequency

representation of the signal by applying a new OMP-type algorithm for structured sparsity patterns. An

important issue is the scalability of the proposed algorithm since high-dimensional models shall be used

for radar signals. Monte-Carlo simulations for modulated signals illustrate the good performance of the

method even for low signal-to-noise ratios and a gain of 20 dBfor the DOA estimation compared to

some elementary method.

Index Terms

DOA estimation, waveform recovery, multipath propagation, structured sparsity, OMP-type algorithm.

I. INTRODUCTION

The aim of SIGnals INTelligence (SIGINT) is to intercept as much information as possible on received

signals. For radar sources, the parameters of interest are the Direction Of Arrival (DOA) of the direct

path (assuming it is observed), but also, if possible, the carrier frequency and the modulation scheme.

In practice, due to the presence of multipath propagation, the interception of radar sources remains a

difficult problem. Indeed, multipath propagation creates nuisance parameters that have to be taken into
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account such as DOAs and relative Times of Arrival (TOA) of reflected paths, relative signal power levels

on the different paths and additive noise variance.

In this paper, we shall consider a unique narrowband farfieldsource propagating through several paths,

corrupted with additive Gaussian white noise and observed on a multi-sensor array. This issue is actually

very involved since the observed signals on the different sensors are highly correlated and the different

replicates are likely to overlap. This prevents us from using methods such as MUSIC, ESPRIT or MVDR

which do not work very well with coherent signals [1]. These approaches, based on subspace methods

or on maximum likelihood estimation, have been extended by [2], [3], [4] and [5] to deal with coherent

sources. However, to the best of our knowledge, estimating the waveform, which is an infinite-dimensional

parameter, in a nonparametric way has never been consideredfor multipath signals. To solve this problem,

our main idea consists in exploiting the sparsity of the time-frequency representation of the waveform,

which means that the selection of possibly useful signal components from a huge collection of candidate

signals may be driven by a sparsity constraint. Such kind of approach was initially proposed by [6] but

only for the estimation of the time-delays, which is a finite dimensional parameter, and is extended here

for estimating the DOAs and TOAs as well as the waveform.

For dealing with the estimation in sparse linear regressionmodels, the Lasso [7] and the greedy

orthogonal matching pursuit (OMP) ( [8], [9]) have become very popular tools. In our case, an inspection

of our model shows that the parameter vector is not sparse in an arbitrary way: its sparsity pattern has

a specific structure. In order to include prior information concerning the sparsity structure, different

approaches have recently been proposed. On the one hand, there are methods based on composed

ℓ1/ℓ2-penalties (elastic nets [10]; fused Lasso [11]; group Lasso [12]; composite absolute penalty [13];

overlapping groups [14], [15]), on the other hand, [16] proposed the group-OMP method for non-

overlapping groups, which is an extension of the orthogonalmatching pursuit to structured solutions.

In this paper we explain how to extend the group-OMP to overlapping groups and how to deal with

the scalability of our algorithm which is a crucial issue in the context of intercepted radar signals since

the model dimension is usually very high. A simulation studyshows that the proposed method performs

well for composed and modulated signals even when the signal-to-noise ratio is low. A gain of more

than 20 dB for the DOA estimation is achieved in comparison with some elementary method.

The paper is organized as follows. In Section II the mathematical model for radar signals is introduced,

together with a reformulation of the problem in the form of a sparse, partly linear model. In Section

III an OMP-type algorithm is developed which is well adaptedto our model. Section IV deals with

the scalability issue of the algorithm, while Section V presents an appropriate stopping criterion for the
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OMP-type algorithm. Finally, the experimental results of Section VI illustrate the performance of the

new algorithm and a comparison with some elementary method is provided. Conclusions are made in

the final Section VII.

II. M ODEL

A. Signal Modelling

Let us denote bys0(t) the original radar signal emitted by the source, wheret is the time. Due to

propagation and reflexion on obstacles, the signal arrives via several pathways on the receiver. With each

pathway we associate a direction of arrival, sayDu, a time-delay, sayTu and a complex constantAu

representing the attenuation of the signal on theu-th pathway. The signal is detected by an antenna with

C sensors whose array response is denoted by~a(·). Then the signal arriving at the sensor array at time

t is aC-dimensional vector given by

~s(t) =

U
∑

u=1

Au s0(t− Tu)~a(Du) , (1)

whereU denotes the number of propagation pathways, which is unknown. As the time lagsTu are

typically much shorter than the total length of the signals0, the arriving signal~s is the superposition of

several delayed replicatess0 with different amplitudes.

In practice, the signal~s is observed with some additional noise, say~ε, and at a sample frequency, say

Fs. With ∆s = 1/Fs the observations are hence given by

~ym = ~s(m∆s) + ~εm , m = 1, . . . ,M , (2)

where~εm ∈ CC is a noise vector. Generally one considers circular gaussian independent random vectors

with zero mean and covarianceσ2IC .

B. Linear Regression Model

In practice, all model parameters are unknown, except the array response function~a(·), which is

determined by the array geometry or by calibration. As the relationship between the parameters is rather

involved, we propose to reformulate the estimation problemby linearizing the model. This is obtained,

on the one hand, by representing the waveform in an overcomplete basis and, on the other hand, by

discretizing the parameter spaces of the other parameters.This leads to a linear model with a high-

dimensional parameter vector and nonlinear constraints. As this vector is structured and sparse,i.e. most

entries are zero, regularization methods with structured sparsity inducing norms can be applied [13] .
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1) Decomposition of the signal :To estimate the waveform, the radar signals0 is represented in some

given (overcomplete) basis or dictionaryD = {ϕj , j = 1, . . . , J}, such that

s0 =

J
∑

j=1

βjϕj , (3)

with appropriate coefficientsβj ∈ C. Hence, estimatings0 becomes recovering the coefficientsβj . When

using appropriate, large dictionaries, a small number of elementsϕj is sufficient to reconstructs0. In

other words, it is assumed that the dictionary is such that most coefficientsβj are zero and hence that

the representation ofs0 is sparse.

2) Propagation model:To estimate the parametersAu, Du and Tu by discretization, we introduce

grids {τ1, . . . , τP } and{θ1, . . . , θQ} of potential values of the delay timesTu and the angles of arrival

Du respectively, as in [6], [17]. Then~s(t) can be rewritten as

~s(t) =

P
∑

p=1

Q
∑

q=1

αp,q s0(t− τp)~a(θq) , (4)

with αp,q =

U
∑

u=1

Au1{Tu = τp,Du = θq} ,

where1 is the indicator function. Clearly, there are onlyU coefficientsαp,q that are nonzero. Hence,

when fine grids are used,i.e.P andQ are large, this is another sparse estimation problem. As thenumber

of pathwaysU is generally unknown, model selection is required,i.e. the estimation of the model order

U .

By combining (3) and (4), the observation~ym reads

~ym =

J
∑

j=1

P
∑

p=1

Q
∑

q=1

αp,qβjϕj(m∆s − τp)~a(θq) + ~εm , (5)

for m = 1, . . . ,M . It is convenient to represent the model in matrix notation.Let X be the matrix of

sizeCM × JPQ, where all known quantities are stored. More precisely, the(j, p, q)-th predictor,i.e.

the columnxj,p,q of X, is given by

xj,p,q =











ϕj(∆s − τp)~a(θq)
...

ϕj(M∆s − τp)~a(θq)











∈ C
CM .

In other words,xj,p,q corresponds to the signal received by the antenna (without noise) when the emitted

signal is the elementϕj arriving with delayτp and angleθq. Denote the observation vector byY =

(yT1 , . . . , y
T
m)T ∈ CCM and the noise vector byε = (~εT1 , . . . , ~ε

T
m)T ∈ CCM . Finally, let the Kronecker
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productβ⊗α of the vectorsβ = (β1, . . . , βJ )
T andα = (α1,1, . . . , αP,Q)

T be theJPQ-vectorw defined

as

w =











...

wj,p,q

...











=





























β1α1,1

β1α1,2

...

βjαp,q

...

βJαP,Q





























. (6)

Then model (5) can be written as

Y = X(β ⊗ α) + ε with α ∈ C
PQ, β ∈ C

J . (7)

Finally, introduce the following set

W = {w ∈ C
JPQ : w = β ⊗ α, α ∈ C

PQ, β ∈ C
J} ,

which is a subspace ofCJPQ that can be parametrized usingJ + PQ variables. Remark that, given a

vectorw ∈ W, one can recover the vectorsα andβ only up to a multiplicative constant, which does not

matter in our application. Thus, model (5) can be written as the following linear regression model

Y = Xw + ε with w ∈ W, (8)

where the design matrixX is known and the parameter vectorw is to be estimated from the observations

Y . The particularity of this regression model is that the search space forw is not the entire spaceCJPQ

but the smaller, nonconvex setW.

III. E STIMATION PROCEDURE

The problem now is to estimate the vectorsα andβ by fitting model (7), or equivalently, to estimate

w in model (8). The advantage of (8) over (7) is the linearity ofthe model. Since the dimension of the

spaceW is much higher than that of the observationsY , the minimization problem

min
w∈W

‖Y −Xw‖2 (9)

is ill-posed. However, we note thatw must be a sparse vector, sinceα andβ are assumed sparse. It is

well known that sparsity leads to stable estimation procedures based on a regularized fitting criterion with

an ℓ1-penalty (Lasso [7]; basis pursuit [18]; Lars [19]) or greedy algorithms (as matching pursuit and

orthogonal matching pursuit (OMP) [8], [20]). A closer inspection ofW reveals some structure in the
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sparsity patterns, that means, there are constraints on thedistribution of the zero entries for all vectors

w in W. More precisely, the set of indicesS = {(j, p, q) : such thatwj,p,q = 0} is called the sparsity

pattern of some given vectorw. Indeed, all elementsw of W verify that αp′,q′ = 0 implies that the

componentswj,p′,q′ = 0 for all j, and likewise, ifβj′ = 0 then wj′,p,q = 0 for all p and q. Thus,w

must not be sparse in an arbitrary way, but its sparsity pattern has to respect some structure. Modern

estimation procedures force specific structures of the sparse vector. On the one hand, there are methods

based on composedℓ1/ℓ2-penalties (elastic nets [10]; fused Lasso [11]; group Lasso [12]; composite

absolute penalty [13]; overlapping groups [14], [15]), on the other hand, the orthogonal matching pursuit

can be extended to structured solutions (group-OMP for non-overlapping groups [16]).

Our problem can be related to a penalized minimization problem of the form

min
w∈CJPQ

{

‖Y −Xw‖2 +Ω(w)
}

, (10)

with a structuredℓ1/ℓ2-penaltyΩ(w) (detailed below) in the sense that the sparsity pattern of a solution

of this problem, saỹw, respects the required structure. However, there is no guarantee that the nonzero

components ofw̃ satisfy relation (6), that is, that there are coefficientsαp,q andβj such thatw̃j,p,q =

αp,qβj and hencẽw may not belong toW. The problem lies in the nonzero components ofw̃. To compute

the solution of (10), different solutions have been proposed in the literature as the active set algorithm in

in [21] and [15]. In this paper we propose an extension of the group-OMP [16] for overlapping groups.

Now, to fit the model given in (7) we propose the following procedure consisting of two steps, that are

developed below in more detail.

Step 1. (Model selection)Solve problem (10) via an OMP-type algorithm to obtain a solution w̃ with

admissible sparsity structure. Identify the nonzero componentsw̃j,p,q and the indicesA of the associated

coefficientsα̃p,q and β̃j that must be nonzero.

Step 2. (Estimation in reduced dimension)Reduce the dimension of the regression matrixX by keeping

the predictorxj,p,q only if w̃j,p,q 6= 0. Then compute the least squares estimator in model (7) by the

Nelder-Mead simplex method. This problem is now well-posedbecause of the largely reduced dimension.

A. Model selection step

To specify the penaltyΩ(w) in (10), we describe the structure of the sparsity patternS of w ∈ W.

To this end, for a given couple(p, q), we denote the set of indicesGα
p,q = {(j, p, q), j ∈ {1, . . . , J}},

and likewise, for a givenj, the set of indicesGβ
j = {(j, p, q), p ∈ {1, . . . , P}, q ∈ {1, . . . , Q}}. It is
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clear that the sparsity patternS of anyw in W can be written as the union of all setsGα
p,q andGβ

j with

αp,q = 0 andβj = 0.

Given a set of indicesG, let ‖wG‖2 denote theℓ2-norm of the subvector ofw composed of the elements

wj,p,q with (j, p, q) ∈ G. Then one can show that the solution, sayw̃, of (10) with the following penalty

Ω(w) = λ1

∑

p,q

‖wGα
p,q
‖2 + λ2

∑

j

‖wG
β
j
‖2 , (11)

whereλ1, λ2 > 0 are regularization parameters, has the required sparsity structure,i.e. the sparsity pattern

of w̃ can be written as the union of setsGα
p,q andGβ

j . Note that these groups are possibly overlapping.

Indeed, the penalty can be viewed as a mixture ofℓ1- and ℓ2-norms appropriate for overlapping group

structures. More precisely, the penalty is the sum (i.e. the ℓ1-norm) of theℓ2-norm of subvectorswG.

Likewise to the standard Lasso, theℓ1-norm entails that for several groupsG the terms‖wG‖2 are zero,

implying in turn that all entries ofwG are exactly zero. By using two regularization parametersλ1 > 0

andλ2 > 0 one can use different degrees of sparsity for the vectorsα andβ.

To solve the problem (10) with penaltyΩ(w) given by (11) we propose an OMP-type algorithm. To

describe the algorithm we introduce the collectionG = {Gg, g ∈ I} of all setsGα
p,q andGβ

j indexed by

a common indexg with index setI. Note that the cardinality ofI is PQ+ J . For a set of indicesA,

denote byXA the matrix made of the corresponding predictorsxj,p,q of X such that(j, p, q) ∈ A.

Recall that the principle of OMP consists in adding iteratively the predictor to the current solutionw(t)

which is the most correlated with the current residualr(t) = Y −Xw(t). In [16] this principle is extended

to selecting non-overlapping groups of variables, whereG is a set of pairwise disjoint setsGg and one

adds all variables of groupGg∗ if ‖XT
Gg∗

r(t)‖22 = maxg∈I ‖X
T
Gg

r(t)‖22. Proceeding in this way guarantees

that at every step of the algorithm, the current solution respects the required sparsity structure, which

means that the sparsity pattern of the current solutionw(t) equals the union of some groupsGg ∈ G.

Now this procedure can be extended to our context with overlapping group structures, where the aim

remains the same: the sparsity pattern of every intermediate solutionw(t) must be the union of some

groupsGg ∈ G. The difference to the group-OMP of [16] is at the level of theselection of variables

that may enter the solution. Indeed, due to the overlapping group structure, the sets of variables that

may be activated at the next step are not simply the groupsGg ∈ G. To be more precise on this issue,

we introduce the setZ(t) ⊂ I of indices of zero groupsGg associated with the current solutionw(t),

such thatS(t) = ∪g∈Z(t)Gg is the sparsity pattern ofw(t). Clearly, the indices of the non zero entries

of w(t) are given byA(t) = (S(t))c, whereAc denotes the complementary set ofA with respect toG.

Now the candidate groups of components that may be activatedat the next step are obtained by deleting
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one of the indices from the zero groupsZ(t). That means, every potential group of indices has the form

Pg0 = (∪g∈Z(t)\{g0}Gg)
c\A(t) whereg0 ∈ Z(t). Then, following the philosophy of OMP, one activates

the components given byPg∗ if ‖XT
Pg∗

r(t)‖22 = maxg0∈Z(t) ‖XT
Pg0

r(t)‖22. Once a groupPg∗ is selected,

one derives the new set of active indicesA(t+1) = A(t)∪Pg∗ and updates the current solution by solving

the least squares problem of reduced dimensionw
(t+1)
A(t+1) = argminw ‖Y −XA(t+1)w‖22.

We notice that the algorithm can be viewed as a walk through a directed acyclic graph, which also

appears in the algorithm proposed in [15]. Formally, our OMP-type algorithm can be described as follows.

Algorithm 1 (OMP-type algorithm for overlapping groups): Initialization. Set t = 0.

Repeat until some stopping criterion is satisfied.

If t = 0 (initial step)

Compute(j∗, p∗, q∗) = arg max
(j,p,q)

‖xT(j,p,q)Y ‖22.

Denote byg∗α andg∗β the group indices associated with

the groupsGα
p∗,q∗ andGβ

j∗, respectively

Put the set of zero group indicesZ(1) = I\{g∗α, g
∗
β}.

Put the set of active indicesA(1) = {(j∗, p∗, q∗)}. Else

For eachg0 ∈ Z(t) set

Pg0 =
(

∪g∈Z(t)\{g0}Gg

)c
\A(t) .

Computeg∗ = arg max
g0∈Z(t)

‖(XPg0
)T r(t)‖22.

UpdateZ(t+1) = Z(t)\{g∗} andA(t+1) = A(t) ∪ Pg∗ .

End

Update the current solution

w̃
(t+1)
A(t+1) = arg min

w∈C|A(t+1)|

‖Y −XA(t+1)w‖22 . (12)

Update the residualr(t+1) = Y −XA(t+1)w̃(t+1).

Set t = t+ 1.

End

Note that in any case the algorithm stops after a finite numberof iterations, more exactly afterJ+PQ−1

steps. Then all groups are activated and the solutionw̃ is the ordinary least squares estimator. The

important issue of an appropriate stopping criterion for the algorithm is addressed in Section V. Clearly,

the aim is to stop the algorithm earlier to provide a relevant, sparse solution.
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We remark that the proposed algorithm is a natural extensionof the orthogonal matching pursuit.

Moreover it is similar to the active set algorithm describedin [15], which provides an interesting

mathematical analysis of the optimization problem given by(10). Nevertheless, our OMP-type algorithm

provides an approach which is feasible in practice and computationally faster than the active set algorithm.

Indeed, in (12) the solution is updated by the ordinary leastsquares estimator that is known explicitly,

whereas [15] proposes to solve thepenalizedproblem of reduced dimension by a more expensive second-

order cone programming.

B. Solution of the reduced problem

The solution of (10) is a sparse vector, sayw̃, whose sparsity pattern serves to identify the indices of the

nonzero coefficientsαp,q andβj . More precisely, ifw̃j,p,q 6= 0, this implies that the associated coefficients

αp,q andβj are both non zero. Conversely,w̃j,p,q = 0 implies that at least one of the coefficients is 0.

To obtain estimates of these nonzero coefficients, we reducethe dimension of the regression matrix

X by keeping the predictorxj,p,q only if w̃j,p,q 6= 0. Denote the resulting matrix byXred. Then compute

the least squares estimator by minimizing

L(α̃, β̃) = ‖Y −Xred(β̃ ⊗ α̃)‖2 , (13)

whereα̃ and β̃ are the associatedα- andβ-vectors of reduced dimensioñPQ̃ and J̃ , respectively This

minimization is a well-posed problem as the dimension ofXred is much smaller than that ofX.

To compute the solution of (13) one can use the fact that the model is linear inα̃ for fixed β̃ and

conversely. That means for fixed̃β we define the matrixX(β̃) with P̃ Q̃ columns by

Xred(β̃) =

J̃
∑

j=1

β̃j(x
red
j,1,1, . . . , x

red
j,P̃ ,Q̃

) .

Then the minimum of̃α 7→ L(α̃, β̃) is the ordinary least squares estimator given by

α̃OLS(β̃) = (Xred(β̃)
T
Xred(β̃))

−1
Xred(β̃)

TY .

Furthermore, as̃α and β̃ are identifiable only up to some multiplicative constant, one can setβ̃1 = 1,

for instance. Finally, it remains to minimize

(β̃2, . . . , β̃J̃ ) 7→ L
(

α̃OLS((1, β̃2, . . . , β̃J̃)
T ), (1, β̃2, . . . , β̃J̃ )

T
)

which can be done by the Nelder-Mead simplex method. This is feasible since the number of unknown

variables,i.e. J̃ − 1, is quite low.
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IV. SCALABILITY

To obtain a good representation of the waveform, a large dictionary shall be used. Likewise, to avoid

biased estimators of angles and time delays, we may use fine grids. However, large dictionary sizesJ

and large grid sizesPQ entail a huge regression matrixX havingJPQ columns (see Section VI where

JPQ ≈ 6.2 109). This raises computational difficulties, namely concerning the storage of the regression

matrix X.

A closer look at the OMP-type algorithm shows that there are no computations involving the entire

regression matrix. Essentially, the algorithm considers one by one all possible groups of variablesG ∈ G

that may enter the solution in the present iteration. For each group of variablesG the correlation of the

associated predictors with the current residualr(t) = Y − XGw̃
(t) is computed. Hence, instead of the

whole matrixX, only the predictors of groupG are required.

In short, the storage ofX can be avoided by recomputing the required predictors at each iteration.

With such a programming there are almost no limits on the sizeof the regression matrix, and thus almost

arbitrary dictionaries and grids may be used.

To be more precise, let us have a look at the dictionary used inthe following simulation study. The

dictionary is composed of sinusoids with different frequenciesf , different lengthsl and different starting

pointss. The indexj is hence a triple index(f, l, s). Now instead of storing the whole vectorxj,p,q, we

just use the triple index(f, l, s) to reconstruct the dictionary elementϕj , whenever it is needed. Then

further translation and multiplication with the appropriate steering vector yield the required predictor

xj,p,q. Finally, we only have to store the steering matrix for all possible angles of arrival, which is a

matrix of very moderate sizeC × P . With this knowledge, the predictorxj,p,q is easily reconstructed at

any iteration of the algorithm.

In regression problems it is common to work with a normalizedregression matrix, that is all columns

have mean zero and standard deviation one. To avoid the computation of the normalization constants for

every predictor, they may be computed just once and stored for later usage. Note that the normalization

constants do not depend neither on the starting point of the dictionary element nor on the delay on the

pathway but only on the frequencyf and the lengthl of the dictionary element and the angle of arrival.

Hence, the number of constants to store remains reasonable.

The most time-consuming step in the algorithm is the scan of all predictors (or more precisely, of all

relevant groups of predictors) in every iteration, to identify the one that is the most correlated with the

current residual. It is noteworthy that this step can be speeded up by parallelization of the algorithm.
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Indeed, there is no specific order to visit the predictors andthe problem can be split in several independent

subtasks.

V. STOPPING CRITERION

The OMP-type algorithm requires an appropriate stopping criterion. A common approach to conceive

a good stopping criterion is based on cross-validation [13]. Note that in our context, we do not have to

deal with a single, but with two sparse vectors, namelyα andβ and their degrees of sparsity may not

be equal. Hence, cross-validation would be computationally demanding.

Here we propose a stopping criterion that on the one hand takes into account available prior information

on the number of propagation pathways (and hence on the number of α-variables) and on the other hand

has a data-driven component to determine the total number ofnon zeroαp,q- andβj-coefficients.

A. Sparsity ofαp,q-coefficients

In the context of intercepted radar signals, one generally expects a small number of relevant propagation

pathways. Indeed, we are mainly interested in the recovery of the direct path to determine the principal

DOA. It is hence convenient to introduce an upper limit for the number of pathsUmax and to modify

the OMP-type algorithm such that at every iteration the number of activatedαp,q-coefficients is checked.

If their number has achievedUmax, then we stop activating furtherαp,q-coefficients and concentrate on

activating onlyβj-coefficients.

In simulations we observed that this procedure yields satisfactory results. The only important assump-

tion for a good performance is that the direct path is not too weak compared to the indirect pathways,

since the algorithm activates the components by their importance in the signal.

Note that, ifUmax is smaller than the ‘true’ number of propagation pathways, then the observed signal

Y cannot be completely explained. In other words, the solution obtained by the OMP-type algorithm is

not the optimal solution of the minimization problem (10).

B. Control of the squared error

The degree of sparsity in theβ-variables depends on the chosen dictionary. In general, very few prior

information is available on the number̃J of basis elements used to decompose the radar signal.

A simple but useful tool for model selection consists in studying the evolution of the squared error,

that is the evolution of the square norm of the current residual L(w̃(t)) = ‖Y − Xw̃(t)‖22, wherew̃(t)
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(g) reconstructed signal after three iterations (h) reconstructed signal after four iterations

Fig. 1. Radar signal and its reconstruction. All signals, except (a), are on the first sensor. (e)-(h) represent the real part.

denotes the solution at thet-th iteration. Obviously, the squared errorL(w̃(t)) is monotone decreasing

over the iterations.

The OMP-type algorithm always adds the group of variables that are the most correlated with the

current residual, that is the components that are likely to diminish the squared error the most. This

explains why the algorithm tends to first activating all ‘true’ variables, and afterwards selecting variables

that are not in the true model. Hence the problem of selectingthe model order becomes the detection of

the point when all ‘true’ variables are activated and the algorithm starts adding pure noise variables.

In fact, activating a ‘true’ variable generally improves the squared error a lot, since the new variable
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explains a considerable part of the observations. Whereas adding a variable which is not in the true model

is less beneficial and the squared error hardly decreases. Consequently, first the squared errorL(w̃(t))

decreases steeply until the point where all ‘true’ variables are activated. Then the graph of the squared

error becomes very flat. This change of the slope yields a kinkin the graph of the squared errorL(w̃(t)).

Thus, the kink indicates the number of ‘true’ variables.

An efficient way to determine the kink consists in computing the convex hull of the graph. Then the

kink is given by the endpoint of the longest linear piece of the convex hull [22], [23].

We may hence proceed as follows. The OMP-type algorithm is run with some fixedUmax and stopped

after a large number of iterations. It is useful to store all intermediate solutions̃w(t) and the associated

square losses. Afterwards we determine the final solution asthe intermediate solutioñw(t) where the

squared error presents a kink.

Clearly, the kink is especially pronounced when the signal-to-noise ratio is high. Conversely, when

there is too much noise in the data, then it may be difficult to make out a kink. Besides, when the true

model contains a relatively ‘weak’ variable, that is, its contribution to the signal is rather low, then the

number of variables may be underestimated as the ‘weak’ variable can be confounded with noise.

VI. EXPERIMENTAL RESULTS

A. Setting

We illustrate the algorithm by an example. Let us consider a radar signal made of three subsequent

sinusoids with different frequencies (100, 140, 110 MHz) and a gap between the two last sinus waves

(sinusoids with starting points 0, 150, 300 ns and lengths 150, 100, 120ns), see Figure 1(a). The signal

is detected by a uniform linear array (ULA) of 5 sensors separated by half a wavelength of the actual

narrowband source signals. The sample frequency isFs = 1.28 GHz and the total duration of observation

is 0.8 µs. Thus, we haveM = 1024 observation points andY is a vector of length 5120. Furthermore,

we consider three pathways (U = 3) with unknown angles of arrivals (9◦, 13◦, 38◦) and delays (60, 95,

120ns). The signal (without noise) received at the first sensor of the antenna is presented in Figure 1(b)

and (c), where the superposition of the sinusoids results from the multiple propagation pathways. From

these figures it is clear that the multiple paths have a strongimpact on the signal and hence cannot be

neglected in the analysis. The signal is corrupted by additive noise with a signal-to-noise ratio of 5 dB,

see Figure 1(d). The signal-to-noise ratio is determined onthe direct propagation pathway, defined as the

10 log (energy of the signal on the first path/variance of the noise)as used in [24] or [6].
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We choose a Fourier dictionary containing sine and cosine functions with frequencies 90, 95,. . . , 150

MHz, signal lengths 80, 85,. . . , 200 ns and starting points 0,3δ, 6δ,. . . , 255δ ns, whereδ = 1/Fs ≈ 0.78

ns. The size of the dictionary is thusJ = 166 400. For the angles and the delays we use the grids{1◦,

2◦,. . . , 90◦} and{0, 3δ, 6δ,. . . , 255δ}, respectively Hence,w is a vector of dimension3.83 · 109.

B. Signal reconstruction by the OMP-type algorithm

In the simulations we setUmax = 2, that is, at best we recover two of the three pathways and we

stop the algorithm after 9 iterations. Figure 1(e)-(h) illustrate the first four iterations of the OMP-type

algorithm. In the first iteration the algorithm selects a single sinusoid. Next, a second pathway is selected

leading to two overlapping sinusoids. As now twoα-variables are activated andUmax = 2, the algorithm

can only add furtherβ-variables, that is, further dictionary elements. Thus, inthe third iteration another

sinusoid is added which appears directly on the two pathways. Finally, another sinusoid is activated.

We note that the graph in (h) is quite similar to the one in (c).Nevertheless, the reconstruction is not

perfect, as we allowed the algorithm to find only two pathways, while indeed there are three. In this

example the second pathway corresponding to the angle of arrival of 13◦ is missing.

C. Model selection device

As mentioned above, we stopped the algorithm after 9 iterations. Then we used the graph of the squared

error to determine the number of variables in the model by thepoint where the curve exhibits a kink.

The kink is determined by computing the convex hull of the graph. Figure 2 illustrates the evolution of

the squared loss for a sample with a signal-to-noise ratio of5 dB. The curve has a slight kink at 5, which

is the appropriate number of variables in this case, as the signal is composed of three sinusoids and we

setUmax = 2.

TABLE I

EMPIRICAL MEAN AND STANDARD DEVIATION OF THE TOTAL NUMBER OF SELECTED VARIABLES OFα- AND

β-COEFFICIENTS WITHUMAX = 2.

SNR total nb nb ofα’s nb of β’s

5 dB 5 (0) 2 (0) 3 (0)

-5 dB 5 (0) 2 (0) 3 (0)

-15 dB 5.1 (0.3) 2 (0) 3.1 (0.3)
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Fig. 2. Graph of the squared error of a dataset with a signal-to-noise ratio of 5 dB. The mark indicates the kink, that is the

selected number of model variables.
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Fig. 3. Comparison of RMSE of the DOA and TOA for the elementary method and the new estimator for different signal-to-noise

ratios applied on datasets of size 5 x 1280. The RMSE values are based on 50 repetitions per noise level.
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Table I shows the empirical mean and standard deviation of the total number of selected variables,

the number ofα- and β-coefficients for different signal-to-noise ratios over 50repetitions. Obviously,

in this example the model selection tool works very well, as the model selection device successfully

distinguishes ‘true’ variables from noisy variables, eventhough the algorithm is prevented from selecting

all ‘true’ variables. Hence, the introduction of an upper bound Umax for the number ofα-coefficients

does not corrupt the model selection.

D. Comparison with an elementary method

A simple, elementary method for estimating the principal DOA in the radar setting consists in first

estimating the TOA by thresholding and then using the point of observation at the TOA to fit the angle of

arrival. More precisely, to detect the TOA by the elementarymethod, the absolute value of the observed

signal at some time pointt is compared to some threshold, here3σ, whereσ2 is the variance of the

noise distribution that is supposed to be known for the elementary method. The first pointt where this

happens is considered as the TOA. This detection method fails when the signal-to-noise ratio is too low,

since then the signal is too weak compared to the noise such that the observed signal never exceeds the

threshold. And when no TOA is detected, the elementary method does not provide an estimate of the

DOA.

We compare this elementary method to our OMP-type algorithmin the following setting with an

FSK-modulated Barker sequence. We consider the 7-bit Barker sequence [1, 1, -1, -1, 1,-1, -1] with

FSK-modulation. Every bit is represented by a sinusoid of length 80 ns with frequency 210 or 230 MHz.

As there are four sign changes in the sequence, the transmitted signal is composed of four consecutive

sinusoids of varying length. Furthermore, we consider two pathways (U = 2) with unknown angles of

arrivals (6◦and 42◦) and delays of 10 and 40 ns.

TABLE II

EMPIRICAL MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF THE PARAMETER ESTIMATES OBTAINED BY THE

ELEMENTARY METHOD.

Elementary Method

1st angle (DOA) 1st delay (TOA)

true 6◦ 10 ns

SNR 20 dB 5.99 (0.26) 10.94 (0)

SNR 0 dB 6.81 (8.43) 22.31 (12.11)
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Again, the sample frequency isFs = 1.28 GHz and we use a ULA of 5 sensors separated by half a

wavelength of the actual narrowband source signals. The observation time is 1µs, such thatY is a vector

of length 6400. The dictionary contains the sine and cosine functions with frequencies 200, 202,. . . , 240

MHz, lengths 50, 55,. . . , 170 ns and starting points 0,δ, 2δ,. . . , 255δ ns, whereδ = 1/Fs. The size of

the dictionary is thusJ = 268 800. We use the grids{1◦, 2◦,. . . , 90◦} and{0, δ, 2δ,. . . , 255δ} for the

angles and the delays, respectively Hence,w is a vector of dimension6.19 ·109 . Data are simulated with

different levels of the signal-to-noise ratio. Again we chooseUmax = 2.

Figure 3 compares the root mean square error (RMSE) of the DOAand TOA estimates obtained by

both methods based on 50 simulated datasets for each noise level. Compared to the elementary procedure

the OMP-type algorithm achieves a gain of around 20 dB. This gain is mainly due to the fact that the

algorithm takes into account all observations and not only asingle point. For low signal-to-noise ratios

the elementary method completely fails.

E. Parameter Estimates

It is important to note that in contrast to the elementary method the OMP-type algorithm provides

estimates not only of the DOA and the TOA, but of all the other parameters including the waveform.

Indeed, in the setting described above our algorithm identifies several consecutive sinusoids. Table II

presents the empirical mean and standard deviation of the estimates obtained by the elementary method

and Table III gives the results for the OMP-type method, namely for the estimates of the angles of arrival,

the associated delays, the frequencies of the four detectedsinusoids, their lengths and their starting points.

Estimates are especially accurate for the angles of arrivaland the frequencies, whereas the estimates of

the lengths of the sinusoids and their starting points are less accurate. There is a clear tendency to

overestimate the length, especially for the shortest sinusoid. Indeed, for high noise levels it is not clear if

the OMP-type algorithm detects the shortest (and less energetic) sinusoid. The fourth sinusoid generally

has not even the correct frequency, so it is possible that thealgorithm adds any non relevant predictor,

because the shortest sinusoid is too weak for detection.

We observe that the reconstructed radar signalŝ has not exactly the form of a modulated signal due

to the overlapping sinusoids. It is hence up to the user to make such an interpretation of the signal.

Nevertheless, we emphasize that the algorithm works for anytype of modulation (FSK or PSK) without

prior knowledge on the modulation and it provides a good ideaof the waveform.
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VII. C ONCLUSION

The algorithm proposed in this paper is to the best of our knowledge the first method addressing the

problem of estimating both the DOA and the unknown waveform of a transmitted radar signal in the

presence of multiple propagation pathways. The new method is in the spirit of OMP extended to more

sophisticated sparsity structures. The scaling of the OMP-type algorithm has been considered, which is

necessary for unbiased estimation. A simulation study illustrates the good performance of the new method

and exhibits a considerable improvement with respect to some elementary method.

We would like to emphasize the general character of our method, which is of much interest for the

intercepted radar signal setting. First, the method proposed here is not restricted to a specific array

geometry. Second and more importantly, the approach can be adapted to a large variety of signals such

as sinusoids, chirps, composed signals etc. by using a dictionary where a sparse representation of the

signal is possible.
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TABLE III

EMPIRICAL MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF THE PARAMETER ESTIMATES OBTAINED BY THE

OMP-TYPE ALGORITHM.

OMP-type algorithm

1st angle 1st delay 2nd angle 2nd delay

true 6◦ 10 ns 42◦ 40 ns

20 dB 6.00 (0) 10.94 (0) 42.0 (0) 40.6 (0)

0 dB 5.94 (0.24) 10.5 (1.34) 41.9 (0.27) 40.2 (1.26)

1st frequ. 2nd frequ. 3rd frequ. 4th frequ.

true 210 MHz 230 MHz 210 MHz 230 MHz

20 dB 230.0 (0) 210.0 (0) 230.0 (0) 210.0 (0)

0 dB 230.0 (0) 210.0 (0) 230.1 (0.40) 210.0 (0)

1st length 2nd length 3rd length 4th length

true 160 ns 160 ns 80 ns 160 ns

20 dB 160.0 (0) 160.6 (1.64) 162.4 (12.1) 170.0 (0)

0 dB 163.1 (4.62) 165.5 (4.20) 162.4 (15.1) 170.0 (0)

1st start 2nd start 3rd start 4th start

true 0 ns 160 ns 320 ns 400 ns

20 dB 0 (0) 158.8 (1.54) 265.3 (12.9) 389.1 (0)

0 dB 0 (0) 153.1 (5.37) 271.0 (19.7) 389.5 (1.34)
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