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OMP-type Algorithm with Structured Sparsity
Patterns for Multipath Radar Signals

Tabea Rebafka, Céline Lévy-Leduc and Maurice ChaNd@mber, IEEE.

Abstract

A transmitted, unknown radar signal is observed at the vecéirough more than one path in additive
noise. The aim is to recover the waveform of the intercepigdas and to simultaneously estimate
the direction of arrival (DOA). We propose an approach eitiplg the parsimonious time-frequency
representation of the signal by applying a new OMP-type ritlym for structured sparsity patterns. An
important issue is the scalability of the proposed algaritiince high-dimensional models shall be used
for radar signals. Monte-Carlo simulations for modulat&phals illustrate the good performance of the
method even for low signal-to-noise ratios and a gain of 20faiBthe DOA estimation compared to

some elementary method.

Index Terms

DOA estimation, waveform recovery, multipath propagat&iructured sparsity, OMP-type algorithm.

. INTRODUCTION

The aim of SIGnals INTelligence (SIGINT) is to intercept asah information as possible on received
signals. For radar sources, the parameters of intereshar®itection Of Arrival (DOA) of the direct
path (assuming it is observed), but also, if possible, theierafrequency and the modulation scheme.
In practice, due to the presence of multipath propagatioa,imterception of radar sources remains a

difficult problem. Indeed, multipath propagation creategsance parameters that have to be taken into
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account such as DOAs and relative Times of Arrival (TOA) dfaeted paths, relative signal power levels
on the different paths and additive noise variance.

In this paper, we shall consider a unique narrowband farfieldce propagating through several paths,
corrupted with additive Gaussian white noise and observea multi-sensor array. This issue is actually
very involved since the observed signals on the differensses are highly correlated and the different
replicates are likely to overlap. This prevents us from gsirethods such as MUSIC, ESPRIT or MVDR
which do not work very well with coherent signalg [1]. Theggpmaches, based on subspace methods
or on maximum likelihood estimation, have been extended@y[[], [ and [§] to deal with coherent
sources. However, to the best of our knowledge, estimatiagvaveform, which is an infinite-dimensional
parameter, in a nonparametric way has never been consifitenendiltipath signals. To solve this problem,
our main idea consists in exploiting the sparsity of the tineguency representation of the waveform,
which means that the selection of possibly useful signalgmmants from a huge collection of candidate
signals may be driven by a sparsity constraint. Such kindppf@ach was initially proposed b{/][6] but
only for the estimation of the time-delays, which is a finiiemdnsional parameter, and is extended here
for estimating the DOAs and TOAs as well as the waveform.

For dealing with the estimation in sparse linear regressimels, the Lassd[][7] and the greedy
orthogonal matching pursuit (OMP) [{ [8]] [9]) have becomeyvgopular tools. In our case, an inspection
of our model shows that the parameter vector is not sparse grlztrary way: its sparsity pattern has
a specific structure. In order to include prior informatiomncerning the sparsity structure, different
approaches have recently been proposed. On the one hamd, afe methods based on composed
¢1/¢>-penalties (elastic net$ [110]; fused Laskd [11]; group bdEg]; composite absolute penalty [13];
overlapping groups[[14],[T15]), on the other hanf,] [16] meed the group-OMP method for non-
overlapping groups, which is an extension of the orthogomatiching pursuit to structured solutions.

In this paper we explain how to extend the group-OMP to opgilag groups and how to deal with
the scalability of our algorithm which is a crucial issue lve tcontext of intercepted radar signals since
the model dimension is usually very high. A simulation ststhpws that the proposed method performs
well for composed and modulated signals even when the stgrabise ratio is low. A gain of more
than 20 dB for the DOA estimation is achieved in comparisoth wome elementary method.

The paper is organized as follows. In Sectign Il the math@alatodel for radar signals is introduced,
together with a reformulation of the problem in the form of maise, partly linear model. In Section
Il an OMP-type algorithm is developed which is well adaptedour model. Sectiof IV deals with
the scalability issue of the algorithm, while Sectioh V @nets an appropriate stopping criterion for the
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OMP-type algorithm. Finally, the experimental results @fcon[V] illustrate the performance of the
new algorithm and a comparison with some elementary methqudvided. Conclusions are made in
the final Sectiof V]I.

II. MODEL
A. Signal Modelling

Let us denote by (¢) the original radar signal emitted by the source, wheig the time. Due to
propagation and reflexion on obstacles, the signal arrii@several pathways on the receiver. With each
pathway we associate a direction of arrival, day, a time-delay, sayl,, and a complex constam,,
representing the attenuation of the signal on«kté pathway. The signal is detected by an antenna with
C sensors whose array response is denoted(by Then the signal arriving at the sensor array at time

t is aC-dimensional vector given by

U
§(t) =Y Ayso(t — T)a@(Dy) , 1)
u=1

where U denotes the number of propagation pathways, which is unkn@s the time lagsrl,, are
typically much shorter than the total length of the sigralthe arriving signak’ is the superposition of
several delayed replicateg with different amplitudes.

In practice, the signaf is observed with some additional noise, saynd at a sample frequency, say

F,. With A, = 1/F; the observations are hence given by

—

Um = S(mAg) + & m=1,...,M, (2)

whereé,,, € CC is a noise vector. Generally one considers circular ganssiependent random vectors

with zero mean and covarianeélc.

B. Linear Regression Model

In practice, all model parameters are unknown, except thay aesponse functio@(-), which is
determined by the array geometry or by calibration. As thatimship between the parameters is rather
involved, we propose to reformulate the estimation problniinearizing the model. This is obtained,
on the one hand, by representing the waveform in an overamplasis and, on the other hand, by
discretizing the parameter spaces of the other paraméibis.leads to a linear model with a high-
dimensional parameter vector and nonlinear constrairggh# vector is structured and sparise, most

entries are zero, regularization methods with structupsdssty inducing norms can be appligd][13] .
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1) Decomposition of the signal To estimate the waveform, the radar sigegis represented in some

given (overcomplete) basis or dictionaB/= {¢;,j =1,...,J}, such that

J
so=> Bjej 3)
=1

with appropriate coefficients; € C. Hence, estimating, becomes recovering the coefficiemts When
using appropriate, large dictionaries, a small number efmehntsy; is sufficient to reconstruct,. In
other words, it is assumed that the dictionary is such thattrooefficientsg; are zero and hence that
the representation of; is sparse.

2) Propagation model:To estimate the parameters,, D, and T, by discretization, we introduce
grids{r,...,7p} and{6;,...,60¢} of potential values of the delay timé&s, and the angles of arrival

D, respectively, as in[J6],[[17]. The&(t) can be rewritten as
Q

P
s(t) = Z Z ap,q So(t — 1) @(by) , (4)

p=1g¢=1

U
with  apq=> AJ{T, =7, Dy =0},

u=1

where1 is the indicator function. Clearly, there are orlly coefficientsw, , that are nonzero. Hence,
when fine grids are usede. P and(Q are large, this is another sparse estimation problem. Aauhgber
of pathwaysU is generally unknown, model selection is required, the estimation of the model order
U.

By combining [B) and[{4), the observatigh, reads

J P Q
T = DD paBips(mA = 1) @(0) + En (5)
j=1p=1q=1
form =1,..., M. It is convenient to represent the model in matrix notatiogt X be the matrix of

size CM x JPQ, where all known quantities are stored. More precisely, (the, ¢)-th predictor,i.e.
the columnz;, , of X, is given by
©j(As — ) @(04)
Ljp,g = ; e CcM.
@i (MA; —1p) d(0y)
In other wordsz; ,, , corresponds to the signal received by the antenna (withoigsehwhen the emitted
signal is the elemenp; arriving with delayr, and angled,. Denote the observation vector By =

(yl,...,yL)T € C“M and the noise vector by = (¢7,...,cL)T € CYM. Finally, let the Kronecker
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product3®« of the vectors3 = (64, .., 8,) anda = (a1 1,...,apg)! be theJ PQ-vectorw defined

as
Blal,l
5101,2
w = W p.q = - . (6)
Bitpq
Biapq
Then model[(5) can be written as
Y =X(f®a)+e withaecCl? gecC’. 7)

Finally, introduce the following set
W={weCt?:w=80a acC? gecC’},

which is a subspace di’7? that can be parametrized usidg+ PQ variables. Remark that, given a
vectorw € W, one can recover the vectatisand 5 only up to a multiplicative constant, which does not

matter in our application. Thus, mod¢| (5) can be writtentesfollowing linear regression model
Y=Xw+e withweW, (8)

where the design matriX is known and the parameter vectoris to be estimated from the observations
Y. The particularity of this regression model is that the eeapace forw is not the entire spacg’’?

but the smaller, nonconvex sgY.

I1l. ESTIMATION PROCEDURE

The problem now is to estimate the vectarand 3 by fitting model [J), or equivalently, to estimate
w in model [8). The advantage df| (8) ovél (7) is the linearitytied model. Since the dimension of the

spaceV is much higher than that of the observatidnsthe minimization problem

min [ — Xuwl|* €)

is ill-posed. However, we note that must be a sparse vector, sineeand 8 are assumed sparse. It is
well known that sparsity leads to stable estimation prooegibased on a regularized fitting criterion with
an /,-penalty (Lasso[]7]; basis pursult [18]; Lars [19]) or grgealgorithms (as matching pursuit and

orthogonal matching pursuit (OMP}] [8], ]20]). A closer imspion of W reveals some structure in the
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sparsity patterns, that means, there are constraints odighiébution of the zero entries for all vectors
w in W. More precisely, the set of indices = {(j,p,¢) : such thatw;,, = 0} is called the sparsity
pattern of some given vectar. Indeed, all elements of W verify that o,y , = 0 implies that the
componentsw; ,» o = 0 for all j, and likewise, if3;; = 0 thenw;.,, = 0 for all p andq. Thus,w
must not be sparse in an arbitrary way, but its sparsity pati@s to respect some structure. Modern
estimation procedures force specific structures of thesspagctor. On the one hand, there are methods
based on composef] //>-penalties (elastic netg [110]; fused Lasg$o|[11]; group bafig]; composite
absolute penalty T13]; overlapping groups][14],][15]), be bther hand, the orthogonal matching pursuit
can be extended to structured solutions (group-OMP for aatapping groupd [16)).

Our problem can be related to a penalized minimization mbbf the form

min {||Y—Xw\|2—|—Q(w)} , (20)

weCIPR

with a structured’; /¢»-penaltyQ(w) (detailed below) in the sense that the sparsity pattern alisn

of this problem, sayw, respects the required structure. However, there is noagtes that the nonzero
components ofp satisfy relation [(6), that is, that there are coefficiemts, and 3; such thatw, , , =

o, ¢3; and henceo may not belong toV. The problem lies in the nonzero componentsoffo compute
the solution of [10), different solutions have been propdsethe literature as the active set algorithm in
in [23] and [1%]. In this paper we propose an extension of tieaig-OMP [1§] for overlapping groups.
Now, to fit the model given in[[7) we propose the following pedare consisting of two steps, that are
developed below in more detail.

Step 1. (Model selectior§olve problem [(10) via an OMP-type algorithm to obtain a Bofuw with
admissible sparsity structure. Identify the nonzero conemtsw; , , and the indicesA of the associated
coefficientsd, , and 3; that must be nonzero.

Step 2. (Estimation in reduced dimensidggduce the dimension of the regression makXiby keeping
the predictorz;, , only if w;,, # 0. Then compute the least squares estimator in mddel (7) by the

Nelder-Mead simplex method. This problem is now well-polsedause of the largely reduced dimension.

A. Model selection step

To specify the penalty2(w) in (LQ), we describe the structure of the sparsity pat®rof w € W.
To this end, for a given couplép, q), we denote the set of indices) , = {(j,p,q), j € {1,...,J}},
and likewise, for a givery, the set of indiceilf ={(j,p,q), p€{l,....,P},qge{l,...,Q}}. Itis
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clear that the sparsity pattehof anyw in 1V can be written as the union of all se®s' ande with
apq =0andpg; =0.
Given a set of indice&, let ||w¢||2 denote thes-norm of the subvector ab composed of the elements

w; .4 With (4, p,¢) € G. Then one can show that the solution, sayof [L§) with the following penalty
Qw) =X Y llwag 2+ A2 ) lwgell2 (11)
Dyq J

where\;, A\ > 0 are regularization parameters, has the required spatsittsre,i.e. the sparsity pattern

of @w can be written as the union of sef  and Gf. Note that these groups are possibly overlapping.
Indeed, the penalty can be viewed as a mixturé,efand ¢;-norms appropriate for overlapping group
structures. More precisely, the penalty is the sum. the ¢;-norm) of the/;-norm of subvectorsug.
Likewise to the standard Lasso, thenorm entails that for several groupgsthe terms||we |2 are zero,
implying in turn that all entries ofv; are exactly zero. By using two regularization parametgrs- 0
and A\, > 0 one can use different degrees of sparsity for the vectoasd 5.

To solve the problem[(]10) with penalfy(w) given by [I]l) we propose an OMP-type algorithm. To
describe the algorithm we introduce the collectignr- {G,, g € Z} of all setsGy,, and Gf indexed by
a common index with index setZ. Note that the cardinality of is PQ + J. For a set of indices,
denote byX 4 the matrix made of the corresponding predictoys, , of X such that(j, p, q) € A.

Recall that the principle of OMP consists in adding iter@liivthe predictor to the current solutiasi®)
which is the most correlated with the current residdél = Y — Xw®. In [[I8] this principle is extended
to selecting non-overlapping groups of variables, whgrie a set of pairwise disjoint sets, and one
adds all variables of grou@- if | XE r(®|3 = maxger | XE r®|3. Proceeding in this way guarantees
that at every step of the algorithm, the current solutiorpeess the required sparsity structure, which
means that the sparsity pattern of the current soluiith equals the union of some groupg, € G.

Now this procedure can be extended to our context with oppitey group structures, where the aim
remains the same: the sparsity pattern of every intermedialutionw® must be the union of some
groupsG, € G. The difference to the group-OMP of J16] is at the level of Swection of variables
that may enter the solution. Indeed, due to the overlapphogim structure, the sets of variables that
may be activated at the next step are not simply the grégps G. To be more precise on this issue,
we introduce the seE® c 7 of indices of zero groups:, associated with the current solutiasi®,
such thatS®) = U,z G, is the sparsity pattern ab®). Clearly, the indices of the non zero entries
of w®) are given byA® = (S®)c, where A° denotes the complementary set 4fwith respect tog.

Now the candidate groups of components that may be actiettte next step are obtained by deleting
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one of the indices from the zero grougé?). That means, every potential group of indices has the form
Pgo = (Ugezn (901Gg)\AY wheregy € Z(!). Then, following the philosophy of OMP, one activates

the components given bp,- if | X% r®|3 = max,czw [XF, 3. Once a groupP,. is selected,

go€<
one derives the new set of active indicé&§*+) = A®) UP,~ and updates the current solution by solving
the least squares problem of reduced dimenﬁiﬁﬁﬂ) = argmin, |[|Y — X qenwl|3.

We notice that the algorithm can be viewed as a walk througlrextéd acyclic graph, which also

appears in the algorithm proposed|[in][15]. Formally, our Gly§ge algorithm can be described as follows.

Algorithm 1 (OMP-type algorithm for overlapping groupshitialization. Sett = 0.

Repeat until some stopping criterion is satisfied.

I f ¢ =0 (initial step)

Compute(s”,p", ¢") = arg max [E g

Denote byg;, and g the group indices associated with

the groups}. ,. and Gf respectively

Put the set of zero group indice&z) = T7\{g3, g5}.

Put the set of active indiced™ = {(*,p*,¢*)}.  El se

For eachgy € Z® set
Pgy = (Ug€Z<“\{go}Gy)c\“4(t) :

Computeg” = arg max 1(Xp,,) "3,

go€Z(
UpdateZ(+1) = 2\ {g*} and A+ = A® U P,..
End

Update the current solution

wﬁ(ﬂ}) —arg min ||Y — X qesnwl3. (12)

weClAtTY]
Update the residual®*) =Y — X jeenw*tD,
Sett =t+ 1.
End

Note that in any case the algorithm stops after a finite nurobiéerations, more exactly aftef+PQ—1
steps. Then all groups are activated and the soluiiors the ordinary least squares estimator. The
important issue of an appropriate stopping criterion fa #igorithm is addressed in Sectiph V. Clearly,

the aim is to stop the algorithm earlier to provide a releyaparse solution.
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We remark that the proposed algorithm is a natural extensfotihe orthogonal matching pursuit.
Moreover it is similar to the active set algorithm descriied[[§], which provides an interesting
mathematical analysis of the optimization problem giver(ft§). Nevertheless, our OMP-type algorithm
provides an approach which is feasible in practice and coatipnally faster than the active set algorithm.
Indeed, in [(IR) the solution is updated by the ordinary legsiares estimator that is known explicitly,
whereas|[15] proposes to solve thenalizedproblem of reduced dimension by a more expensive second-

order cone programming.

B. Solution of the reduced problem

The solution of[(IP) is a sparse vector, saywhose sparsity pattern serves to identify the indicesef th
nonzero coefficients,, , and3;. More precisely, ifw; , , # 0, this implies that the associated coefficients
a4 andg; are both non zero. Conversety; , , = 0 implies that at least one of the coefficients is 0.

To obtain estimates of these nonzero coefficients, we rethee@imension of the regression matrix
X by keeping the predictat; , , only if @w; , , # 0. Denote the resulting matrix b¥eq. Then compute

the least squares estimator by minimizing
L(@,B) = Y = XeedB@@)|?, (13)

wherea and 3 are the associated- and 3-vectors of reduced dimensiaRQ and.J, respectively This
minimization is a well-posed problem as the dimensioXgfy is much smaller than that &X.
To compute the solution of (13) one can use the fact that thdeinis linear ina for fixed 5 and

conversely. That means for fixetiwe define the matriXK(B) with PQ columns by

J
Xred(8) = Z Bj (xfg,l’ T ’;U;'?%,Q) )
j=1

Then the minimum ofx — L(a&, 8) is the ordinary least squares estimator given by
&OLS(B) = (Xred(B)TXred(B))_IXred(B)TY .

Furthermore, ag and 3 are identifiable only up to some multiplicative constante @an set3; = 1,

for instance. Finally, it remains to minimize

(52, . ,Bj) — L (&OLS((LB% s 7Bj)T)7 (17627. .. 7Bj)T)

which can be done by the Nelder-Mead simplex method. Thisasible since the number of unknown

variables,.e. J — 1, is quite low.
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IV. SCALABILITY

To obtain a good representation of the waveform, a largeéodiaty shall be used. Likewise, to avoid
biased estimators of angles and time delays, we may use fide ¢towever, large dictionary sizeb
and large grid size®(Q entail a huge regression matX having.JPQ columns (see Sectidn VI where
JPQ =~ 6.2107). This raises computational difficulties, namely concegnihe storage of the regression
matrix X.

A closer look at the OMP-type algorithm shows that there avecomputations involving the entire
regression matrix. Essentially, the algorithm considers by one all possible groups of variablgs= G
that may enter the solution in the present iteration. Foheaoup of variabless the correlation of the
associated predictors with the current residdfél = Y — X" is computed. Hence, instead of the
whole matrixX, only the predictors of grou’ are required.

In short, the storage oK can be avoided by recomputing the required predictors ab @acation.
With such a programming there are almost no limits on the gizbe regression matrix, and thus almost
arbitrary dictionaries and grids may be used.

To be more precise, let us have a look at the dictionary useabdrfollowing simulation study. The
dictionary is composed of sinusoids with different freqecies f, different lengthd and different starting
pointss. The index; is hence a triple indexf, [, s). Now instead of storing the whole vectoy, ,, we
just use the triple indexf,, s) to reconstruct the dictionary elemept, whenever it is needed. Then
further translation and multiplication with the appropeissteering vector yield the required predictor
xjpq- Finally, we only have to store the steering matrix for alsgible angles of arrival, which is a
matrix of very moderate siz€' x P. With this knowledge, the predictar; , , is easily reconstructed at
any iteration of the algorithm.

In regression problems it is common to work with a normalieegkession matrix, that is all columns
have mean zero and standard deviation one. To avoid the datigyuof the normalization constants for
every predictor, they may be computed just once and storethtier usage. Note that the normalization
constants do not depend neither on the starting point of ittedary element nor on the delay on the
pathway but only on the frequengyand the lengthi of the dictionary element and the angle of arrival.
Hence, the number of constants to store remains reasonable.

The most time-consuming step in the algorithm is the scarllgfradictors (or more precisely, of all
relevant groups of predictors) in every iteration, to idignthe one that is the most correlated with the

current residual. It is noteworthy that this step can be dpéeaip by parallelization of the algorithm.
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Indeed, there is no specific order to visit the predictorstardroblem can be split in several independent

subtasks.

V. STOPPING CRITERION

The OMP-type algorithm requires an appropriate stoppiitgrawn. A common approach to conceive
a good stopping criterion is based on cross-validafioh. [N8}te that in our context, we do not have to
deal with a single, but with two sparse vectors, namelgnd 5 and their degrees of sparsity may not
be equal. Hence, cross-validation would be computatigrdgimanding.

Here we propose a stopping criterion that on the one handg tat@account available prior information
on the number of propagation pathways (and hence on the murhbevariables) and on the other hand

has a data-driven component to determine the total numbeomfzerox, .- and g;-coefficients.

A. Sparsity ofo, ,-coefficients

In the context of intercepted radar signals, one generapgets a small number of relevant propagation
pathways. Indeed, we are mainly interested in the recovetlyeodirect path to determine the principal
DOA. It is hence convenient to introduce an upper limit foe thumber of path#/max and to modify
the OMP-type algorithm such that at every iteration the neindf activatedv, ,-coefficients is checked.
If their number has achieveldnay, then we stop activating further,, ,-coefficients and concentrate on
activating only3;-coefficients.

In simulations we observed that this procedure yields faatigry results. The only important assump-
tion for a good performance is that the direct path is not t@akvcompared to the indirect pathways,
since the algorithm activates the components by their itapoe in the signal.

Note that, ifUnax is smaller than the ‘true’ number of propagation pathwalysntthe observed signal
Y cannot be completely explained. In other words, the sailutibtained by the OMP-type algorithm is

not the optimal solution of the minimization problefn](10).

B. Control of the squared error

The degree of sparsity in th&variables depends on the chosen dictionary. In genergl,feas prior
information is available on the numbdrof basis elements used to decompose the radar signal.
A simple but useful tool for model selection consists in ging the evolution of the squared error,

that is the evolution of the square norm of the current regidw®) = ||V — Xo® ||3, wherew®
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(a) original radar signal

(c) multipath signal, no noise, real part

-1+

-2

(e) reconstructed signal after one iteration

(b) multipath signal, no noiseagmary part

-2t

-4

(d) noisy signehlmart

N P O PN
L T

(f) recorsed signal after two iterations

12

(9) reconstructed signal after three iterations (h) recanted signal after four iterations

Fig. 1. Radar signal and its reconstruction. All signals;ept (a), are on the first sensor. (e)-(h) represent the szl p

denotes the solution at theth iteration. Obviously, the squared errbtw®)) is monotone decreasing
over the iterations.

The OMP-type algorithm always adds the group of variabled #re the most correlated with the
current residual, that is the components that are likely itnirdsh the squared error the most. This
explains why the algorithm tends to first activating all &rwariables, and afterwards selecting variables
that are not in the true model. Hence the problem of sele¢tiagnodel order becomes the detection of
the point when all ‘true’ variables are activated and theoathm starts adding pure noise variables.

In fact, activating a ‘true’ variable generally improvegthquared error a lot, since the new variable
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explains a considerable part of the observations. Wheddia@a variable which is not in the true model
is less beneficial and the squared error hardly decreaseseGoently, first the squared errbfw(*))
decreases steeply until the point where all ‘true’ varialdee activated. Then the graph of the squared
error becomes very flat. This change of the slope yields a ikirtke graph of the squared errba(®)).
Thus, the kink indicates the number of ‘true’ variables.

An efficient way to determine the kink consists in computihg tonvex hull of the graph. Then the
kink is given by the endpoint of the longest linear piece @& tdonvex hull [22], [28].

We may hence proceed as follows. The OMP-type algorithmnswith some fixed/imax and stopped
after a large number of iterations. It is useful to store mieimediate solutions/® and the associated
square losses. Afterwards we determine the final solutioth@dntermediate solutio® where the
squared error presents a kink.

Clearly, the kink is especially pronounced when the sidoaloise ratio is high. Conversely, when
there is too much noise in the data, then it may be difficult etkenout a kink. Besides, when the true
model contains a relatively ‘weak’ variable, that is, itsmti@bution to the signal is rather low, then the

number of variables may be underestimated as the ‘weakibi@rican be confounded with noise.

VI. EXPERIMENTAL RESULTS
A. Setting

We illustrate the algorithm by an example. Let us consideadar signal made of three subsequent
sinusoids with different frequencies (100, 140, 110 MHz)l angap between the two last sinus waves
(sinusoids with starting points 0, 150, 300 ns and lengtt& 160, 120ns), see Figufe 1(a). The signal
is detected by a uniform linear array (ULA) of 5 sensors safgar by half a wavelength of the actual
narrowband source signals. The sample frequenéy, is 1.28 GHz and the total duration of observation
is 0.8 us. Thus, we havé/ = 1024 observation points antl’ is a vector of length 5120. Furthermore,
we consider three pathway& (= 3) with unknown angles of arrivals {913°, 38°) and delays (60, 95,
120ns). The signal (without noise) received at the first senfthe antenna is presented in Figllre 1(b)
and (c), where the superposition of the sinusoids resuits fthe multiple propagation pathways. From
these figures it is clear that the multiple paths have a stimpgct on the signal and hence cannot be
neglected in the analysis. The signal is corrupted by additbise with a signal-to-noise ratio of 5 dB,
see Figur¢]1(d). The signal-to-noise ratio is determinetherdirect propagation pathway, defined as the

10 log (energy of the signal on the first path/variance of the ncaéselised in[[24] or[]6].
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We choose a Fourier dictionary containing sine and cosinetions with frequencies 90, 95,..., 150
MHz, signal lengths 80, 85,..., 200 ns and starting point®06d,. .., 259 ns, where) = 1/F; ~ 0.78
ns. The size of the dictionary is thus= 166 400. For the angles and the delays we use the gfids
2°,...,90} and{0, 36, 64,..., 259}, respectively Hencey is a vector of dimensios.83 - 10°.

B. Signal reconstruction by the OMP-type algorithm

In the simulations we se/max = 2, that is, at best we recover two of the three pathways and we
stop the algorithm after 9 iterations. FigUde 1(e)-(h)sthate the first four iterations of the OMP-type
algorithm. In the first iteration the algorithm selects agéénsinusoid. Next, a second pathway is selected
leading to two overlapping sinusoids. As now twevariables are activated afdd,.x = 2, the algorithm
can only add furthep-variables, that is, further dictionary elements. Thusthie third iteration another
sinusoid is added which appears directly on the two pathwiiysilly, another sinusoid is activated.

We note that the graph in (h) is quite similar to the one in {Bvertheless, the reconstruction is not
perfect, as we allowed the algorithm to find only two pathwayhile indeed there are three. In this

example the second pathway corresponding to the angle ishlaof 13° is missing.

C. Model selection device

As mentioned above, we stopped the algorithm after 9 immatiThen we used the graph of the squared
error to determine the number of variables in the model byphiet where the curve exhibits a kink.
The kink is determined by computing the convex hull of thephraFigure[P illustrates the evolution of
the squared loss for a sample with a signal-to-noise rat®dB. The curve has a slight kink at 5, which
is the appropriate number of variables in this case, as tirabkis composed of three sinusoids and we

TABLE |
EMPIRICAL MEAN AND STANDARD DEVIATION OF THE TOTAL NUMBER OF SELECTED VARIABLES OF - AND

[B-COEFFICIENTS WITHUyax = 2.

SNR totalnb nbofa’'s nb of 5's

5dB 5 (0) 2 (0) 3 (0)

-5 dB 5 (0) 2 (0) 3 (0)
-15dB 5.1 (0.3) 2 (0) 3.1 (0.3)
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Fig. 2. Graph of the squared error of a dataset with a sigrabtse ratio of 5 dB. The mark indicates the kink, that is the

selected number of model variables.
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Fig. 3. Comparison of RMSE of the DOA and TOA for the elementaethod and the new estimator for different signal-to-aois

ratios applied on datasets of size 5 x 1280. The RMSE valiedasged on 50 repetitions per noise level.
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Table[l shows the empirical mean and standard deviation eftdkal number of selected variables,
the number ofa- and S-coefficients for different signal-to-noise ratios over Epetitions. Obviously,
in this example the model selection tool works very well, las model selection device successfully
distinguishes ‘true’ variables from noisy variables, etleough the algorithm is prevented from selecting
all ‘true’ variables. Hence, the introduction of an uppemubd Unax for the number ofa-coefficients

does not corrupt the model selection.

D. Comparison with an elementary method

A simple, elementary method for estimating the principalO the radar setting consists in first
estimating the TOA by thresholding and then using the pdimfservation at the TOA to fit the angle of
arrival. More precisely, to detect the TOA by the elementasthod, the absolute value of the observed
signal at some time point is compared to some threshold, hexe, whereos? is the variance of the
noise distribution that is supposed to be known for the efdarg method. The first point where this
happens is considered as the TOA. This detection methavidien the signal-to-noise ratio is too low,
since then the signal is too weak compared to the noise sathitb observed signal never exceeds the
threshold. And when no TOA is detected, the elementary ntethaes not provide an estimate of the
DOA.

We compare this elementary method to our OMP-type algorithnthe following setting with an
FSK-modulated Barker sequence. We consider the 7-bit Baskquence [1, 1, -1, -1, 1,-1, -1] with
FSK-modulation. Every bit is represented by a sinusoid ofjte 80 ns with frequency 210 or 230 MHz.
As there are four sign changes in the sequence, the tragdnsifjnal is composed of four consecutive
sinusoids of varying length. Furthermore, we consider twthways U = 2) with unknown angles of

arrivals (6and 42) and delays of 10 and 40 ns.

TABLE I
EMPIRICAL MEAN AND STANDARD DEVIATION (IN PARENTHESESY OF THE PARAMETER ESTIMATES OBTAINED BY THE

ELEMENTARY METHOD.

Elementary Method
1st angle (DOA) 1st delay (TOA)

true 6 10 ns
SNR 20 dB  5.99 (0.26) 10.94 (0)
SNR 0 dB 6.81 (8.43) 22.31 (12.11)
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Again, the sample frequency B, = 1.28 GHz and we use a ULA of 5 sensors separated by half a
wavelength of the actual narrowband source signals. There@on time is 1us, such thal” is a vector
of length 6400. The dictionary contains the sine and cosinetfons with frequencies 200, 202,..., 240
MHz, lengths 50, 55,..., 170 ns and starting point$,024,..., 259 ns, wherej = 1/F;. The size of
the dictionary is thus/ = 268 800. We use the gridg1°, 2°,..., 90} and {0, ¢, 24,..., 259} for the
angles and the delays, respectively Hencés a vector of dimensiofi.19 - 10°. Data are simulated with
different levels of the signal-to-noise ratio. Again we 0BeUnax = 2.

Figure[B compares the root mean square error (RMSE) of the BATOA estimates obtained by
both methods based on 50 simulated datasets for each neédedempared to the elementary procedure
the OMP-type algorithm achieves a gain of around 20 dB. This ¢ mainly due to the fact that the
algorithm takes into account all observations and not ongyngle point. For low signal-to-noise ratios

the elementary method completely fails.

E. Parameter Estimates

It is important to note that in contrast to the elementaryhodtthe OMP-type algorithm provides
estimates not only of the DOA and the TOA, but of all the otharameters including the waveform.
Indeed, in the setting described above our algorithm iflestiseveral consecutive sinusoids. Table Il
presents the empirical mean and standard deviation of tivaaes obtained by the elementary method
and Tabld Tl gives the results for the OMP-type method, rgife the estimates of the angles of arrival,
the associated delays, the frequencies of the four detsitadoids, their lengths and their starting points.
Estimates are especially accurate for the angles of amindlthe frequencies, whereas the estimates of
the lengths of the sinusoids and their starting points ass Bccurate. There is a clear tendency to
overestimate the length, especially for the shortest sidusndeed, for high noise levels it is not clear if
the OMP-type algorithm detects the shortest (and less etieyginusoid. The fourth sinusoid generally
has not even the correct frequency, so it is possible thaaldparithm adds any non relevant predictor,
because the shortest sinusoid is too weak for detection.

We observe that the reconstructed radar signlads not exactly the form of a modulated signal due
to the overlapping sinusoids. It is hence up to the user toenwrlch an interpretation of the signal.
Nevertheless, we emphasize that the algorithm works fortgpe of modulation (FSK or PSK) without

prior knowledge on the modulation and it provides a good ioiedne waveform.
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VIlI. CONCLUSION

The algorithm proposed in this paper is to the best of our kedge the first method addressing the
problem of estimating both the DOA and the unknown wavefofma aransmitted radar signal in the
presence of multiple propagation pathways. The new methad the spirit of OMP extended to more
sophisticated sparsity structures. The scaling of the @yybe-algorithm has been considered, which is
necessary for unbiased estimation. A simulation studgtilates the good performance of the new method
and exhibits a considerable improvement with respect toeselementary method.

We would like to emphasize the general character of our ntethwnich is of much interest for the
intercepted radar signal setting. First, the method pregdsere is not restricted to a specific array
geometry. Second and more importantly, the approach camléeted to a large variety of signals such
as sinusoids, chirps, composed signals etc. by using aday where a sparse representation of the

signal is possible.
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EMPIRICAL MEAN AND STANDARD DEVIATION (IN PARENTHESESY OF THE PARAMETER ESTIMATES OBTAINED BY THE
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OMP-TYPE ALGORITHM.

OMP-type algorithm

1st angle 1st delay 2nd angle 2nd delay
true 6 10 ns 42 40 ns
20 dB  6.00 (0) 10.94 (0) 42.0 (0) 40.6 (0)
0dB 594 (0.24) 105(1.34) 41.9(0.27) 40.2 (1.26)
1st frequ. 2nd frequ. 3rd frequ. 4th frequ.
true 210 MHz 230 MHz 210 MHz 230 MHz
20dB  230.0 (0) 210.0 (0) 230.0 (0) 210.0 (0)
0dB  230.0 (0) 210.0 (0) 230.1 (0.40) 210.0 (0)
1st length 2nd length 3rd length 4th length
true 160 ns 160 ns 80 ns 160 ns
20 dB 160.0 (0) 160.6 (1.64) 162.4 (12.1) 170.0 (0)
0dB  163.1 (4.62) 165.5 (4.20) 162.4 (15.1) 170.0 (0)
1st start 2nd start 3rd start 4th start
true Ons 160 ns 320 ns 400 ns
20dB 0 (0) 158.8 (1.54) 265.3 (12.9) 389.1 (0)
0dB  0(0) 153.1 (5.37) 271.0 (19.7) 389.5 (1.34)
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