Carole Delporte-Gallet

Hugues Fauconnier

Rachid Guerraoui

Anne-Marie Kermarrec

Eric Ruppert

Byzantine Agreement with Homonyms *

So far, the distributed computing community has either assumed that all the processes of a distributed system have distinct identifiers or, more rarely, that the processes are anonymous and have no identifiers. These are two extremes of the same general model: namely, n processes use ℓ different authenticated identifiers, where 1 ≤ ℓ ≤ n. In this paper, we ask how many identifiers are actually needed to reach agreement in a distributed system with t Byzantine processes.

We show that having 3t + 1 identifiers is necessary and sufficient for agreement in the synchronous case but, more surprisingly, the number of identifiers must be greater than n+3t 2

in the partially synchronous case. This demonstrates two differences from the classical model (which has ℓ = n): there are situations where relaxing synchrony to partial synchrony renders agreement impossible; and, in the partially synchronous case, increasing the number of correct processes can actually make it harder to reach agreement. The impossibility proofs use the fact that a Byzantine process can send multiple messages to the same recipient in a round. We show that removing this ability makes agreement easier: then, t + 1 identifiers are sufficient for agreement, even in the partially synchronous model.

INTRODUCTION

We consider a distributed system in which ℓ distinct identifiers are assigned to n processes, where 1 ≤ ℓ ≤ n. Several processes may be assigned the same identifier, in which case we call the processes homonyms. The identifiers are authenticated: if a process p receives a message from a process q with identifier i, p knows that the message was not sent by a process with identifier i ′ = i, but p does not know whether the message was sent by q or another process q ′ having the same identifier i. A process cannot direct a message it sends to a particular process, but can direct the message to all processes that have a particular identifier. This model generalizes the classical scheme where processes have distinct identifiers (i.e., ℓ = n), and the less classical scheme where processes are anonymous (i.e., ℓ = 1). Studying systems with homonyms gives us a better understanding of the importance of identifiers in distributed computing, and there are two additional motivations for the new model. Firstly, assuming in systems such as Pastry or Chord [START_REF] Antony | Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems[END_REF][START_REF] Stoica | Chord: A scalable peer-to-peer lookup service for internet applications[END_REF] that all processes have unique (unforgeable) identifiers might be too strong an assumption in practice. We may wish to design protocols that still work if, by a rare coincidence, two processes are assigned the same identifier. This approach is also useful if security is breached and a malicious process can forge the identifier of a correct process, for example by obtaining the correct process's private key. Secondly, in many cases, users of a system may wish to preserve their privacy by remaining anonymous. However, in a fully anonymous system where no identifiers are used, very few problems are solvable. (In particular, Okun observed that Byzantine agreement is impossible in the fully anonymous model [START_REF] Okun | Agreement among unacquainted Byzantine generals[END_REF], even with a single faulty process.) With a limited number of identifiers, more problems become solvable, and one can still preserve some level of anonymity by hiding, to some extent, the association between users and identifiers. For example, users of a distributed protocol might use only their domain names as identifiers. Thus, others will see that some user within the domain is participating, but will not know exactly which one. If several users within the same domain participate in the protocol, they will behave as homonyms.

We ask in this paper how many distinct identifiers are needed to reach agreement in a system of n processes, up to t of which can be Byzantine. We need only consider systems where n > 3t: this assumption is known to be a requirement for solving Byzantine agreement, even when ℓ = n [START_REF] Lamport | The Byzantine generals problem[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF], and it thus applies also for systems with homonyms. For the synchronous case, we prove using a scenario argument that 3t + 1 identifiers are necessary. The matching synchronous algorithm is obtained by a simulation that transforms any synchronous Byzantine agreement algorithm designed for a system with unique identifiers to one that works in a system with ℓ > 3t identifiers. For the partially synchronous case, we prove using a partitioning argument that the lower bound becomes ℓ > n+3t 2 . (Note that n+3t 2 is strictly greater than 3t because n > 3t.) We show that this bound is also tight by giving a new partially synchronous Byzantine agree-Synchronous Partially synchronous Innumerate processes ℓ > 3t ℓ > n+3t

Numerate processes ℓ > 3t ℓ > n+3t 2 (ℓ > t for restricted Byzantine processes) (ℓ > t for restricted Byzantine processes)

Table 1: Necessary and sufficient conditions for solving Byzantine agreement in a system of n processes using ℓ identifiers and tolerating t Byzantine failures. In all cases, n must be greater than 3t.

ment algorithm. This bound is somewhat surprising because the number of required identifiers ℓ depends on n as well as t. Counter-intuitively, increasing the number of correct processes can render agreement impossible. For example, if t = 1 and ℓ = 4, agreement is solvable for 4 processes but not for 5. Another difference from the classical situation (where ℓ = n) is that the condition that makes Byzantine agreement solvable is different for the synchronous and partially synchronous models.

To strengthen our results, we show that (a) both the synchronous and partially synchronous lower bounds hold even if correct processes are numerate, i.e., can count the number of processes that send identical messages in a round and (b) the matching algorithms are correct even if processes are innumerate. In systems with unique identifiers, senders can append their identifier to all messages, making it trivial for the receiver to count copies of messages. This is not possible in systems with homonyms, so the distinction between numerate and innumerate processes is important.

What has more impact, however, is the ability for a Byzantine process to send multiple messages to a single recipient in a round. In a classical system with unique identifiers, the Byzantine process has no advantage in doing this: algorithms could simply discard such messages. In systems with homonyms, there is a clear advantage. In fact, we prove that if each Byzantine process is restricted to sending a single message per round to each recipient (and processes are numerate), then t + 1 identifiers are enough to reach agreement even in a partially synchronous model. We also show this bound is tight using a valency argument: t + 1 identifiers are needed even in the synchronous case. The fact that t + 1 identifiers are sufficient to reach agreement with restricted Byzantine processes has some practical relevance:

In some settings, it is reasonable to assume that Byzantine processes are simply malfunctioning ordinary processes sending incorrect messages, and not malicious processes with the additional power to generate and send more messages than correct processes can.

The results are summarized in Table 1. Section 2 describes our models and recalls the specification of Byzantine agreement. Section 3 considers the synchronous case and Section 4 considers the partially synchronous one. Section 5 gives our results for restricted Byzantine processes. Section 6 provides some concluding remarks.

DEFINITIONS

We consider a distributed message-passing system with n ≥ 2 processes. Each process has an authenticated identifier from the set L = {1, ..., ℓ}. We assume that n ≥ ℓ and that each identifier is assigned to at least one process. Thus, the parameter ℓ measures the number of different identifiers that are actually assigned to processes. In the case where n > ℓ, one or more identifiers will each be shared by several processes. In the case where ℓ = 1, all processes have the same identifier, and they are therefore anonymous. We assume algorithms are deterministic. Thus, the actions of a process are entirely determined by the process's initial state and the messages it receives. Processes with the same identifier execute the same code but processes with different identifiers may behave differently. In our proofs, we sometimes refer to individual processes using names like p, but these names cannot be used by the processes themselves in their algorithms.

A correct process does not deviate from its algorithm specification. A process that is not correct is called Byzantine. The maximum possible number of Byzantine processes is denoted t (where 0 < t < n). We need only consider systems where n > 3t: this assumption is known to be a requirement for solving Byzantine agreement, even when ℓ = n [START_REF] Lamport | The Byzantine generals problem[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF], and it thus also applies to systems with homonyms. A Byzantine process may choose to send arbitrary messages (or no message) to each other process. However, we assume Byzantine processes cannot forge identifiers: each message is authenticated with its sender's identifier. Given a message m, we denote by m.val its value (or content) and by m.id the identifier of the sender. If a correct process receives m, then at least one process p with identifier m.id sent m.

In the synchronous model, computation proceeds in rounds.

In each round, each process can send a message to each other process and then receive all messages that were sent to it during that round.

For the partially synchronous model we use the definition of Dwork, Lynch and Stockmeyer [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]: computation proceeds in rounds, as in the synchronous model, except that in each execution, a finite number of messages might not be delivered to all of their intended recipients. There is no bound on the number of messages that can be dropped. As argued in [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF], this basic partially synchronous model is equivalent to other kinds of partially synchronous models. More specifically, the model in which message delivery times are eventually bounded by a known constant and the model in which message delivery times are always bounded by an unknown constant can both simulate the basic partially synchronous model. Conversely, each of these models can be simulated by the basic partially synchronous model. Thus, our characterization of the values of n, ℓ and t for which Byzantine agreement can be solved applies to the other types of partially synchronous systems too.

As mentioned in the introduction, we also consider variants of the models in which each Byzantine process is restricted to sending at most one message to each recipient in each

n -3t + 1 processes A 1 A 2 A 2t+2 A t+2 A 2t 0 1 0 1 1 0 n -3t + 1 processes A 2 A t+1 A t+2 A 2t A 2t+1 A 3t At A 2t+1 A 2t+2 A 3t At A t+1 A 1 Figure 1: System used in proof of Proposition 1
round. In general, we consider unrestricted Byzantine processes unless the restriction is explicitly mentioned. We also distinguish the cases where processes are innumerate from the case where they are numerate. We say that a process is innumerate if the messages it receives in a round form a set of messages: the process cannot count the number of copies of identical messages it receives in the round. We say that a process is numerate if the messages it receives in a round form a multiset of messages: the process can count the number of copies of identical messages it receives in the round. (As we shall show, the numerate model is more powerful than the innumerate model against restricted Byzantine processes.)

The goal of an agreement algorithm is for a set of processes proposing values to decide on exactly one of these values. We consider the classical Byzantine agreement problem [START_REF] Michael | Easy impossibility proofs for distributed consensus problems[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF], defined by the following three properties. [START_REF] Angluin | Local and global properties in networks of processors (extended abstract)[END_REF] Validity: If all correct processes propose the same value v, then no value different from v can be decided by any correct process. (2) Agreement: No two correct processes decide differently. (3) Termination: Eventually, every correct process decides some value. An algorithm solves Byzantine agreement in a system of n processes with ℓ identifiers tolerating t failures if these three properties are satisfied in every execution in which at most t processes fail, regardless of the way the n processes are assigned the ℓ identifiers. (Recall that each identifier must be assigned to at least one process.)

THE SYNCHRONOUS CASE

Here, we prove that having ℓ > 3t is necessary and sufficient for solving synchronous Byzantine agreement, regardless of whether the processes are numerate or innumerate. To show that the condition ℓ > 3t is sufficient to reach agreement, we design a simulation, where each group of processes with a common identifier cooperatively simulate a single process.

Impossibility

We prove the condition ℓ > 3t is necessary using a scenario argument, in the style of Fischer, Lynch and Merritt [START_REF] Michael | Easy impossibility proofs for distributed consensus problems[END_REF].

Proposition 1 Synchronous Byzantine agreement is unsolvable even with numerate processes if ℓ ≤ 3t.

Proof. It suffices to prove there is no synchronous algorithm for Byzantine agreement when ℓ = 3t. To derive a contradiction, suppose there was an n-process synchronous algorithm A for Byzantine agreement when ℓ = 3t. Let Ai(v) be the algorithm executed by a process with identifier i when it has input value v.

Imagine setting up a system as shown in Figure 1. Every process correctly executes the algorithm Ai assigned to it. The two stacks of processes shown in the diagram each have n -3t + 1 processes, so there are a total of 2n processes in this system. All processes within a stack have the same identifier, and execute the same algorithm Ai, as shown. Inputs to each of the 2n process are indicated by the arrows.

Consider the nt processes that run At+1(1), . . . , A3t(1). These nt processes cannot distinguish this execution from an execution in an n-process system where the remaining identifiers, 1, . . . , t are each assigned to a single Byzantine process. (Here, we use the fact that each Byzantine process can send multiple messages to each correct process in a single round.) By validity, the nt processes must output 1.

By a symmetric argument, the n-t processes running A1(0), . . . , A2t(0) must output 0. Now, consider the n-2t processes that run A1(0), . . . , At(0) and the t processes that run A2t+1(1), . . . , A3t(1). These nt processes cannot distinguish this execution from an n-process execution where each of the remaining identifiers, t + 1, . . . , 2t are each assigned to a single Byzantine process. By agreement, the nt processes must output the same value, contradicting the previous two paragraphs.

Algorithm

Next, we present an algorithm that solves Byzantine agreement assuming ℓ > 3t. Our agreement algorithm is generic: given any synchronous Byzantine agreement algorithm for ℓ processes with unique identifiers (such algorithms exist when ℓ = n > 3t, e.g., [START_REF] Lamport | The Byzantine generals problem[END_REF]), we transform it into an algorithm for n processes and ℓ identifiers, where n ≥ ℓ. Without loss of generality, we assume that the algorithm to be transformed uses broadcasts: a process sends the same message to all other processes. (If a process wishes to send a message only to specific recipients, it could include the recipient's identifier in the broadcasted message.)

In our transformation, we divide processes into groups according to their identifiers. Each group simulates a single process. If all processes within a group are correct, then they can reach agreement and cooperatively simulate a single process. If any process in the group is Byzantine, we allow the simulated process of that group to behave in a Byzantine manner. The correctness of our simulation relies on the fact that more than two-thirds of the simulated processes will be correct (since ℓ > 3t), which is enough to achieve agreement.

Proposition 2 Synchronous Byzantine agreement is solvable even with innumerate processes if ℓ > 3t.

Proof sketch. We transform any Byzantine agreement algorithm A for the classical model with unique identifiers into an algorithm T (A) for systems with homonyms. Consider any such A (Figure 2) for a system with ℓ processes {p1, . . . , p ℓ }. A can be specified by: (1) a set of local process states, (2) a function init(i, v) that encodes the initial state of process pi when pi has input value v, (3) a function M (s, r) that determines the message to send in state s in round r, (4) a transition function δ(s, r, R) that determines the new state to which the process moves from state s after receiving a set of messages R in round r, and (5) a decision function decide(s) which is the decision in state s, or ⊥ if there is no decision yet (once a correct process has decided in a state s, decide(s ′) remains equal to this decision in all states s ′ reachable from s).

Let G(i) be the set of processes with identifier i. We name such a set a group. We say that the group G(i) is correct if all processes in G(i) are correct. At most t of the ℓ groups are not correct.

In our new algorithm T (A), shown in Figure 3, three rounds simulate one round of A. We call these three rounds a phase. Each phase consists of a selection round, a deciding round and a running round. In the selection round (line 3 to 5) of a phase r, the processes within each group agree on a state for phase r. For each i, if G(i) is correct, then in each round the selected state will be the same for the processes in this group. In deciding rounds (line 6 to 9), if there is a value decided by t + 1 processes with different identifiers Code for process pi Variable: then the process can decide that value. At least one of these identifiers refers to a correct group and gives the decision. The deciding rounds are useful for correct processes that belong to a group with a Byzantine process. In running rounds (line 10 to 15), each process executes one step of algorithm A with the state chosen in the preceding selection round and the messages received in the round.

1 s = init(i, v) /* v
Let αH be an execution of T (A). For all phases r, at the end of the r-th selection round (line 5), all processes in a correct group G(i) have the same value for the state s, and therefore for M (s, r) and decide(s). Let s r i be the value of state s for the processes in group G(i) after the rth selection round. Note that s 1 i is the initial state of at least one process in G(i).

By induction on r, we prove that there is an execution αS of A such that for all r and for all processes in each correct group G(i): s r i = st r i (and hence M (s r i , r) = M (st r i , r)), where st r i is the value of pi's variable s at the beginning of round r in αS. In αS, pi is correct for all identifiers i such that G(i) is correct in αH .

We sketch the key idea of the inductive step that proves this claim. In each running round, messages sent by the processes in a correct group G(i) are identical and indistinguishable from a single message from a unique correct process with identifier i. On the other hand, if G(i) is not correct, the processes in G(i) may send different messages to a process p (in which case p ignores the messages at line 14) or they may all send the same (arbitrary) message to p. Either way, their collective behaviour is indistinguishable from a unique Byzantine process with identifier i (which could either send nothing or an arbitrary message to p).

As A is a synchronous Byzantine agreement algorithm that tolerates t Byzantine failures, all correct processes eventually decide some value v in αS. It follows from the claim above that in αH , eventually for all correct groups G(i), s r i is a state where decide(s r i) is v. As ℓ > 3t, at least t + 1 groups G(i) are correct and all processes in these groups eventually send v in the deciding rounds. Thus, each correct process in αH eventually decides, even if it is in a group with a Byzantine process. Furthermore, if a correct process decides in αH , it decides the value it received from t + 1 groups, at least one of which is a correct group, so it must decide v. Thus, the agreement, validity and termination properties for αH follow from the agreement, validity and termination properties for αS.

Proposition 1 states that ℓ > 3t identifiers are required to solve synchronous Byzantine agreement, even if processes are numerate. Proposition 2 states that ℓ > 3t identifiers are sufficient, even if processes are innumerate. Thus, we have the following theorem.

Theorem 3 Synchronous Byzantine agreement is solvable if and only if ℓ > 3t.

THE PARTIALLY SYNCHRONOUS CASE

Here we prove that having ℓ > 3t+n 2 is necessary and sufficient for solving Byzantine agreement in a partially synchronous system, regardless of whether the processes are numerate or innumerate. Intuitively, this condition means that at least 3t+1 of the identifiers must each be assigned to a single process (since 2ℓn > 3t). We shall see in Section 4.2 that having this many non-homonym processes will be crucial in proving the correctness of the algorithm that we design.

Impossibility

We prove the necessity of the condition ℓ > n+3t 2 using a partitioning argument. We show that if there are too few identifiers, and messages between two groups of correct processes are not delivered for sufficiently long, then the Byzantine processes can force processes in the two groups to decide different values.

Proposition 4 Partially synchronous Byzantine agreement is unsolvable even with numerate processes if ℓ ≤ n+3t 2 .

Proof. Byzantine agreement is impossible when ℓ ≤ 3t even in the fully synchronous model by Proposition 1. So, it remains to show that agreement is impossible when ℓ > 3t and ℓ ≤ n+3t 2 . To derive a contradiction, assume a Byzantine agreement algorithm A exists for such a system. We construct three executions of this algorithm, α, β and γ.

In α, process identifiers are assigned as shown in the upper left portion of Figure 4. In this diagram, a process labelled Ai has identifier i and runs the algorithm A correctly, and a process labelled Bi has identifier i and is Byzantine. Note that there are n processes in total. The t Byzantine processes send no messages and all messages sent by correct processes are delivered. All correct processes have input 0 in α and must therefore decide 0 by some round rα.

Execution β is defined similarly, as shown in the upper right portion of Figure 4. Again, the t Byzantine processes send no messages and all messages sent by correct processes are delivered. All correct processes have input 1, and must therefore decide 1 by some round r β .

In γ, the n processes are assigned identifiers as shown in the bottom half of Figure 4. (Here, we use the assumption that ℓ ≤ n+3t 2 , so that n ≥ 2ℓ -3t.) The inputs to each group of correct processes is also shown in the diagram. The t Byzantine processes B1, B2, . . . , Bt send to each correct process with input 0 the same messages as that process receives in α and they send to each correct process with input 1 the same messages as that process receives in β. (This requires the ability of Byzantine process B1 to send more than one message to each recipient per round.) All messages sent across the edges shown in the diagram are delivered. All other messages are not delivered for the first r = max(rα, r β) rounds. The correct processes with input 0 cannot distinguish γ from α for the first r rounds, so they must decide 0 by round r. The correct processes with input 1 cannot distinguish γ from β for the first r rounds, so they must decide 1 by round r. This contradicts the assumption that A satisfies agreement.

At A2 processes n-ℓ+1 0 0 0 1 1 1 Execution β A ℓ Execution α 0 0 A ℓ Execution γ 2 n-2ℓ+3t processes 1 n-ℓ+1 processes A3t+1 A3t+2 A3t+1 A3t+2 A2 A ℓ At+2 A2t B2 A ℓ A3t At B2t+2 B3t At+2 A2t A2t+2 A3t+1 A2t+2 A3t+1 A3t+2 A3t+2 A3t Bt+2 Bt B2t A1 A1 B1 A1 B2t+1 Bt+1 At+1 A2t+1 At+1 A2t+1

Algorithm

We now describe an algorithm that solves Byzantine agreement in the basic partially synchronous model when ℓ > n+3t 2 . Our algorithm is based on the algorithm given by Dwork, Lynch and Stockmeyer [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF] for the classical case where n = ℓ, with several novel features. Generalizing the algorithm is not straightforward. Some of the difficulty stems from the following scenario. Suppose two correct processes share an identifier and follow the traditional algorithm of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]. They could send very different messages (for example, if they have different input values), but recipients of those messages would have no way of telling apart the messages of the two correct senders, so it could appear to the recipients as if a single Byzantine process was sending out contradictory information. Thus, the algorithm has to guard against inconsistent information coming from correct homonym processes as well as malicious messages sent by the Byzantine processes.

Proposition 5 Partially synchronous Byzantine agreement is solvable even with innumerate processes if ℓ > n+3t 2 .

We think of an execution as being divided into superrounds, where each superround consists of two consecutive rounds.

Let T be the first superround such that all messages sent during or after superround T are delivered. We begin with an authenticated broadcast primitive based on [START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF]. This primitive allows processes to perform Broadcast(m) commands. Once a process receives sufficient evidence that a process with identifier i has performed a Broadcast(m), it performs an Accept(m, i) action. This is guaranteed to happen for broadcasts from correct processes after superround T . (In the case where a process with identifier i is Byzantine, processes will at least eventually agree on which messages to accept from identifier i.) Our version of authenticated broadcast for homonymous systems satisfies the following three properties.

1. Correctness: If a process with identifier i performs Broadcast(m) in superround r ≥ T , then every correct process performs Accept(m, i) during superround r.

2.

Unforgeability: If all processes with identifier i are correct and none of them performs Broadcast(m), then no correct process performs Accept(m, i).

Relay:

If some correct process performs Accept(m, i) during superround r, then every correct process performs Accept(m, i) by superround max(r + 1, T).

Proposition 6 It is possible to implement authenticated broadcasts satisfying the correctness, unforgeability and relay properties in the basic partially synchronous model, provided ℓ > 3t.

Proof sketch. The implementation is a straightforward generalization of the ones given in [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF][START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF] for systems with unique identifiers. To perform Broadcast(m) in superround r, a process sends a message init m in the first round of superround r. Any process that receives this message from identifier i sends echo m, r, i in the following round, which is the second round of superround r, and in all subsequent rounds. In each round after superround r, any process that has so far received echo m, r, i from ℓ -2t distinct identifiers sends a message echo m, r, i . If, at any time, a process has received the message echo m, r, i from ℓt distinct identifiers, the process performs Accept(m, i).

We now describe the Byzantine agreement protocol. The Byzantine agreement algorithm is shown in Figure 5. Whenever a correct process sends a message, it sends it to all processes. The execution of the algorithm is broken into phases, each of which lasts four superrounds. Processes assigned the identifier (ph mod ℓ) + 1 are the leaders of phase ph. In each phase, each process first performs a Broadcast of a proposal containing the set of values it would be willing to decide (line 8). These are the values in its proper set, unless it has already locked a value, as described below, in which case it can only send its locked value. Each phase leader chooses a value that appears in proposals the leader has accepted from ℓt different identifiers (if such a value exists) and sends out a request for processes to lock that value (line 12) during superround 2 of the phase. Then, in superround 3 of the phase, all processes vote on which lock message to support, using a Broadcast (line 16). In the third superround of the phase, each process that performed Accept for votes for a particular value v from ℓt different identifiers sends ack v back to the leaders (line 20) and locks the value v (by adding the value to its locks set, along with the phase number associated with the lock). A leader that receives ℓ-t ack messages for the value it wanted locked can decide that value (line 22). Finally, each process that has decided sends a message to others (line 23); if any process receives such a message with the same decision value from t + 1 identifiers, it can also decide that value (line 26). At the end of a phase, a process releases old locks (line 30) if it has accepted enough votes for a later lock request.

To cope with homonyms, our algorithm differs from the original algorithm of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF] in the following three ways. [START_REF] Angluin | Local and global properties in networks of processors (extended abstract)[END_REF] The new algorithm uses a set of processes with ℓ-t different identifiers as a quorum (e.g., for vote messages). The key property of these quorums is that any two such sets must both contain a process that is correct and does not share its identifier with any other process, as shown in Lemma 7, below. (2) The vote messages are needed to ensure agreement in the case where several leaders ask processes to lock different values, something which could not occur in the original algorithm of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF], since each phase in that algorithm has a unique leader.

(3) The decide messages are used to ensure that a correct process that shares its identifier with a Byzantine process can eventually decide. (This is similar to the mechanism used in Section 3.2.) We begin by proving the property of quorums used by the algorithm.

Lemma 7 Assume ℓ > n+3t 2 . If A and B are sets of identifiers and |A| ≥ ℓt and |B| ≥ ℓt, then A ∩ B contains an identifier that belongs to only one correct process and no Byzantine processes.

Proof. At most n-ℓ identifiers belong to more than one process. At most t identifiers belong to Byzantine processes. Thus, any set that has more than nℓ + t identifiers must contain an identifier that belongs to only one correct process and no Byzantine processes. Since 2ℓ -3t > n, we have

|A ∩ B| = |A| + |B| -|A ∪ B| ≥ |A| + |B| -ℓ ≥ (ℓ -t) + (ℓ - t) -ℓ = 2ℓ -3t -ℓ + t > n -ℓ + t.
In the original algorithm of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF], each phase has a unique leader. In our algorithm, there may be several leaders. The new voting superround ensures this cannot cause problems, as shown in the following lemmas. Proof. Suppose a correct process p sends ack v, ph and a correct process p ′ sends ack v ′ , ph . (We may have p = p ′ .) According to line 18, there is a set A of ℓt identifiers j for which p performs Accept(vote v, ph , j). Similarly, there is a set B of ℓt identifiers j for which p ′ performs Accept(vote v ′ , ph , j). By Lemma 7, A ∩ B contains an identifier j that belongs to only one correct process and no Byzantine processes. By unforgeability, the correct process with identifier j performed Broadcast(vote v, ph) and Broadcast(vote v ′ , ph). Thus, v = v ′ . Lemma 9 If two correct processes decide on line 22 in the same phase, then they decide the same value.

Proof. Suppose two correct processes p and p ′ decide values v and v ′ , respectively, during some phase ph. Then, process p received ack v, ph from ℓt > t different identifiers, so some correct process must have sent ack v, ph . Similarly, some correct process must have sent ack v ′ , ph . By Lemma 8, v = v ′ .

The remainder of the proof of correctness of the algorithm is similar to the proof for the original algorithm of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]. It is given in Appendix A.1, using the following lemmas.

Lemma 10 Suppose there is a value v and a phase ph such that processes with ℓt different identifiers sent an Code for process with identifier i ∈ {1, . . . , ℓ} Lemma 11 At the end of any phase ph3 that occurs after T , if (v1, ph1) is in the locks variable of a correct process p1 and (v2, ph2) is in the locks variable of a correct process p2, then v1 = v2.

1 locks = ∅ 2 ph = 0 /*
Lemma 12 Let p be a correct process. Let ph be a phase such that (ph mod ℓ) + 1 is the identifier of p and phase ph -1 occurs after T . Then, p will send a lock message in superround 2 of phase ph.

Combining Proposition 4 and 5 yields the following theorem (for numerate or innumerate processes).

Theorem 13 Partially synchronous Byzantine agreement is solvable if and only if ℓ > n+3t 2 .

RESTRICTED BYZANTINE PROCESSES

We now consider the effect of restricting the Byzantine processes so that each Byzantine process can send at most one message to each recipient in each round. We prove that this restriction reduces the number of identifiers needed to reach agreement if processes are numerate but does not help if processes are innumerate.

Numerate Processes

First, we consider the model where processes can count copies of identical messages. We prove the following two theorems for this model.

Theorem 14 Synchronous Byzantine agreement is solvable with numerate processes against restricted Byzantine processes if and only if ℓ > t.

Theorem 15 Partially synchronous Byzantine agreement is solvable with numerate processes against restricted Byzantine processes if and only if ℓ > t.

Both of these theorems follow from Proposition 16 and 18, below.

Proposition 16 Synchronous Byzantine agreement is unsolvable with numerate processes against restricted Byzantine processes if ℓ ≤ t.

Proof sketch. To derive a contradiction, assume that there exists an algorithm A that solves Byzantine agreement with ℓ ≤ t. In the argument below, we consider only executions of A with some fixed set of ℓ Byzantine processes, chosen so that each of the ℓ identifiers is held by one Byzantine process.

We consider configurations of the the algorithm A at the end of a synchronous round. Such a configuration can be completely specified by the state of each process. A configuration C is 0-valent if, starting from C, the only possible decision value that correct processes can have is 0; it is 1valent if, starting from C, the only possible decision value that correct processes can have is 1. C is univalent if it is either 0-valent or 1-valent; C is multivalent if it is not univalent.

The following lemma encapsulates a Byzantine agent's ability to influence the decision value.

Lemma 17 Let C and C ′ be two configurations of A such that the state of only one correct process is different in C and C ′ . Then, there exist executions α and α ′ that start from C and C ′ , respectively, which both produce the same output value.

Proof. Let p be the correct process whose state is different in C and C ′ and let i be the identifier assigned to p. Let s and s ′ be the state of p in C and C ′ , respectively. Let b be a Byzantine process that has identifier i.

Let α be the execution from C in which b starts in state s ′ and follows p's algorithm, and all other Byzantine processes send no messages. Let α ′ be the execution from C ′ in which b starts in state s and follows p's algorithm, and all other Byzantine processes send no messages. No correct process other than p can distinguish between α and α ′ , since p and b send the same messages in α as b and p send in α ′ . Thus, each correct process other than p must output the same decision in α and α ′ .

The remainder of the proof of Proposition 16 is a standard valency argument (see Appendix A.2). We sketch it here. By validity, the initial configuration where all inputs are 0 is 0valent. We can obtain a sequence of initial configurations by changing the correct process's inputs to 1, one at a time. By validity, the final configuration in this sequence is 1-valent. By Lemma 17 successive configurations in this sequence are capable of leading to the same output. It follows that some initial configuration in this sequence is multivalent.

A similar argument can be used to show that every multivalent configuration must have a multivalent successor configuration, again using Lemma 17. Hence, we can construct an infinite execution of multivalent configurations in which no process ever decides, violating termination. This contradiction establishes Proposition 16.

Proposition 18 Partially synchronous Byzantine agreement is solvable with numerate processes against restricted Byzantine processes if ℓ > t.

The algorithm used to prove this proposition is similar to the one presented in Section 4.2. Details may be found in Appendix A.3. Like the algorithm in Section 4.2, it uses an authenticated broadcast primitive, but here Accept actions have an extra parameter indicating the multiplicity of the accepted message. More precisely, this multiplicity is greater than the number of correct processes that sent the message and does not exceed the number of correct processes by more than the actual number of Byzantine processes in the execution. Furthermore, all correct processes agree eventually on the multiplicity of each message. This authenticated broadcast with multiplicity is used to ensure the agreement property. As ℓ > t, at least one identifier is assigned only to correct processes. This property is used to ensure the termination property of the agreement algorithm.

Innumerate Processes

Theorem 19 Synchronous Byzantine agreement is solvable with innumerate processes against restricted Byzantine processes if and only if ℓ > 3t.

Proof sketch. (See Appendix A.4 for a detailed proof.) By Proposition 2, there is an algorithm if ℓ > 3t, even against (unrestricted) Byzantine processes, so the same algorithm would work against restricted Byzantine processes. To prove that ℓ > 3t is necessary, we use a simulation. If it were possible to solve the problem when ℓ ≤ 3t, this algorithm would work, in particular, when n-ℓ+1 of the processes are all assigned the same identifier and input, and all receive exactly the same messages from the Byzantine agents. In this situation, the nℓ + 1 processes would behave as clones, taking exactly the same sequence of steps. This would imply that the same algorithm would solve Byzantine agreement when n = ℓ ≤ 3t, which is known to be impossible.

Theorem 20 Partially synchronous Byzantine agreement is solvable with innumerate processes against restricted Byzantine processes if and only if ℓ > n+3t 2 .

Proof. By Proposition 5, there is an algorithm if ℓ > n+3t 2 , even against (unrestricted) Byzantine processes, so the same algorithm would work against restricted Byzantine processes. The impossibility result can be proved in exactly the same way as Proposition 4. In that proof, only the Byzantine process denoted B1 must send multiple messages to a single recipient in execution γ. Consider the messages B1 must send to At(0) in γ. It must send the same messages as the entire stack of processes running A1 send to At(0) in α. However, all processes in that stack behave identically in α, so B1 must simply send nℓ + 1 copies of a message to At(0). Since we are now considering a model where At(0) is innumerate, B can simply send one copy of the message to At(0) instead. (A symmetric argument applies to the messages sent by B1 to each other process in γ.)

CONCLUDING REMARKS

Since the pioneering work of [START_REF] Angluin | Local and global properties in networks of processors (extended abstract)[END_REF], the question of what can be computed in a totally anonymous distributed systems has been extensively studied. Some results depended on properties of the communication graph (e.g. [START_REF] Boldi | An effective characterization of computability in anonymous networks[END_REF][START_REF] Yamashita | Computing on anonymous networks: Part I-characterizing the solvable cases[END_REF]). Some work considered shared memory for the "wake up" problem [START_REF] Jayanti | Wakeup under read/write atomicity[END_REF], others considered consensus [START_REF] Attiya | Computing in totally anonymous asynchronous shared memory systems[END_REF]. The power of anonymous broadcast systems, in comparison with anonymous sharedmemory systems has also been studied [START_REF] Aspnes | Relationships between broadcast and shared memory in reliable anonymous distributed systems[END_REF]. None of these considered process failures. Anonymous processes with crash failures have been considered more recently [START_REF] Bonnet | The price of anonymity: Optimal consensus despite asynchrony, crash and anonymity[END_REF][START_REF] Buhrman | On the importance of having an identity or, is consensus really universal?[END_REF][START_REF] Delporte-Gallet | Fault-tolerant consensus in unknown and anonymous networks[END_REF][START_REF] Guerraoui | Anonymous and fault-tolerant shared-memory computing[END_REF][START_REF] Okun | Renaming in synchronous message passing systems with Byzantine failures[END_REF][START_REF] Ruppert | The anonymous consensus hierarchy and naming problems[END_REF]. In [START_REF] Okun | Efficient algorithms for anonymous Byzantine agreement[END_REF], Byzantine agreement was studied in a model with a restricted kind of anonymity: processes have no identifiers, but each process has a separate channel to every other process and a process can detect through which channel an incoming message is delivered. It was shown that Byzantine agreement can be solved in this model when n > 3t.

This paper is the first to study a distributed system model with homonyms, i.e., with a limited number of identifiers. The model unifies both classical (non-anonymous) and anonymous models and is interesting from both a theoretical and a practical viewpoint. We completely characterized the solvability of Byzantine agreement in this model, precisely quantifying the impact of the adversary, with some surprising results. We focused however on agreement and many other problems would be interesting to consider. We also focused on computability and complexity is yet to be explored.

The proof of the proposition below is included for the sake of completeness, but it is very similar to earlier proofs of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF][START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF].

Proposition 6 It is possible to implement authenticated broadcast satisfying the correctness, unforgeability and relay properties in the basic partially synchronous model, provided ℓ > 3t.

Proof. The implementation of an authenticated broadcast primitive is a straightforward generalization of the ones given in [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF][START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF] for systems with unique identifiers. To perform Broadcast(m) in superround r, a process sends a message init m in the first round of superround r. Any process that receives this message from identifier i sends echo m, r, i in the following round, which is the second round of superround r, and in all subsequent rounds. In each round after superround r, any process that has so far received echo m, r, i from ℓ -2t distinct identifiers sends a message echo m, r, i . If, at any time, a process has received the message echo m, r, i from ℓt distinct identifiers, the process performs Accept(m, i).

Correctness: If a process with identifier i performs Broad cast(m) in some superround r ≥ T , then all correct processes send echo m, r, i messages in the second round of superround r. All of these messages will be delivered and they will come from at least ℓt different identifiers, so all processes will perform Accept(m, i) in the second round of superround r.

Unforgeability: Suppose all processes with identifier i are correct and none perform Broadcast(m). The only reason a correct process will send a message echo m, r, i (for some r) is if it has previously received echo m, r, i messages from ℓ -2t > t identifiers, one of which must have been sent by a correct process. Thus, no correct process can send the first echo m, r, i message. So, no process can receive echo m, r, i from ℓt > t identifiers. It follows that no correct process performs Accept(m, i).

Relay: Suppose some correct process P performs Accept(m, i) during superround r. For some r ′ , P has received echo m, r ′ , i messages from ℓt different identifiers. At least ℓ -2t of those messages were sent by correct processes. Each of those ℓ-2t processes continue to send echo m, r ′ , i in every round after superround r. Thus, in superround max(r+1, T) every correct process sends echo m, r ′ , i and all of these messages are delivered, so every correct process performs Accept(m, i). Lemma 10 Suppose there is a value v and a phase ph such that processes with ℓt different identifiers sent an ack v, ph message in phase ph. Then, at all times after phase ph, each correct process that sent ack v, ph has a pair (v, ph ′) with ph ′ ≥ ph in its locks set.

We now complete the proof that the algorithm given in

Proof. To derive a contradiction, suppose the claim is false. Let A be the set of ℓt identifiers of the processes that sent an ack v, ph message in phase ph. Consider the first time the claim is violated: some correct process q that sent an ack v, ph message removes its lock on v (on line 30). This means that there is some v ′ = v and ph ′ > ph such that q has performed Accept(vote v ′ , ph ′ , j) for ℓt > t different identifiers j, at least one of which must belong only to correct processes. By unforgeability, some correct process performed Broadcast(vote v ′ , ph ′). That process must have performed Accept(propose Vj , ph ′ , j) for ℓt different identifiers j with v ′ ∈ Vj. Let B be this set of identifiers. By Lemma 7, some identifier j ∈ A ∩ B belongs to only one correct process and no Byzantine processes. Let r be the correct process with this identifier j. Since r's identifier is in A, r sent ack v, ph in phase ph. Since r's identifier is in B, it follows from unforgeability that r performed a Broadcast(propose Vj , ph ′) with v ′ ∈ Vj. According to line 7, this is possible only if (v, *) is not in r's locks set at the beginning of phase ph ′ . This contradicts our assumption that all correct processes that sent an ack v, ph message in phase ph (including r) keep the value in v in their locks set from the time they execute line 20 of phase ph until they execute line 30 of phase ph ′ .

The following lemmas are useful for proving termination. Recall that all messages sent after T are guaranteed to be delivered.

Lemma 11 At the end of any phase ph3 that occurs after T , if (v1, ph1) is in the locks variable of a correct process p1 and (v2, ph2) is in the locks variable of a correct process p2, then v1 = v2.

Proof. Since, at the end of phase ph3, correct processes have locks associated with phases ph1 and ph2, we must have ph1 ≤ ph3 and ph2 ≤ ph3. If ph1 = ph2, then v1 = v2 by Lemma 8. So for the rest of the proof assume, without loss of generality, that ph2 > ph1. Before process p2 added (v2, ph2) to its locks set in phase ph2, it performed Accept(vote v2, ph2 , j) for ℓt different identifiers j. By the relay property of the authenticated broadcasts, p1 will accept all of these messages by the end of phase ph3 and remove (v1, ph1) from its locks set, if v1 = v2. Thus, v1 must be equal to v2.

Lemma 12

Let p be a correct process. Let ph be a phase such that (ph mod ℓ) + 1 is the identifier of p and phase ph -1 occurs after T . Then, p will send a lock message in superround 2 of phase ph.

Proof. By Lemma 11, at most one value will be appear in the locks variables of correct processes at the end of phase ph -1. We consider two cases.

Case 1: the locks set of some correct process q is non-empty at the end of phase ph -1. Let (v, phv) be the (unique) entry in the locks set of q, where phv must be smaller than ph. Then q performed Accept(vote v, phv , j for ℓt > t different identifiers, including some identifier j that does not belong to any Byzantine process. Thus, some correct process q performed Broadcast(vote v, phv). So, q performed Accept(propose Vj , phv , j) from ℓt ≥ 2t + 1 different identifiers j with v ∈ Vj . At least t + 1 of those identifiers do not belong to any Byzantine process. So correct processes with at least t + 1 different identifiers performed Broadcast(propose Vj, phv), which means v is in the proper set of correct processes with at least t+1 different identifiers at the beginning of phase phv. Thus, by the end of phase ph -1, v will be in the proper set of every correct process. It follows that, in phase ph, every correct process will Broadcast(propose V, ph) with v ∈ V , and process p will be able to find a value that it can send in superround 2 of phase ph.

Case 2: the locks set of every correct process is empty at the end of phase ph -1. If there are t + 1 correct processes with the same input value, that value will be in the proper set of all correct processes by the beginning of phase ph. Otherwise, all input values will be in the proper set of all correct processes at the beginning of phase ph. Either way, some value will appear in the propose message that is broadcast by every correct process in phase ph, so p will be able to find a value that it can send in superround 2 of phase ph.

We are now ready to prove the correctness of the algorithm.

Proposition 5 Partially synchronous Byzantine agreement is solvable even with innumerate processes if ℓ > n+3t

2 .

Proof. We prove each of the three correctness properties of the algorithm in Figure 5 in turn.

Validity: Suppose all correct processes have the same input value, v0. Then no correct process ever adds any other value to its proper set. So, a correct process can perform a Broadcast(propose V, *) message only if V ⊆ {v0}. It follows from unforgeability that a correct process can perform an Accept(propose V, * , j) only if V ⊆ {v0} or a Byzantine process has identifier j. Thus, according to the test on line 15, a correct process can perform Broadcast(vote v, *) only if v = v0. Then, according to the test on line 18, a correct process can send a message ack v, * only if v = v0. Then, according to the test on line 21, a correct process can decide v only if v = v0. Thus, no correct process decides a value different from v0 on line 22. A process can decide a value different from v0 on line 26 only if at least one correct process has already decided that value on line 22, so no correct process will decide a value different from v0 on line 26.

Agreement: If no correct processes ever decide, agreement is trivially satisfied. A correct process decides a value v on line 26 only if some correct process has previously decided v. Thus, for agreement, it suffices to prove that all values decided by correct processes on line 22 are identical. So, for the remainder of the proof of agreement, we only consider processes that decide on line 22.

Suppose phase ph1 is the first phase during which some correct process decides. By Lemma 9 there is a unique value v1 that correct processes decide during phase ph1. Let p be a correct process that decides v1 during phase ph1. Then p received ack v1, ph1 messages from ℓt different identifiers. Let A be this set of ℓt identifiers.

Suppose some correct process p decides a value v in a phase ph > ph1. We shall prove that v = v1. Process p must have performed Accept(propose V k , ph , k) from ℓt different identifiers k with v ∈ V k . Let B be this set of ℓt identifiers. By Lemma 7, some identifier k ∈ A ∩ B belongs to only one correct process and no Byzantine processes. Let q be the correct process with this identifier k. Since k ∈ A, q sent an ack v1, ph1 message in phase ph1. By Lemma 10, (v1, *) is in the locks set of q at the beginning of phase ph. Thus, no process with identifier k performs Broadcast(propose V k , ph) unless V k ⊆ {v1}. By unforgeability, no correct process can perform Accept(propose

V k , ph , k) unless V k ⊆ {v1}. Since k ∈ B, process p did per- form Accept(propose V k , ph , k) and v ∈ V k . Thus, v = v1.
This completes the proof of the agreement property.

Termination: First, we show that if p is any correct process that does not share its identifier with any other process, then p terminates. Let ph be a phase such that (ph mod ℓ) + 1 is p's identifier and phase ph-1 occurs after T . By Lemma 12, there is some value v such that p sends a lock v, ph message in superround 2 of phase ph. Every correct process receives this message, and no other lock messages are received from a process with identifier (ph mod ℓ) + 1 in this phase. According to the test in line 10, p must have performed Accept(propose Vj , ph , j) for ℓt different identifiers j with v ∈ Vj during superround 1 of phase ph. By the relay property, all correct processes must have performed these Accept actions by the end of superround 2 of phase ph. Thus, every correct process performs Broadcast(vote v, ph) during superround 3 of phase ph and all correct processes accept this broadcast. Thus, all correct processes send ack v, ph in round 1 of superround 3 of phase ph. Process p receives all of these messages and decides v.

There are at least 2t + 1 correct processes that do not share their identifier with any other process (since n ≤ 2ℓ-3t). By the argument above, these will all decide. By the agreement property, they will all decide on the same value v. Eventually, all of these 2t+1 processes will send decide v messages in superround 4 of each phase, and all correct processes will receive these messages and decide on line 26.

A.2 Detailed Proof of Proposition 16

As described in Section 5.1, suppose there is an algorithm A that solves Byzantine agreement with ℓ ≤ t. We consider only executions of A with some fixed set of ℓ Byzantine processes, chosen so that each of the ℓ identities is held by one Byzantine process. Proof. For 0 ≤ j ≤ nℓ, let C j 0 be the initial configuration where the first j correct processes have input 1 and the rest of the correct processes have input 0. By validity, C 0 0 is 0-valent and C n-ℓ 0 is 1-valent. Choose j so that C j 0 is 0-valent and C j+1 0 is not 0-valent. Only one correct process is in a different state in these two initial configurations, so there is an execution from C j+1 0 that decides 0, by Lemma 17. Thus, C j+1 0 is multivalent.

Lemma 22 Every multivalent configuration of A has a multivalent successor configuration.

Proof. Suppose the claim is false. Then there exists a multivalent configuration C θ of A such that every successor configuration of C θ is univalent. Then, some successor configuration C θ+1 is v-valent and some successor configuration

C ′ θ+1 is v ′ -valent, where v = v ′ . For 0 ≤ j ≤ n -ℓ, let C j θ+1
be the successor of C θ where, in round θ + 1, the Byzantine processes send the same messages to the first j correct processes as they do in C ′ θ+1 , and send the same messages to the rest of the processes as they do in C θ+1 . Then,

C 0 θ+1 = C θ+1 is v-valent and C n-ℓ θ+1 = C ′ θ+1 is v ′ -valent. Choose j so that C j θ+1 is v-valent and C j+1 θ+1 is not v-valent.
Only one correct process is in a different state in these two configurations, so by Lemma 17, some execution from C j+1 θ+1 decides v. Thus, C j+1 θ+1 is multivalent, contradicting the assumption.

This lemma implies that, starting from the multivalent initial configuration of A, we can construct an infinite execution consisting only of multivalent configurations. No correct process can ever decide in this execution, which violates the termination condition of consensus, so algorithm A cannot exist. This completes the proof of Proposition 16.

A.3 Proof of Proposition 18

In this section we give an algorithm to prove the following proposition.

Proposition 18 Partially synchronous Byzantine agreement is solvable with numerate processes against restricted Byzantine processes if ℓ > t.

The approach used to design the algorithm is similar to the one used in Section 4.2, but various thresholds must be adjusted to take advantage of the restriction on the Byzantine processes, and to make use of the processes' ability to count copies of identical messages. In combination, these two factors allow us to weaken the condition on number of identifiers from ℓ > n+3t

2

(which is required in Section 4.2) to ℓ > t. The safety of our algorithm depends on the condition n > 3t, while liveness is guaranteed by the condition ℓ > t. The algorithm uses a more powerful version of the authenticated broadcast primitive [START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF].

A.3.1 Authenticated Broadcast

The computation proceeds in superrounds. Superround r is composed of the two rounds 2r and 2r+1. Our authenticated broadcast is defined by two primitives: Broadcast(i, m, r), where i is the identifier of the broadcaster, m is the message and r is the superround number, and Accept(i, α, m, r) where α is an integer (α is an estimate of the number of processes with identifier i that have broadcast m in superround r).

The authenticated broadcast primitive is specified as follows. Consider any execution that uses authenticated broadcasts. Let T be the first superround such that all messages sent during or after superround T are delivered. Let fi be the number of Byzantine processes with identifier i. The fi values are used only in the specification of the authenticated broadcast; they are not known by the processes.

• Correctness: If α correct processes with identifier i perform Broadcast(i, m, r) in superround r ≥ T then every correct process performs Accept(i, α ′ , m, r) with α ′ ≥ α during superround r.

• Relay: If a correct process performs Accept(i, α, m, r) in superround r ′ ≥ r then every correct process performs Accept(i, α ′ , m, r) with α ′ ≥ α in superround max(r ′ , T) + 1.

• Unforgeability: If α correct processes with identifier i perform Broadcast(i, m, r) in superround r and some correct process performs Accept(i, α ′ , m, r) in superround r ′ then r ≤ r ′ and 0 ≤ α ′ ≤ α + fi.

• Unicity: for each i, m and r, each correct process performs at most one Accept(i, * , m, r) per superround.

We give an implementation of authenticated broadcast in Figure 6. In the algorithm, we call a message sent by some process with identifier i at round R valid if

• it contains at most one tuple (init, i, m, r) and 2r = R in that tuple, and

• for each j, m and r, it contains at most one tuple (echo, j, m, * , r) and R ≥ 2r in that tuple.

All messages sent by correct processes are valid.

In the following, we consider a run where, for each i, fi is the number of Byzantine processes with identifier i. Let ΠR(h, m, k) be the set of correct processes that send a message containing (echo, h, * , m, k) in round R.

Lemma 23 Assume that α correct processes with identifier i perform Broadcast(i, m, r) in round 2r. Let R ≥ 2r + 1 be a round. For every q in ΠR(i, m, r), if q sends (echo, i, aq, m, r) in round R then 0 ≤ aq ≤ α + fi.

Proof. We prove this lemma by induction.

• R = 2r + 1: Each of the α correct processes with identifier i who perform Broadcast(i, m, r) in superround Lemma 34 At the end of each phase, the locks set of a correct process contains at most one pair.

Proof. Let p be a correct process. We first prove that in each phase ph, p can add at most one pair to its locks set. For each pair (v, ph) added in phase ph, p has n-t witnesses for (vote * , 4ph + 2). By Lemma 31 this condition can be true for at most one value v. When p adds this unique pair (v, ph) to locks, it removes all other pairs (v, *). Then in line 24 to 26, p will remove all other pairs (v ′ , ph ′) from the locks set.

Lemma 35 Suppose that some correct process receives n-t ack, v, ph messages. Then at all times after phase ph, each correct process that sent ack, v, ph in phase ph has a pair (v, ph ′) with ph ′ ≥ ph in its locks set.

Proof. To derive a contradiction, suppose the claim is false. Let A be the set of n -2t correct processes that sent ack, v, ph in phase ph. Consider the first time the claim is violated: some correct process q that sent an ack, v, ph message removes its lock on v (on line 26). This means that there is some v ′ = v and ph ′ > ph such that q has nt witnesses for (vote v ′ , 4ph ′ + 2). By Lemma 30, some correct process performs Broadcast(* , vote v ′ , 4ph ′ +2). That process has nt witnesses for (propose v ′ , 4ph ′) in superround 2 of phase ph ′ . By Lemma 30 there is a set B of n-t-f correct processes that perform Broadcast(* , propose v ′ , 4ph ′). Since there are nf correct processes,

|A ∩ B| = |A| + |B| - |A ∪ B| ≥ (n -2t) + (n -t -f) -(n -f) = n -3t > 0.
Thus, there is at least one correct process r that sends ack, v, ph in phase ph and performs Broadcast(* , propose v ′ , 4ph ′) in phase ph ′ . According to line 6, this is possible only if (v, *) is not in r ′ s locks set at the beginning of phase ph ′ . This contradicts our assumption that all correct processes that sent an ack, v, ph message in phase ph keep the value v in their locks set from the time they execute line 12 of phase ph until they execute line 26 of phase ph ′ .

Lemma 36 At the end of any phase ph3 that occurs after T , if (v1, ph1) is in the locks variable of a correct process p1 and (v2, ph2) is in the locks variable of a correct process p2, then v1 = v2.

Proof. Since, at the end of phase ph3, correct processes have locks associated with phases ph1 and ph2, we must have ph1 ≤ ph3 and ph2 ≤ ph3. If ph1 = ph2 then v1 = v2 follows from Lemma 32 (because just after pi adds (vi, phi) to its locks set, it sends ack, vi, phi). So for the rest of the proof assume, without loss of generality, that ph2 > ph1. Before process p2 added (v2, ph2) to its locks set in phase ph2, it has nt witnesses for (vote v2, 4ph2 + 2). By the relay property of the authenticated broadcasts, p1 will accept all of these messages by the end of phase ph3 and remove (v1, ph1) from its locks set, if v1 = v2. Thus, v1 must be equal to v2.

Lemma 37 Let p be a correct process. Let ph be a phase such that ph mod ℓ + 1 is the identifier of p and phase ph -1 occurs after T . Then, p will send a lock message in superround 2 of phase ph.

Proof. By Lemma 36, at most one value will appear in the locks variables of correct processes at the end of phase ph -1. We consider two cases.

Case 1: the locks set of some correct process q is non-empty at the end of phase ph -1. Let (v, phv) be the entry in the locks set of q, where phv must be smaller than ph. Then q has nt witnesses for (vote v, 4phv + 2) in superround 3 of phase phv. Thus, some correct process performed Broadcast(* , vote v, 4phv + 2). That process must have nt ≥ 2t + 1 witnesses for (propose v, 4phv). By Lemma 30, at least t + 1 different correct processes performed Broadcast(* , propose v, 4phv), which means v is in the proper set of of at least t + 1 correct processes at the beginning of phase phv. Thus, by the end of phase ph -1, v will be in the proper set of every correct process. It follows that, in phase ph, every correct process will perform Broadcast(* , propose v, 4ph), and process p will be able to find a value that it can send in superround 2 of phase ph.

Case 2: the locks set of every correct process is empty at the end of phase ph -1. If there are t + 1 correct processes with the same input value, that value will be in the proper set of all correct processes by the beginning of phase ph. Otherwise, every value will be in the proper set of all correct processes by the beginning of phase ph. Either way, some value will appear in the propose message that is broadcast by correct processes in phase ph, so p will able to find a value that it can send in superround 2 of phase ph.

Proposition 38 (Validity) If all correct processes propose v then no correct process decides a value different from v.

Proof. Suppose all correct processes have the same input value v0. Then no correct process ever adds any other value to its proper set. So, a correct process can perform Broadcast(* , propose v, *) only if v = v0. Thus, according to the test on line 12, a correct process can perform Broadcast(* , vote v, *) only if v = v0. Then, according to the test on line 16, a correct process can send a message ack, v, * only if v = v0. Thus, no correct process decides a value different from v0 on line 23.

Proposition 39 (Agreement) If two correct processes decide v and v ′ then v = v ′ .

Proof. If no correct processes ever decide, agreement is trivially satisfied. Suppose phase ph1 is the first phase during which some correct process p decides. By Lemma 33, there is a unique value v1 such that correct processes decide during phase ph1. From the code, process p has received n-t ack, v1, ph1 messages. Let A be a set of n -2t correct processes that sent ack, v1, ph1 . Suppose some correct q decides a value v2 in a phase ph2 > ph1. We shall prove that v1 = v2. Process q has nt witnesses for (propose v2, 4ph2). By Lemma 30, there is a set B of n-t-f correct processes that perform Broadcast(* , pro pose v2, 4ph2). Thus, there is some correct process h ∈ A∩B that has sent an ack, v1, ph1 in phase ph1.

By Lemma 35 and 34, (v1, *) is in the lock set of h at the beginning of phase ph2 and this is the only pair in the lock set. Thus, it performs only Broadcast(* , propose v1, 4ph2) in superround 4ph. But h ∈ B, so it performs Broadcast(* , propose v2, 4ph2). Thus, v1 = v2.

Proposition 40 (Termination) All correct processes decide.

Proof. As there are ℓ > t identifiers, there is at least one identifier such that all processes with this identifier are correct. Suppose that it is identifier k. Let ph be a phase such that ph mod ℓ + 1 = k and phase ph -1 occurs after T . By Lemma 37, each process pj with identifier k sends a lock, vj , ph message in superround 2 of phase ph. According to the test in line 9, pj must have nt witnesses for (propose vj , 4ph) during superround 1 of phase ph. By the relay property, all correct processes must have nt witnesses for (propose vj , 4ph) at the end of superround 2 of phase ph.

Each correct process receives the same set of lock messages from all processes with identifier k and deterministically chooses one of them. Let v be the value chosen by all correct processes. All correct processes then perform Broadcast(* , vote v, 4ph + 2). Thus, according to the test in line 16, every process has n-t witnesses for (vote v, 4ph+2) in superround 3. Thus, all correct processes send ack, v, ph in round 1 of superround 4 of phase ph. Every correct process receives all of these messages and has n-t witnesses for (propose v, 4ph) in superround 3, and thus decides v.

A.4 Detailed Proof of Theorem 19

Theorem 19 Synchronous Byzantine agreement is solvable with innumerate processes against restricted Byzantine processes if and only if ℓ > 3t.

Proof. The synchronous algorithm given in Section 3.2 obviously still works if the Byzantine processes are restricted. To prove that ℓ > 3t is necessary, we use a simulation.

Assume that for ℓ < 3t, there is an algorithm A that solves Byzantine agreement in a synchronous system H of n processes, ℓ identifiers and t Byzantine processes. Let A(i) the code executed by the processes with identifier i.

Then A solves also Byzantine agreement in H if we restrict the power of the Byzantine processes: each Byzantine process must send the same message to all processes with the same identifier.

If ℓ ≥ t, the result is clear so we consider that ℓ > t.

Consider the classical synchronous system (where each process has its own identifier) S, with ℓ processes and at most t Byzantine processes (0 ≤ t < ℓ). Let {q0, q1, ..., q ℓ-1 } be these processes . We construct with the help of A an algorithm A ′ that solves Byzantine agreement in the synchronous model S with a number of processes less than 3t, contradicting the result of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF][START_REF] Lamport | The Byzantine generals problem[END_REF].

In the distributed algorithm A ′ for S, the code of the process qi is A(i).

We now prove that each execution of the algorithm A ′ in S satisfies the specification of Byzantine agreement. Let αS be an execution of A ′ , where the input of process qi is Input(i) and that contains at most t Byzantine processes. Assume that αS has b Byzantine processes, for example q1, . . . , q b , for some b with 0 ≤ b ≤ t. We consider a system H where (nℓ + 1) processes have the identifier 0, and the other processes have identifiers 1, . . . , ℓ-1 (one process per identifier). We consider an execution αH of th is system where (1) the processes with identifier i (1 ≤ i ≤ b) are Byzantine, and they send the same messages to the process with identifier j in round r as the Byzantine process qi sends to qj in round r of αS, (2) the process with identifier i (b + 1 ≤ i ≤ ℓ -1) is correct and has as input Input(i), and (3) all processes with identifier 0 are correct and have input Input(0).

The processes with identifier 0 all have the same input and receive the same messages, so they send the same message m(r) in round r and have the same state at the end of each round. The other processes receive from processes with iden-tifier 0 only the message m(r) in round r.

The process qi in αS and a process with identifier i in αH have the same state at the beginning of each round. As αH satisfies the specification of Byzantine agreement, the execution αS satisfies the specification of the Byzantine agreement. We have obtained a distributed algorithm A ′ that solves Byzantine agreement in the synchronous model with the number of processes less than 3t, contradicting the result of [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF][START_REF] Lamport | The Byzantine generals problem[END_REF].

Figure 2 :

 2 Figure 2: Synchronous Byzantine agreement algorithm A with ℓ processes and ℓ identifiers.

s 2 for all r from 1 to ∞ 3 send 5 s 8 if 9 then decide such a v 10 send 14 then remove all of them from R 15 sFigure 3 :

 235891014153 Figure 3: Synchronous Byzantine agreement algorithm T (A) with n processes and ℓ identifiers.

Figure 4 :

 4 Figure 4: System used in proof of Proposition 4

Lemma 8

 8 If the messages ack v, ph and ack v ′ , ph are sent by correct processes, then v = v ′ .

Figure 5 :

 5 Figure 5: Byzantine agreement algorithm for the partially synchronous model.

 Figure 5 correctly solves Byzantine agreement in the basic partially synchronous model when ℓ > n+3t 2 . The following lemma is used to ensure agreement between values decided on line 22 in different phases.

 We use C k to denote a configuration at end of round k. From C k , the system can reach different possible configurations C k+1 . In an execution of algorithm A, the configuration C k+1 is completely determined by (1) C k and (2) the messages sent by the Byzantine processes to the correct processes in round k + 1. (The messages sent by correct processes are determined by C k and A.) Lemma 21 There is a multivalent initial configuration.

 is the value proposed by pi */

	Main code:
	2	for all r from 1 to ∞
	3	if decide(s) = ⊥ then decide the value decide(s)
	4	send(M (s, r)) to all processes
	5	receive(R) /* receive messages sent this round */
	6	s = δ(s, r, R)

 Each process keeps track of a set of proper values, which are values that can be output without violating validity. Initially, only the process's own input value is in this set. Each process appends its proper set to each message it sends. If a process receives proper sets containing v in messages from t + 1 different identifiers, it adds v to its own proper set. Also, if a process has received proper sets from 2t + 1 different identifiers and no value appears in t + 1 of them, it adds all possible input values to its own proper set. (This can be done because t + 1 of the proper sets are from correct processes, so there are at least two different inputs to correct processes.)

 phase number */ be the set of values v ∈ proper such that there is no pair (w, *) ∈ locks for any w = v = (ph mod ℓ) + 1 and there is some value v lock such that the process has performed Accept(propose Vj , ph , j) some value v for which the process received lock v, ph from identifier (ph mod ℓ) + 1 and 15 has performed Accept(propose Vj, ph , j) for ℓt different identifiers j with v ∈ Vj 18 if for some v, the process has performed Accept(vote v, ph , j) from ℓt different identifiers j 19 then add (v, ph) to locks and remove any other pair (v, *) from locks = (ph mod ℓ) + 1 and the process has received ack v lock , ph from ℓt different identifiers in this round

	8	Broadcast(propose V, ph)	/* superround 1 */
	9	/* beginning of superround 2 of phase */	
	12	then send lock v lock , ph to all processes	/* round 1 of superround 2 */
	13	/* beginning of superround 3 of phase */	
	16	then choose one such v and perform Broadcast(vote v, ph)	/* superround 3 */
	17	/* beginning of superround 4 of phase */	
	20	send ack v, ph to all processes	/* round 1 of superround 4 */

3 proper = {v} /* v is the value proposed by the process */ 4 Note: in each round, proper is updated as described on page 5 while true 6 /* beginning of superround 1 of phase */ 7 let V 10 if i 11 from ℓt different identifiers j with v lock ∈ Vj 14 if there is 21 if i 22 then decide v lock (but continue running the algorithm) 23 if the process has already decided some value v 24 then send decide v to all processes /* round 2 of superround 4 */ 25 if for some v, the process has received decide v from t + 1 different identifiers j in this round 26 then decide v (but continue running the algorithm) 27 for each (v1, ph1) ∈ locks 28 if for some v2 = v1 and ph2 > ph1, the process has performed Accept(vote v2, ph2 , j) for ℓt 29 different identifiers j 30 then remove (v1, ph1) from locks 31 ph = ph + 1

Acknowledgments. We are grateful to Christian Cachin for his useful comments on our model with homonyms. A small subset of our results was presented in a preliminary form in [7].

* This work is partially supported by the ERC Starting Grant project 204742 and the ANR VERSO SHAMAN.

Code for processes with identifier i

Variable:

Code for process with identifier i ∈ {1, 2, . . . , ℓ} Variable:

1

if R is odd and at least nt valid messages containing (echo, h, * , m, k) were received this round then 20 α2 = max{α : at least nt of the messages contained (echo, h, α ′ , m, k) with α ′ ≥ α} 21 Accept(h, α2, m, k) Figure 6: An authenticated broadcast primitive for n partially synchronous, numerate processes and ℓ identifiers in a system with restricted Byzantine processes. r sends (init, i, m, r) in round 2r. Each correct process receives at most α + fi valid messages containing (init, i, m, r) in round 2r. Thus, if a process q in Π2r+1(i, m, r) sends (echo, i, aq, m, r) in round 2r + 1 then 0 ≤ aq ≤ α + fi.

• Let R > 2r + 1. Assume the lemma is true for round R -1. Let q be a correct process in ΠR(i, m, r). In line 20 of round R -1, process q either did not change a[i, m, r] or set it to α1. If a[i, m, r] did not change, then q sends the same tuple (echo, i, aq, m, r) that it sent in the previous round, and the claim follows from the induction hypothesis. Otherwise, suppose q changed a[i, m, r] to α1 in round R -1. Then, q must have received at least n -2t > t + 1 messages containing tuples of the form (echo, h, α ′ , m, k) with α ′ ≥ α1 in the previous round. At least one of those messages was from a correct process, which had α ′ ≤ α + fi by the induction hypothesis. Thus, α1 ≤ α + fi and the claim follows.

Lemma 24 Assume that α correct processes with identifier i perform Broadcast(i, m, r) in round 2r ≥ T . Let R ≥ 2r + 1. Then,

(1) if α > 0 then ΠR(i, m, r) is the set of correct processes,

(2) ΠR-1(i, m, r) ⊆ ΠR(i, m, r), and

(3) for every q in ΠR(i, m, r), q sends (echo, i, aq, m, k) in round R with aq ≥ α in round R.

Proof. We prove this lemma by induction.

• R = 2r + 1: Each of the α correct processes with identifier i who perform Broadcast(i, m, r) in superround r sends (init, i, m, r) in round 2r. Since 2r ≥ T , every correct process receives at least α messages containing (init, i, m, r) in round 2r. If α > 0, every correct process q sends (echo, i, aq, m, r) in round 2r + 1 with aq ≥ α. Thus, we have (1) and (3). From the algorithm, a correct process never sends (echo, i, * , m, r) in round 2r, so Π2r(i, m, r) = ∅. Thus, we have (2). • Let R > 2r + 1. Assume the properties (1) , (2) and

(3) are true for round R -1. Property (2) follows from the fact that a[h, m, k] never decreases. Claim (1) for round R follows from (2) and claim (1) of the induction hypothesis. To prove claim (3), consider any process q in ΠR(h, m, r). If α = 0, claim (3) is trivially true, so assume α > 0. In line 20 of round R -1, process q either did not change a[i, m, r] or set it to α1. If a[i, m, r] did not change, then q sends the same tuple (echo, i, aq, m, r) that it sent in the previous round, and the claim follows from the induction hypothesis. Otherwise, suppose q changed a[i, m, r] to α1 in round R -1. By claim (1) and (3) of the induction hypothesis each of the nt correct processes sends (echo, i, α ′ , m, r) with α ′ ≥ α in round R -1. Since R > T , all of these messages are received by q, so α1 ≥ α. Thus, q sends (echo, i, α1, m, r) with α1 ≥ α in round R.

Proposition 25 (Unicity) For each i, m and r, each cor-rect process performs at most one Accept(i, * , m, r) per superround.

Proof. This follows directly from the code.

Proposition 26 (Correctness) If α correct processes with identifier i performs Broadcast(i, m, r) in superround r ≥ T then every correct process performs accept(i, α ′ , m, r) with α ′ ≥ α in superround r.

Proof. Each of the α correct processes with identifier i who perform Broadcast(i, m, r) in superround r ≥ T sends (init, i, m, r) in round 2r. By Lemma 24, every correct process q sends (echo, i, αq, m, r) in round 2r + 1, with αq ≥ α. All of these messages are delivered. Thus, every correct process will set α2 to a value greater than or equal to α on line 20 and then perform Accept(i, α2, m, r) at the end of superround r.

Proposition 27 (Relay) If a correct process performs Ac cept (i, α, m, r) in superround r ′ ≥ r then every correct process performs Accept(i, α ′ , m, r) with α ′ ≥ α in superround max(r ′ , T) + 1.

Proof. Assume some correct process p performs Accept (i, α, m, r) in superround r ′ . Then it must do so in round 2r ′ + 1 (since a correct process accepts only in the second round of the superround). Process p must have received at least nt messages containing tuples of the form (echo, i, α ′ , m, r) with α ′ ≥ α in this round. Among the n-t senders of these messages, at least n -2t are correct. Since the value stored in each sender's a[i, m, r] variable can only increase, each of these n -2t correct senders also sends a tuple of the form (echo, i, α ′ , m, r) with α ′ ≥ α in round max(r ′ , T). All of these messages are delivered. Thus, for each correct process, the value of a[i, m, r] is at least α after the process executes line 18 in superround max(r ′ , T). Then, in superround max(r ′ , T) + 1, each of the nt correct processes sends a tuple of the form (echo, i, α ′ , m, r) with α ′ ≥ α. All of these messages are delivered. Thus, each correct process performs accept(i, α ′ , m, r) with α ′ ≥ α in superround max(r ′ , T) + 1.

Proposition 28 (Unforgeability) If α correct processes with identifier i perform Broadcast(i, m, r) in superround r and some correct process performs Accept(i, α ′ , m, r) in superround r ′ then r ≤ r ′ and 0 ≤ α ′ ≤ α + fi.

Proof. Assume that some correct process q performs Accept(i, α ′ , m, r) in superround r ′ . Then it received at least n-t messages containing tuples of the form (echo, h, α ′′ , m, k) with α ′′ ≥ α ′ . Because nt ≥ t + 1, one of those messages came from a correct process. By Lemma 23, the α ′′ in that message is less than or equal to α + fi, so α ′ ≤ α + fi and α ′ ≥ 0 follows directly from the code. Thus, we have the following theorem.

Theorem 29 The algorithm in Figure 6 ensures the unicity, correctness, unforgeability and relay properties.

A.3.2 Consensus algorithm

A partially synchronous algorithm for Byzantine agreement when n > 3t and ℓ > t is shown in Figure 7. It uses the authenticated broadcast primitive described in the previous subsection and follows the same general pattern as the algorithm of Dwork, Lynch and Stockmeyer [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]. Each iteration of the main loop is called a phase, which takes four superrounds.

Each process has a proper variable, which stores a set of values that can be output without violating validity. Initially, only the process's own value is in this set. In each round, each process updates its proper variable as follows. Each process appends its proper set to each message it sends. If a process receives proper sets containing v in t + 1 messages in the same round, it adds v to its own proper set. Also, if a process has received proper sets in 2t + 1 messages during the round and no value appears in t + 1 of them, the process adds all possible input values to its own proper set.

Consider a process p executing the algorithm. There are several times when p needs to have an estimate of the number of processes that performed a broadcast of a particular message m in an earlier superround r ≤ r ′ . During superround r ′ , p performs a number of Accept(i, αi, m, r). For each identifier i, αi is p's estimate of the number of processes with identifier i that performed Broadcast(i, m, r). We say that the number of witnesses that p has in superround r ′ for (m, r) is the sum, over all i, of the αi's that appear in all Accept(i, αi, m, r) actions that p performs during superround r ′ . It follows from the properties of authenticated broadcast that this estimate will eventually be at least as large as the actual number of correct processes that performed Broadcast(* , m, r) and exceed that number by at most t.

For the remainder of this section, we consider an execution in which fi processes with identifier i are Byzantine processes, for each identifier i. Let f = ℓ i=1 fi be the total number of Byzantine processes in the execution.

Lemma 30 If some correct process p has n-t witnesses for (m, r) in some superround r ′ ≥ r, then there are at least ntf correct processes that performed Broadcast(* , m, r) in round r.

Proof. For each identifier i, let αi be the number of correct processes with identifier i that perform Broadcast(i, m, r) in round r. By unforgeability, if p performs Accept(i, α ′ i , m, r) in superround r ′ , then α ′ i ≤ αi + fi. Thus, the number of witnesses that p has for (m, r) in superround r ′ is at most

Lemma 31 If some correct process has nt witnesses for (m, r) and some correct process has nt witnesses for (m ′ , r ′), then some correct process performed both Broad cast (* , m, r) and Broadcast(* , m ′ , r ′).

Code for process with identifier i ∈ {1, 2, ..., ℓ} if there is some value v for which the process received lock, v, ph from processes with identifier ph mod ℓ + 1 Proof. By Lemma 30, there is a set A of at least ntf correct processes that performed Broadcast(* , m, r) and there is a set B of at least ntf correct processes that performed Broadcast(* , m ′ , r ′). Since there are nf correct processes, |A ∩ B| = |A| + |B| -|A ∪ B| ≥ (ntf) + (ntf) -(nf) = n -2tf ≥ n -3t > 0, so there is at least one process in A ∩ B.

Lemma 32 If the messages ack, v, ph and ack, v ′ , ph are both sent by correct processes, then v = v ′ .

Proof. Suppose a correct process p sends ack, v, ph and a correct process p ′ sends ack, v ′ , ph . According to line 16, process p has nt witnesses for (vote v, 4ph + 2) in superround 3 of phase ph. Similarly, p ′ has n-t witnesses for (vote v, 4ph + 2). By Lemma 31, there is at least one correct process that performed Broadcast(* , vote v, 4ph + 2) and performed Broadcast(* , vote v ′ , 4ph + 2) in superround 3 of phase ph, so v = v ′ .

Lemma 33 If two correct processes decide on line 23 in the same phase then they decide the same value.

Proof. Suppose two correct processes p and p ′ decide values v and v ′ , respectively, during some phase ph. Then process p received n-t copies of ack, v, ph , so some correct process must have sent ack, v, ph . Similarly, some correct process must have sent ack, v ′ , ph . By Lemma 22, v = v ′ .