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ABSTRACT
So far, the distributed computing community has either as-
sumed that all the processes of a distributed system have
distinct identifiers or, more rarely, that the processes are
anonymous and have no identifiers. These are two extremes
of the same general model: namely, n processes use ℓ dif-
ferent authenticated identifiers, where 1 ≤ ℓ ≤ n. In this
paper, we ask how many identifiers are actually needed to
reach agreement in a distributed system with t Byzantine
processes.

We show that having 3t+ 1 identifiers is necessary and suf-
ficient for agreement in the synchronous case but, more sur-
prisingly, the number of identifiers must be greater than
n+3t

2
in the partially synchronous case. This demonstrates

two differences from the classical model (which has ℓ = n):
there are situations where relaxing synchrony to partial syn-
chrony renders agreement impossible; and, in the partially
synchronous case, increasing the number of correct processes
can actually make it harder to reach agreement. The im-
possibility proofs use the fact that a Byzantine process can
send multiple messages to the same recipient in a round.
We show that removing this ability makes agreement easier:
then, t + 1 identifiers are sufficient for agreement, even in
the partially synchronous model.

1. INTRODUCTION
We consider a distributed system in which ℓ distinct identi-
fiers are assigned to n processes, where 1 ≤ ℓ ≤ n. Several
processes may be assigned the same identifier, in which case
we call the processes homonyms. The identifiers are authen-
ticated: if a process p receives a message from a process q
with identifier i, p knows that the message was not sent by
a process with identifier i′ 6= i, but p does not know whether
the message was sent by q or another process q′ having the
same identifier i. A process cannot direct a message it sends
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to a particular process, but can direct the message to all
processes that have a particular identifier.

This model generalizes the classical scheme where processes
have distinct identifiers (i.e., ℓ = n), and the less classical
scheme where processes are anonymous (i.e., ℓ = 1). Study-
ing systems with homonyms gives us a better understanding
of the importance of identifiers in distributed computing,
and there are two additional motivations for the new model.
Firstly, assuming in systems such as Pastry or Chord [18,21]
that all processes have unique (unforgeable) identifiers might
be too strong an assumption in practice. We may wish to
design protocols that still work if, by a rare coincidence, two
processes are assigned the same identifier. This approach is
also useful if security is breached and a malicious process can
forge the identifier of a correct process, for example by ob-
taining the correct process’s private key. Secondly, in many
cases, users of a system may wish to preserve their privacy
by remaining anonymous. However, in a fully anonymous
system where no identifiers are used, very few problems
are solvable. (In particular, Okun observed that Byzantine
agreement is impossible in the fully anonymous model [14],
even with a single faulty process.) With a limited number of
identifiers, more problems become solvable, and one can still
preserve some level of anonymity by hiding, to some extent,
the association between users and identifiers. For example,
users of a distributed protocol might use only their domain
names as identifiers. Thus, others will see that some user
within the domain is participating, but will not know ex-
actly which one. If several users within the same domain
participate in the protocol, they will behave as homonyms.

We ask in this paper howmany distinct identifiers are needed
to reach agreement in a system of n processes, up to t of
which can be Byzantine. We need only consider systems
where n > 3t: this assumption is known to be a requirement
for solving Byzantine agreement, even when ℓ = n [13, 17],
and it thus applies also for systems with homonyms. For the
synchronous case, we prove using a scenario argument that
3t + 1 identifiers are necessary. The matching synchronous
algorithm is obtained by a simulation that transforms any
synchronous Byzantine agreement algorithm designed for a
system with unique identifiers to one that works in a sys-
tem with ℓ > 3t identifiers. For the partially synchronous
case, we prove using a partitioning argument that the lower
bound becomes ℓ > n+3t

2
. (Note that n+3t

2
is strictly greater

than 3t because n > 3t.) We show that this bound is also
tight by giving a new partially synchronous Byzantine agree-



Synchronous Partially synchronous
Innumerate processes ℓ > 3t ℓ > n+3t

2

Numerate processes
ℓ > 3t ℓ > n+3t

2

(ℓ > t for restricted Byzantine processes) (ℓ > t for restricted Byzantine processes)

Table 1: Necessary and sufficient conditions for solving Byzantine agreement in a system of n processes using
ℓ identifiers and tolerating t Byzantine failures. In all cases, n must be greater than 3t.

ment algorithm. This bound is somewhat surprising because
the number of required identifiers ℓ depends on n as well
as t. Counter-intuitively, increasing the number of correct
processes can render agreement impossible. For example, if
t = 1 and ℓ = 4, agreement is solvable for 4 processes but not
for 5. Another difference from the classical situation (where
ℓ = n) is that the condition that makes Byzantine agree-
ment solvable is different for the synchronous and partially
synchronous models.

To strengthen our results, we show that (a) both the syn-
chronous and partially synchronous lower bounds hold even
if correct processes are numerate, i.e., can count the num-
ber of processes that send identical messages in a round and
(b) the matching algorithms are correct even if processes are
innumerate. In systems with unique identifiers, senders can
append their identifier to all messages, making it trivial for
the receiver to count copies of messages. This is not possi-
ble in systems with homonyms, so the distinction between
numerate and innumerate processes is important.

What has more impact, however, is the ability for a Byzan-
tine process to send multiple messages to a single recipient
in a round. In a classical system with unique identifiers,
the Byzantine process has no advantage in doing this: algo-
rithms could simply discard such messages. In systems with
homonyms, there is a clear advantage. In fact, we prove
that if each Byzantine process is restricted to sending a sin-
gle message per round to each recipient (and processes are
numerate), then t+ 1 identifiers are enough to reach agree-
ment even in a partially synchronous model. We also show
this bound is tight using a valency argument: t + 1 iden-
tifiers are needed even in the synchronous case. The fact
that t + 1 identifiers are sufficient to reach agreement with
restricted Byzantine processes has some practical relevance:
In some settings, it is reasonable to assume that Byzan-
tine processes are simply malfunctioning ordinary processes
sending incorrect messages, and not malicious processes with
the additional power to generate and send more messages
than correct processes can.

The results are summarized in Table 1. Section 2 describes
our models and recalls the specification of Byzantine agree-
ment. Section 3 considers the synchronous case and Section
4 considers the partially synchronous one. Section 5 gives
our results for restricted Byzantine processes. Section 6 pro-
vides some concluding remarks.

2. DEFINITIONS
We consider a distributed message-passing system with n ≥
2 processes. Each process has an authenticated identifier
from the set L = {1, ..., ℓ}. We assume that n ≥ ℓ and that
each identifier is assigned to at least one process. Thus, the
parameter ℓ measures the number of different identifiers that

are actually assigned to processes. In the case where n > ℓ,
one or more identifiers will each be shared by several pro-
cesses. In the case where ℓ = 1, all processes have the same
identifier, and they are therefore anonymous. We assume
algorithms are deterministic. Thus, the actions of a process
are entirely determined by the process’s initial state and the
messages it receives. Processes with the same identifier ex-
ecute the same code but processes with different identifiers
may behave differently. In our proofs, we sometimes refer
to individual processes using names like p, but these names
cannot be used by the processes themselves in their algo-
rithms.

A correct process does not deviate from its algorithm spec-
ification. A process that is not correct is called Byzantine.
The maximum possible number of Byzantine processes is de-
noted t (where 0 < t < n). We need only consider systems
where n > 3t: this assumption is known to be a requirement
for solving Byzantine agreement, even when ℓ = n [13, 17],
and it thus also applies to systems with homonyms. A
Byzantine process may choose to send arbitrary messages
(or no message) to each other process. However, we assume
Byzantine processes cannot forge identifiers: each message is
authenticated with its sender’s identifier. Given a message
m, we denote by m.val its value (or content) and by m.id
the identifier of the sender. If a correct process receives m,
then at least one process p with identifier m.id sent m.

In the synchronous model, computation proceeds in rounds.
In each round, each process can send a message to each
other process and then receive all messages that were sent
to it during that round.

For the partially synchronous model we use the definition of
Dwork, Lynch and Stockmeyer [9]: computation proceeds
in rounds, as in the synchronous model, except that in each
execution, a finite number of messages might not be deliv-
ered to all of their intended recipients. There is no bound
on the number of messages that can be dropped. As argued
in [9], this basic partially synchronous model is equivalent to
other kinds of partially synchronous models. More specifi-
cally, the model in which message delivery times are eventu-
ally bounded by a known constant and the model in which
message delivery times are always bounded by an unknown
constant can both simulate the basic partially synchronous
model. Conversely, each of these models can be simulated
by the basic partially synchronous model. Thus, our char-
acterization of the values of n, ℓ and t for which Byzantine
agreement can be solved applies to the other types of par-
tially synchronous systems too.

As mentioned in the introduction, we also consider variants
of the models in which each Byzantine process is restricted

to sending at most one message to each recipient in each
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Figure 1: System used in proof of Proposition 1

round. In general, we consider unrestricted Byzantine pro-
cesses unless the restriction is explicitly mentioned. We also
distinguish the cases where processes are innumerate from
the case where they are numerate. We say that a process
is innumerate if the messages it receives in a round form
a set of messages: the process cannot count the number of
copies of identical messages it receives in the round. We say
that a process is numerate if the messages it receives in a
round form a multiset of messages: the process can count
the number of copies of identical messages it receives in the
round. (As we shall show, the numerate model is more pow-
erful than the innumerate model against restricted Byzan-
tine processes.)

The goal of an agreement algorithm is for a set of processes
proposing values to decide on exactly one of these values. We
consider the classical Byzantine agreement problem [10,17],
defined by the following three properties. (1) Validity: If all
correct processes propose the same value v, then no value
different from v can be decided by any correct process. (2)
Agreement: No two correct processes decide differently. (3)
Termination: Eventually, every correct process decides some
value. An algorithm solves Byzantine agreement in a system
of n processes with ℓ identifiers tolerating t failures if these
three properties are satisfied in every execution in which at
most t processes fail, regardless of the way the n processes
are assigned the ℓ identifiers. (Recall that each identifier
must be assigned to at least one process.)

3. THE SYNCHRONOUS CASE
Here, we prove that having ℓ > 3t is necessary and sufficient
for solving synchronous Byzantine agreement, regardless of
whether the processes are numerate or innumerate. To show
that the condition ℓ > 3t is sufficient to reach agreement,
we design a simulation, where each group of processes with
a common identifier cooperatively simulate a single process.

3.1 Impossibility
We prove the condition ℓ > 3t is necessary using a scenario
argument, in the style of Fischer, Lynch and Merritt [10].

Proposition 1 Synchronous Byzantine agreement is unsolv-
able even with numerate processes if ℓ ≤ 3t.

Proof. It suffices to prove there is no synchronous algo-
rithm for Byzantine agreement when ℓ = 3t. To derive a
contradiction, suppose there was an n-process synchronous
algorithm A for Byzantine agreement when ℓ = 3t. Let
Ai(v) be the algorithm executed by a process with identifier
i when it has input value v.

Imagine setting up a system as shown in Figure 1. Every
process correctly executes the algorithm Ai assigned to it.
The two stacks of processes shown in the diagram each have
n − 3t + 1 processes, so there are a total of 2n processes
in this system. All processes within a stack have the same
identifier, and execute the same algorithm Ai, as shown.
Inputs to each of the 2n process are indicated by the arrows.

Consider the n − t processes that run At+1(1), . . . ,A3t(1).
These n− t processes cannot distinguish this execution from
an execution in an n-process system where the remaining
identifiers, 1, . . . , t are each assigned to a single Byzantine
process. (Here, we use the fact that each Byzantine process
can send multiple messages to each correct process in a single
round.) By validity, the n− t processes must output 1.

By a symmetric argument, the n−t processes runningA1(0),
. . . ,A2t(0) must output 0.

Now, consider the n−2t processes that run A1(0), . . . ,At(0)
and the t processes that run A2t+1(1), . . . , A3t(1). These
n − t processes cannot distinguish this execution from an



n-process execution where each of the remaining identifiers,
t+1, . . . , 2t are each assigned to a single Byzantine process.
By agreement, the n − t processes must output the same
value, contradicting the previous two paragraphs.

3.2 Algorithm
Next, we present an algorithm that solves Byzantine agree-
ment assuming ℓ > 3t. Our agreement algorithm is generic:
given any synchronous Byzantine agreement algorithm for ℓ
processes with unique identifiers (such algorithms exist when
ℓ = n > 3t, e.g., [13]), we transform it into an algorithm for
n processes and ℓ identifiers, where n ≥ ℓ. Without loss of
generality, we assume that the algorithm to be transformed
uses broadcasts: a process sends the same message to all
other processes. (If a process wishes to send a message only
to specific recipients, it could include the recipient’s identi-
fier in the broadcasted message.)

In our transformation, we divide processes into groups ac-
cording to their identifiers. Each group simulates a single
process. If all processes within a group are correct, then
they can reach agreement and cooperatively simulate a sin-
gle process. If any process in the group is Byzantine, we
allow the simulated process of that group to behave in a
Byzantine manner. The correctness of our simulation re-
lies on the fact that more than two-thirds of the simulated
processes will be correct (since ℓ > 3t), which is enough to
achieve agreement.

Proposition 2 Synchronous Byzantine agreement is solv-
able even with innumerate processes if ℓ > 3t.

Proof sketch. We transform any Byzantine agreement
algorithm A for the classical model with unique identifiers
into an algorithm T (A) for systems with homonyms. Con-
sider any such A (Figure 2) for a system with ℓ processes
{p1, . . . , pℓ}. A can be specified by: (1) a set of local pro-
cess states, (2) a function init(i, v) that encodes the initial
state of process pi when pi has input value v, (3) a function
M(s, r) that determines the message to send in state s in
round r, (4) a transition function δ(s, r, R) that determines
the new state to which the process moves from state s after
receiving a set of messages R in round r, and (5) a decision
function decide(s) which is the decision in state s, or ⊥ if
there is no decision yet (once a correct process has decided
in a state s, decide(s′) remains equal to this decision in all
states s′ reachable from s).

Let G(i) be the set of processes with identifier i. We name
such a set a group. We say that the group G(i) is correct if
all processes in G(i) are correct. At most t of the ℓ groups
are not correct.

In our new algorithm T (A), shown in Figure 3, three rounds
simulate one round of A. We call these three rounds a phase.
Each phase consists of a selection round, a deciding round

and a running round. In the selection round (line 3 to 5)
of a phase r, the processes within each group agree on a
state for phase r. For each i, if G(i) is correct, then in each
round the selected state will be the same for the processes
in this group. In deciding rounds (line 6 to 9), if there is
a value decided by t + 1 processes with different identifiers

Code for process pi

Variable:

1 s = init(i, v) /* v is the value proposed by pi */

Main code:

2 for all r from 1 to ∞
3 if decide(s) 6= ⊥ then decide the value decide(s)

4 send(M(s, r)) to all processes
5 receive(R) /* receive messages sent this round */
6 s = δ(s, r, R)

Figure 2: Synchronous Byzantine agreement algo-
rithm A with ℓ processes and ℓ identifiers.

then the process can decide that value. At least one of these
identifiers refers to a correct group and gives the decision.
The deciding rounds are useful for correct processes that
belong to a group with a Byzantine process. In running
rounds (line 10 to 15), each process executes one step of
algorithm A with the state chosen in the preceding selection
round and the messages received in the round.

Let αH be an execution of T (A). For all phases r, at the
end of the r-th selection round (line 5), all processes in a
correct group G(i) have the same value for the state s, and
therefore for M(s, r) and decide(s). Let sri be the value of
state s for the processes in group G(i) after the rth selection
round. Note that s1i is the initial state of at least one process
in G(i).

By induction on r, we prove that there is an execution αS

of A such that for all r and for all processes in each correct
group G(i): sri = stri (and hence M(sri , r) = M(stri , r)),
where stri is the value of pi’s variable s at the beginning of
round r in αS . In αS , pi is correct for all identifiers i such
that G(i) is correct in αH .

We sketch the key idea of the inductive step that proves this
claim. In each running round, messages sent by the processes
in a correct group G(i) are identical and indistinguishable
from a single message from a unique correct process with
identifier i. On the other hand, if G(i) is not correct, the
processes in G(i) may send different messages to a process
p (in which case p ignores the messages at line 14) or they
may all send the same (arbitrary) message to p. Either way,
their collective behaviour is indistinguishable from a unique
Byzantine process with identifier i (which could either send
nothing or an arbitrary message to p).

As A is a synchronous Byzantine agreement algorithm that
tolerates t Byzantine failures, all correct processes eventually
decide some value v in αS . It follows from the claim above
that in αH , eventually for all correct groups G(i), sri is a
state where decide(sri ) is v. As ℓ > 3t, at least t+ 1 groups
G(i) are correct and all processes in these groups eventually
send v in the deciding rounds. Thus, each correct process
in αH eventually decides, even if it is in a group with a
Byzantine process. Furthermore, if a correct process decides
in αH , it decides the value it received from t+ 1 groups, at
least one of which is a correct group, so it must decide v.



Code for processes with identifier i

Variable:

1 s = init(i, v) /* v is the value proposed by the process */

Main code:

2 for all r from 1 to ∞
3 send(s) to all processes /* get groups to agree on their state */
4 receive(R) /* receive the messages of the round */
5 s = deterministic choice of some element x.val such that x ∈ R and x.id = i

6 send(decide(s)) to all processes /* deciding round replaces decision line of original algorithm */
7 receive(R) /* receive the messages of the round */
8 if there is a v 6= ⊥ such that |{d ∈ R : d.val = v}| ≥ t+ 1
9 then decide such a v

10 send(M(s, r)) to all processes /* almost identical to original algorithm */
11 receive(R) /* receive the messages of the round */

12 for all j in L /* eliminate messages from known Byzantine groups */
13 if there is more than one different message from identifier j in R
14 then remove all of them from R
15 s = δ(s, r,R)

Figure 3: Synchronous Byzantine agreement algorithm T (A) with n processes and ℓ identifiers.

Thus, the agreement, validity and termination properties
for αH follow from the agreement, validity and termination
properties for αS.

Proposition 1 states that ℓ > 3t identifiers are required to
solve synchronous Byzantine agreement, even if processes
are numerate. Proposition 2 states that ℓ > 3t identifiers
are sufficient, even if processes are innumerate. Thus, we
have the following theorem.

Theorem 3 Synchronous Byzantine agreement is solvable
if and only if ℓ > 3t.

4. THE PARTIALLY SYNCHRONOUS CASE
Here we prove that having ℓ > 3t+n

2
is necessary and suf-

ficient for solving Byzantine agreement in a partially syn-
chronous system, regardless of whether the processes are
numerate or innumerate. Intuitively, this condition means
that at least 3t+1 of the identifiers must each be assigned to
a single process (since 2ℓ− n > 3t). We shall see in Section
4.2 that having this many non-homonym processes will be
crucial in proving the correctness of the algorithm that we
design.

4.1 Impossibility
We prove the necessity of the condition ℓ > n+3t

2
using a

partitioning argument. We show that if there are too few
identifiers, and messages between two groups of correct pro-
cesses are not delivered for sufficiently long, then the Byzan-
tine processes can force processes in the two groups to decide
different values.

Proposition 4 Partially synchronous Byzantine agreement
is unsolvable even with numerate processes if ℓ ≤ n+3t

2
.

Proof. Byzantine agreement is impossible when ℓ ≤ 3t
even in the fully synchronous model by Proposition 1. So, it

remains to show that agreement is impossible when ℓ > 3t
and ℓ ≤ n+3t

2
. To derive a contradiction, assume a Byzan-

tine agreement algorithm A exists for such a system. We
construct three executions of this algorithm, α, β and γ.

In α, process identifiers are assigned as shown in the upper
left portion of Figure 4. In this diagram, a process labelled
Ai has identifier i and runs the algorithm A correctly, and
a process labelled Bi has identifier i and is Byzantine. Note
that there are n processes in total. The t Byzantine pro-
cesses send no messages and all messages sent by correct
processes are delivered. All correct processes have input 0
in α and must therefore decide 0 by some round rα.

Execution β is defined similarly, as shown in the upper right
portion of Figure 4. Again, the t Byzantine processes send
no messages and all messages sent by correct processes are
delivered. All correct processes have input 1, and must
therefore decide 1 by some round rβ.

In γ, the n processes are assigned identifiers as shown in the
bottom half of Figure 4. (Here, we use the assumption that
ℓ ≤ n+3t

2
, so that n ≥ 2ℓ − 3t.) The inputs to each group

of correct processes is also shown in the diagram. The t
Byzantine processes B1,B2, . . . ,Bt send to each correct pro-
cess with input 0 the same messages as that process receives
in α and they send to each correct process with input 1 the
same messages as that process receives in β. (This requires
the ability of Byzantine process B1 to send more than one
message to each recipient per round.) All messages sent
across the edges shown in the diagram are delivered. All
other messages are not delivered for the first r = max(rα, rβ)
rounds. The correct processes with input 0 cannot distin-
guish γ from α for the first r rounds, so they must decide
0 by round r. The correct processes with input 1 cannot
distinguish γ from β for the first r rounds, so they must
decide 1 by round r. This contradicts the assumption that
A satisfies agreement.
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4.2 Algorithm
We now describe an algorithm that solves Byzantine agree-
ment in the basic partially synchronous model when ℓ >
n+3t

2
. Our algorithm is based on the algorithm given by

Dwork, Lynch and Stockmeyer [9] for the classical case where
n = ℓ, with several novel features. Generalizing the algo-
rithm is not straightforward. Some of the difficulty stems
from the following scenario. Suppose two correct processes
share an identifier and follow the traditional algorithm of [9].
They could send very different messages (for example, if they
have different input values), but recipients of those messages
would have no way of telling apart the messages of the two
correct senders, so it could appear to the recipients as if
a single Byzantine process was sending out contradictory
information. Thus, the algorithm has to guard against in-
consistent information coming from correct homonym pro-
cesses as well as malicious messages sent by the Byzantine
processes.

Proposition 5 Partially synchronous Byzantine agreement
is solvable even with innumerate processes if ℓ > n+3t

2
.

We think of an execution as being divided into superrounds,
where each superround consists of two consecutive rounds.
Let T be the first superround such that all messages sent
during or after superround T are delivered. We begin with
an authenticated broadcast primitive based on [20]. This

primitive allows processes to perform Broadcast(m) com-
mands. Once a process receives sufficient evidence that a
process with identifier i has performed a Broadcast(m),
it performs an Accept(m, i) action. This is guaranteed to
happen for broadcasts from correct processes after super-
round T . (In the case where a process with identifier i is
Byzantine, processes will at least eventually agree on which
messages to accept from identifier i.) Our version of au-
thenticated broadcast for homonymous systems satisfies the
following three properties.

1. Correctness: If a process with identifier i performs
Broadcast(m) in superround r ≥ T , then every cor-
rect process performsAccept(m, i) during superround
r.

2. Unforgeability: If all processes with identifier i are cor-
rect and none of them performs Broadcast(m), then
no correct process performs Accept(m, i).

3. Relay: If some correct process performs Accept(m, i)
during superround r, then every correct process per-
forms Accept(m, i) by superround max(r + 1, T ).

Proposition 6 It is possible to implement authenticated
broadcasts satisfying the correctness, unforgeability and re-
lay properties in the basic partially synchronous model, pro-
vided ℓ > 3t.



Proof sketch. The implementation is a straightforward
generalization of the ones given in [9, 20] for systems with
unique identifiers. To perform Broadcast(m) in super-
round r, a process sends a message 〈init m〉 in the first round
of superround r. Any process that receives this message from
identifier i sends 〈echo m, r, i〉 in the following round, which
is the second round of superround r, and in all subsequent
rounds. In each round after superround r, any process that
has so far received 〈echo m, r, i〉 from ℓ− 2t distinct identi-
fiers sends a message 〈echo m, r, i〉. If, at any time, a process
has received the message 〈echo m, r, i〉 from ℓ − t distinct
identifiers, the process performs Accept(m, i).

We now describe the Byzantine agreement protocol. Each
process keeps track of a set of proper values, which are values
that can be output without violating validity. Initially, only
the process’s own input value is in this set. Each process
appends its proper set to each message it sends. If a process
receives proper sets containing v in messages from t + 1
different identifiers, it adds v to its own proper set. Also,
if a process has received proper sets from 2t + 1 different
identifiers and no value appears in t + 1 of them, it adds
all possible input values to its own proper set. (This can
be done because t + 1 of the proper sets are from correct
processes, so there are at least two different inputs to correct
processes.)

The Byzantine agreement algorithm is shown in Figure 5.
Whenever a correct process sends a message, it sends it to
all processes. The execution of the algorithm is broken into
phases, each of which lasts four superrounds. Processes as-
signed the identifier (ph mod ℓ) + 1 are the leaders of phase
ph. In each phase, each process first performs a Broadcast

of a proposal containing the set of values it would be willing
to decide (line 8). These are the values in its proper set,
unless it has already locked a value, as described below, in
which case it can only send its locked value. Each phase
leader chooses a value that appears in proposals the leader
has accepted from ℓ − t different identifiers (if such a value
exists) and sends out a request for processes to lock that
value (line 12) during superround 2 of the phase. Then, in
superround 3 of the phase, all processes vote on which lock
message to support, using a Broadcast (line 16). In the
third superround of the phase, each process that performed
Accept for votes for a particular value v from ℓ− t different
identifiers sends 〈ack v〉 back to the leaders (line 20) and
locks the value v (by adding the value to its locks set, along
with the phase number associated with the lock). A leader
that receives ℓ−t ack messages for the value it wanted locked
can decide that value (line 22). Finally, each process that
has decided sends a message to others (line 23); if any pro-
cess receives such a message with the same decision value
from t+1 identifiers, it can also decide that value (line 26).
At the end of a phase, a process releases old locks (line 30)
if it has accepted enough votes for a later lock request.

To cope with homonyms, our algorithm differs from the orig-
inal algorithm of [9] in the following three ways. (1) The new
algorithm uses a set of processes with ℓ−t different identifiers
as a quorum (e.g., for vote messages). The key property of
these quorums is that any two such sets must both contain a
process that is correct and does not share its identifier with

any other process, as shown in Lemma 7, below. (2) The
vote messages are needed to ensure agreement in the case
where several leaders ask processes to lock different values,
something which could not occur in the original algorithm
of [9], since each phase in that algorithm has a unique leader.
(3) The decide messages are used to ensure that a correct
process that shares its identifier with a Byzantine process
can eventually decide. (This is similar to the mechanism
used in Section 3.2.) We begin by proving the property of
quorums used by the algorithm.

Lemma 7 Assume ℓ > n+3t
2

. If A and B are sets of iden-
tifiers and |A| ≥ ℓ− t and |B| ≥ ℓ − t, then A ∩B contains
an identifier that belongs to only one correct process and no
Byzantine processes.

Proof. At most n−ℓ identifiers belong to more than one
process. At most t identifiers belong to Byzantine processes.
Thus, any set that has more than n− ℓ+ t identifiers must
contain an identifier that belongs to only one correct process
and no Byzantine processes. Since 2ℓ − 3t > n, we have
|A∩B| = |A|+ |B| − |A∪B| ≥ |A|+ |B| − ℓ ≥ (ℓ− t)+ (ℓ−
t)− ℓ = 2ℓ− 3t− ℓ+ t > n− ℓ+ t.

In the original algorithm of [9], each phase has a unique
leader. In our algorithm, there may be several leaders. The
new voting superround ensures this cannot cause problems,
as shown in the following lemmas.

Lemma 8 If the messages 〈ack v, ph〉 and 〈ack v′, ph〉 are
sent by correct processes, then v = v′.

Proof. Suppose a correct process p sends 〈ack v, ph〉 and
a correct process p′ sends 〈ack v′, ph〉. (We may have p = p′.)
According to line 18, there is a set A of ℓ − t identifiers
j for which p performs Accept(〈vote v, ph〉, j). Similarly,
there is a set B of ℓ − t identifiers j for which p′ performs
Accept(〈vote v′, ph〉, j). By Lemma 7, A ∩ B contains an
identifier j that belongs to only one correct process and no
Byzantine processes. By unforgeability, the correct process
with identifier j performed Broadcast(〈vote v, ph〉) and
Broadcast(〈vote v′, ph〉). Thus, v = v′.

Lemma 9 If two correct processes decide on line 22 in the
same phase, then they decide the same value.

Proof. Suppose two correct processes p and p′ decide
values v and v′, respectively, during some phase ph. Then,
process p received 〈ack v, ph〉 from ℓ − t > t different iden-
tifiers, so some correct process must have sent 〈ack v, ph〉.
Similarly, some correct process must have sent 〈ack v′, ph〉.
By Lemma 8, v = v′.

The remainder of the proof of correctness of the algorithm
is similar to the proof for the original algorithm of [9]. It is
given in Appendix A.1, using the following lemmas.

Lemma 10 Suppose there is a value v and a phase ph
such that processes with ℓ − t different identifiers sent an



Code for process with identifier i ∈ {1, . . . , ℓ}

1 locks = ∅
2 ph = 0 /* phase number */
3 proper = {v} /* v is the value proposed by the process */
4 Note: in each round, proper is updated as described on page
5 while true

6 /* beginning of superround 1 of phase */
7 let V be the set of values v ∈ proper such that there is no pair (w, ∗) ∈ locks for any w 6= v
8 Broadcast(〈propose V, ph〉) /* superround 1 */

9 /* beginning of superround 2 of phase */
10 if i = (ph mod ℓ) + 1 and there is some value vlock such that the process has performed Accept(〈propose Vj , ph〉, j)
11 from ℓ− t different identifiers j with vlock ∈ Vj

12 then send 〈lock vlock, ph〉 to all processes /* round 1 of superround 2 */

13 /* beginning of superround 3 of phase */
14 if there is some value v for which the process received 〈lock v, ph〉 from identifier (ph mod ℓ) + 1 and
15 has performed Accept(〈propose Vj , ph〉, j) for ℓ− t different identifiers j with v ∈ Vj

16 then choose one such v and perform Broadcast(〈vote v, ph〉) /* superround 3 */

17 /* beginning of superround 4 of phase */
18 if for some v, the process has performed Accept(〈vote v, ph〉, j) from ℓ− t different identifiers j
19 then add (v, ph) to locks and remove any other pair (v, ∗) from locks
20 send 〈ack v, ph〉 to all processes /* round 1 of superround 4 */
21 if i = (ph mod ℓ) + 1 and the process has received 〈ack vlock, ph〉 from ℓ− t different identifiers in this round
22 then decide vlock (but continue running the algorithm)
23 if the process has already decided some value v
24 then send 〈decide v〉 to all processes /* round 2 of superround 4 */
25 if for some v, the process has received 〈decide v〉 from t+ 1 different identifiers j in this round
26 then decide v (but continue running the algorithm)
27 for each (v1, ph1) ∈ locks
28 if for some v2 6= v1 and ph2 > ph1, the process has performed Accept(〈vote v2, ph2〉, j) for ℓ− t
29 different identifiers j
30 then remove (v1, ph1) from locks
31 ph = ph+ 1

Figure 5: Byzantine agreement algorithm for the partially synchronous model.

〈ack v, ph〉 message in phase ph. Then, at all times after
phase ph, each correct process that sent 〈ack v, ph〉 has a
pair (v, ph′) with ph′ ≥ ph in its locks set.

Lemma 11 At the end of any phase ph3 that occurs after
T , if (v1, ph1) is in the locks variable of a correct process p1
and (v2, ph2) is in the locks variable of a correct process p2,
then v1 = v2.

Lemma 12 Let p be a correct process. Let ph be a phase
such that (ph mod ℓ) + 1 is the identifier of p and phase
ph − 1 occurs after T . Then, p will send a lock message in
superround 2 of phase ph.

Combining Proposition 4 and 5 yields the following theorem
(for numerate or innumerate processes).

Theorem 13 Partially synchronous Byzantine agreement
is solvable if and only if ℓ > n+3t

2
.

5. RESTRICTED BYZANTINE PROCESSES
We now consider the effect of restricting the Byzantine pro-
cesses so that each Byzantine process can send at most one
message to each recipient in each round. We prove that this
restriction reduces the number of identifiers needed to reach
agreement if processes are numerate but does not help if
processes are innumerate.

5.1 Numerate Processes
First, we consider the model where processes can count
copies of identical messages. We prove the following two
theorems for this model.

Theorem 14 Synchronous Byzantine agreement is solvable
with numerate processes against restricted Byzantine pro-
cesses if and only if ℓ > t.

Theorem 15 Partially synchronous Byzantine agreement
is solvable with numerate processes against restricted Byzan-
tine processes if and only if ℓ > t.

Both of these theorems follow from Proposition 16 and 18,
below.

Proposition 16 Synchronous Byzantine agreement is un-
solvable with numerate processes against restricted Byzan-
tine processes if ℓ ≤ t.

Proof sketch. To derive a contradiction, assume that
there exists an algorithm A that solves Byzantine agree-
ment with ℓ ≤ t. In the argument below, we consider only
executions of A with some fixed set of ℓ Byzantine processes,
chosen so that each of the ℓ identifiers is held by one Byzan-
tine process.



We consider configurations of the the algorithm A at the
end of a synchronous round. Such a configuration can be
completely specified by the state of each process. A config-
uration C is 0-valent if, starting from C, the only possible
decision value that correct processes can have is 0; it is 1-

valent if, starting from C, the only possible decision value
that correct processes can have is 1. C is univalent if it
is either 0-valent or 1-valent; C is multivalent if it is not
univalent.

The following lemma encapsulates a Byzantine agent’s abil-
ity to influence the decision value.

Lemma 17 Let C and C′ be two configurations of A such
that the state of only one correct process is different in C
and C′. Then, there exist executions α and α′ that start
from C and C′, respectively, which both produce the same
output value.

Proof. Let p be the correct process whose state is dif-
ferent in C and C′ and let i be the identifier assigned to p.
Let s and s′ be the state of p in C and C′, respectively. Let
b be a Byzantine process that has identifier i.

Let α be the execution from C in which b starts in state s′

and follows p’s algorithm, and all other Byzantine processes
send no messages. Let α′ be the execution from C′ in which
b starts in state s and follows p’s algorithm, and all other
Byzantine processes send no messages. No correct process
other than p can distinguish between α and α′, since p and
b send the same messages in α as b and p send in α′. Thus,
each correct process other than p must output the same
decision in α and α′.

The remainder of the proof of Proposition 16 is a standard
valency argument (see Appendix A.2). We sketch it here. By
validity, the initial configuration where all inputs are 0 is 0-
valent. We can obtain a sequence of initial configurations by
changing the correct process’s inputs to 1, one at a time. By
validity, the final configuration in this sequence is 1-valent.
By Lemma 17 successive configurations in this sequence are
capable of leading to the same output. It follows that some
initial configuration in this sequence is multivalent.

A similar argument can be used to show that every multi-
valent configuration must have a multivalent successor con-
figuration, again using Lemma 17. Hence, we can construct
an infinite execution of multivalent configurations in which
no process ever decides, violating termination. This contra-
diction establishes Proposition 16.

Proposition 18 Partially synchronous Byzantine agreement
is solvable with numerate processes against restricted Byzan-
tine processes if ℓ > t.

The algorithm used to prove this proposition is similar to
the one presented in Section 4.2. Details may be found in
Appendix A.3. Like the algorithm in Section 4.2, it uses an
authenticated broadcast primitive, but here Accept actions
have an extra parameter indicating the multiplicity of the

accepted message. More precisely, this multiplicity is greater
than the number of correct processes that sent the message
and does not exceed the number of correct processes by more
than the actual number of Byzantine processes in the exe-
cution. Furthermore, all correct processes agree eventually
on the multiplicity of each message.

This authenticated broadcast with multiplicity is used to
ensure the agreement property. As ℓ > t, at least one iden-
tifier is assigned only to correct processes. This property is
used to ensure the termination property of the agreement
algorithm.

5.2 Innumerate Processes
Theorem 19 Synchronous Byzantine agreement is solvable
with innumerate processes against restricted Byzantine pro-
cesses if and only if ℓ > 3t.

Proof sketch. (See Appendix A.4 for a detailed proof.)
By Proposition 2, there is an algorithm if ℓ > 3t, even
against (unrestricted) Byzantine processes, so the same algo-
rithm would work against restricted Byzantine processes. To
prove that ℓ > 3t is necessary, we use a simulation. If it were
possible to solve the problem when ℓ ≤ 3t, this algorithm
would work, in particular, when n−ℓ+1 of the processes are
all assigned the same identifier and input, and all receive ex-
actly the same messages from the Byzantine agents. In this
situation, the n − ℓ + 1 processes would behave as clones,
taking exactly the same sequence of steps. This would imply
that the same algorithm would solve Byzantine agreement
when n = ℓ ≤ 3t, which is known to be impossible.

Theorem 20 Partially synchronous Byzantine agreement
is solvable with innumerate processes against restricted Byzan-
tine processes if and only if ℓ > n+3t

2
.

Proof. By Proposition 5, there is an algorithm if ℓ >
n+3t

2
, even against (unrestricted) Byzantine processes, so

the same algorithm would work against restricted Byzantine
processes. The impossibility result can be proved in exactly
the same way as Proposition 4. In that proof, only the
Byzantine process denoted B1 must send multiple messages
to a single recipient in execution γ. Consider the messages
B1 must send to At(0) in γ. It must send the same messages
as the entire stack of processes running A1 send to At(0) in
α. However, all processes in that stack behave identically in
α, so B1 must simply send n− ℓ+ 1 copies of a message to
At(0). Since we are now considering a model where At(0)
is innumerate, B can simply send one copy of the message
to At(0) instead. (A symmetric argument applies to the
messages sent by B1 to each other process in γ.)

6. CONCLUDING REMARKS
Since the pioneering work of [1], the question of what can
be computed in a totally anonymous distributed systems has
been extensively studied. Some results depended on prop-
erties of the communication graph (e.g. [4, 22]). Some work
considered shared memory for the “wake up” problem [12],
others considered consensus [3]. The power of anonymous
broadcast systems, in comparison with anonymous shared-
memory systems has also been studied [2]. None of these



considered process failures. Anonymous processes with crash
failures have been considered more recently [5,6,8,11,16,19].
In [15], Byzantine agreement was studied in a model with
a restricted kind of anonymity: processes have no identi-
fiers, but each process has a separate channel to every other
process and a process can detect through which channel an
incoming message is delivered. It was shown that Byzantine
agreement can be solved in this model when n > 3t.

This paper is the first to study a distributed system model
with homonyms, i.e., with a limited number of identifiers.
The model unifies both classical (non-anonymous) and anony-
mous models and is interesting from both a theoretical and a
practical viewpoint. We completely characterized the solv-
ability of Byzantine agreement in this model, precisely quan-
tifying the impact of the adversary, with some surprising
results. We focused however on agreement and many other
problems would be interesting to consider. We also focused
on computability and complexity is yet to be explored.
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A. APPENDIX

A.1 Detailed Proof of Proposition 5



The proof of the proposition below is included for the sake of
completeness, but it is very similar to earlier proofs of [9,20].

Proposition 6 It is possible to implement authenticated

broadcast satisfying the correctness, unforgeability and relay

properties in the basic partially synchronous model, provided

ℓ > 3t.

Proof. The implementation of an authenticated broad-
cast primitive is a straightforward generalization of the ones
given in [9, 20] for systems with unique identifiers. To per-
form Broadcast(m) in superround r, a process sends a
message 〈init m〉 in the first round of superround r. Any
process that receives this message from identifier i sends
〈echo m,r, i〉 in the following round, which is the second
round of superround r, and in all subsequent rounds. In
each round after superround r, any process that has so far
received 〈echo m, r, i〉 from ℓ− 2t distinct identifiers sends a
message 〈echo m,r, i〉. If, at any time, a process has received
the message 〈echo m,r, i〉 from ℓ− t distinct identifiers, the
process performs Accept(m, i).

Correctness: If a process with identifier i performs Broad

cast(m) in some superround r ≥ T , then all correct pro-
cesses send 〈echo m, r, i〉 messages in the second round of
superround r. All of these messages will be delivered and
they will come from at least ℓ− t different identifiers, so all
processes will perform Accept(m, i) in the second round of
superround r.

Unforgeability: Suppose all processes with identifier i are
correct and none perform Broadcast(m). The only reason
a correct process will send a message 〈echo m, r, i〉 (for some
r) is if it has previously received 〈echo m, r, i〉 messages from
ℓ − 2t > t identifiers, one of which must have been sent
by a correct process. Thus, no correct process can send
the first 〈echo m, r, i〉 message. So, no process can receive
〈echo m,r, i〉 from ℓ − t > t identifiers. It follows that no
correct process performs Accept(m, i).

Relay: Suppose some correct process P performsAccept(m, i)
during superround r. For some r′, P has received 〈echom, r′, i〉
messages from ℓ − t different identifiers. At least ℓ − 2t
of those messages were sent by correct processes. Each of
those ℓ−2t processes continue to send 〈echo m,r′, i〉 in every
round after superround r. Thus, in superround max(r+1, T )
every correct process sends 〈echo m, r′, i〉 and all of these
messages are delivered, so every correct process performs
Accept(m, i).

We now complete the proof that the algorithm given in Fig-
ure 5 correctly solves Byzantine agreement in the basic par-
tially synchronous model when ℓ > n+3t

2
. The following

lemma is used to ensure agreement between values decided
on line 22 in different phases.

Lemma 10 Suppose there is a value v and a phase ph
such that processes with ℓ − t different identifiers sent an

〈ack v, ph〉 message in phase ph. Then, at all times after

phase ph, each correct process that sent 〈ack v, ph〉 has a

pair (v, ph′) with ph′ ≥ ph in its locks set.

Proof. To derive a contradiction, suppose the claim is
false. Let A be the set of ℓ − t identifiers of the processes
that sent an 〈ack v, ph〉 message in phase ph. Consider the
first time the claim is violated: some correct process q that
sent an 〈ack v, ph〉 message removes its lock on v (on line
30). This means that there is some v′ 6= v and ph′ > ph such
that q has performed Accept(〈vote v′, ph′〉, j) for ℓ − t >
t different identifiers j, at least one of which must belong
only to correct processes. By unforgeability, some correct
process performed Broadcast(〈vote v′, ph′〉). That process
must have performed Accept(〈propose Vj , ph

′〉, j) for ℓ− t
different identifiers j with v′ ∈ Vj . Let B be this set of
identifiers.

By Lemma 7, some identifier j ∈ A ∩ B belongs to only
one correct process and no Byzantine processes. Let r be
the correct process with this identifier j. Since r’s identifier
is in A, r sent 〈ack v, ph〉 in phase ph. Since r’s identifier
is in B, it follows from unforgeability that r performed a
Broadcast(〈propose Vj , ph

′〉) with v′ ∈ Vj . According to
line 7, this is possible only if (v, ∗) is not in r’s locks set at
the beginning of phase ph′. This contradicts our assumption
that all correct processes that sent an 〈ack v, ph〉 message
in phase ph (including r) keep the value in v in their locks
set from the time they execute line 20 of phase ph until they
execute line 30 of phase ph′.

The following lemmas are useful for proving termination.
Recall that all messages sent after T are guaranteed to be
delivered.

Lemma 11 At the end of any phase ph3 that occurs after

T , if (v1, ph1) is in the locks variable of a correct process p1
and (v2, ph2) is in the locks variable of a correct process p2,
then v1 = v2.

Proof. Since, at the end of phase ph3, correct processes
have locks associated with phases ph1 and ph2, we must
have ph1 ≤ ph3 and ph2 ≤ ph3. If ph1 = ph2, then v1 = v2
by Lemma 8. So for the rest of the proof assume, with-
out loss of generality, that ph2 > ph1. Before process p2
added (v2, ph2) to its locks set in phase ph2, it performed
Accept(〈vote v2, ph2〉, j) for ℓ− t different identifiers j. By
the relay property of the authenticated broadcasts, p1 will
accept all of these messages by the end of phase ph3 and re-
move (v1, ph1) from its locks set, if v1 6= v2. Thus, v1 must
be equal to v2.

Lemma 12 Let p be a correct process. Let ph be a phase

such that (ph mod ℓ) + 1 is the identifier of p and phase

ph− 1 occurs after T . Then, p will send a lock message in

superround 2 of phase ph.

Proof. By Lemma 11, at most one value will be appear
in the locks variables of correct processes at the end of phase
ph− 1. We consider two cases.

Case 1: the locks set of some correct process q is non-empty
at the end of phase ph− 1. Let (v, phv) be the (unique) en-
try in the locks set of q, where phv must be smaller than



ph. Then q performed Accept(〈vote v, phv〉, j for ℓ− t > t
different identifiers, including some identifier j that does
not belong to any Byzantine process. Thus, some correct
process q performed Broadcast(〈vote v, phv〉). So, q per-
formed Accept(〈propose Vj , phv〉, j) from ℓ − t ≥ 2t + 1
different identifiers j with v ∈ Vj . At least t + 1 of those
identifiers do not belong to any Byzantine process. So cor-
rect processes with at least t + 1 different identifiers per-
formed Broadcast(〈propose Vj , phv〉), which means v is in
the proper set of correct processes with at least t+1 different
identifiers at the beginning of phase phv. Thus, by the end
of phase ph− 1, v will be in the proper set of every correct
process. It follows that, in phase ph, every correct process
will Broadcast(〈propose V, ph〉) with v ∈ V , and process
p will be able to find a value that it can send in superround
2 of phase ph.

Case 2: the locks set of every correct process is empty at
the end of phase ph− 1. If there are t+ 1 correct processes
with the same input value, that value will be in the proper
set of all correct processes by the beginning of phase ph.
Otherwise, all input values will be in the proper set of all
correct processes at the beginning of phase ph. Either way,
some value will appear in the propose message that is broad-
cast by every correct process in phase ph, so p will be able to
find a value that it can send in superround 2 of phase ph.

We are now ready to prove the correctness of the algorithm.

Proposition 5 Partially synchronous Byzantine agreement

is solvable even with innumerate processes if ℓ > n+3t
2

.

Proof. We prove each of the three correctness properties
of the algorithm in Figure 5 in turn.

Validity: Suppose all correct processes have the same in-
put value, v0. Then no correct process ever adds any other
value to its proper set. So, a correct process can perform
a Broadcast(〈propose V, ∗〉) message only if V ⊆ {v0}. It
follows from unforgeability that a correct process can per-
form an Accept(〈propose V, ∗〉, j) only if V ⊆ {v0} or a
Byzantine process has identifier j. Thus, according to the
test on line 15, a correct process can perform Broadcast(〈vote v, ∗〉)
only if v = v0. Then, according to the test on line 18, a cor-
rect process can send a message 〈ack v, ∗〉 only if v = v0.
Then, according to the test on line 21, a correct process can
decide v only if v = v0. Thus, no correct process decides a
value different from v0 on line 22. A process can decide a
value different from v0 on line 26 only if at least one cor-
rect process has already decided that value on line 22, so no
correct process will decide a value different from v0 on line
26.

Agreement: If no correct processes ever decide, agreement
is trivially satisfied. A correct process decides a value v on
line 26 only if some correct process has previously decided
v. Thus, for agreement, it suffices to prove that all values
decided by correct processes on line 22 are identical. So, for
the remainder of the proof of agreement, we only consider
processes that decide on line 22.

Suppose phase ph1 is the first phase during which some cor-
rect process decides. By Lemma 9 there is a unique value v1
that correct processes decide during phase ph1. Let p be a
correct process that decides v1 during phase ph1. Then p re-
ceived 〈ack v1, ph1〉 messages from ℓ− t different identifiers.
Let A be this set of ℓ− t identifiers.

Suppose some correct process p decides a value v in a phase
ph > ph1. We shall prove that v = v1. Process p must have
performed Accept(〈propose Vk, ph〉, k) from ℓ − t different
identifiers k with v ∈ Vk. Let B be this set of ℓ − t iden-
tifiers. By Lemma 7, some identifier k ∈ A ∩ B belongs
to only one correct process and no Byzantine processes.
Let q be the correct process with this identifier k. Since
k ∈ A, q sent an 〈ack v1, ph1〉 message in phase ph1. By
Lemma 10, (v1, ∗) is in the locks set of q at the beginning
of phase ph. Thus, no process with identifier k performs
Broadcast(〈propose Vk, ph〉) unless Vk ⊆ {v1}. By un-
forgeability, no correct process can performAccept(〈propose
Vk, ph〉, k) unless Vk ⊆ {v1}. Since k ∈ B, process p did per-
form Accept(〈propose Vk, ph〉, k) and v ∈ Vk. Thus, v = v1.
This completes the proof of the agreement property.

Termination: First, we show that if p is any correct process
that does not share its identifier with any other process, then
p terminates. Let ph be a phase such that (ph mod ℓ)+1 is
p’s identifier and phase ph−1 occurs after T . By Lemma 12,
there is some value v such that p sends a 〈lock v, ph〉 mes-
sage in superround 2 of phase ph. Every correct process re-
ceives this message, and no other lock messages are received
from a process with identifier (ph mod ℓ) + 1 in this phase.
According to the test in line 10, p must have performed
Accept(〈propose Vj , ph〉, j) for ℓ − t different identifiers j
with v ∈ Vj during superround 1 of phase ph. By the relay
property, all correct processes must have performed these
Accept actions by the end of superround 2 of phase ph.
Thus, every correct process performs Broadcast(〈vote v, ph〉)
during superround 3 of phase ph and all correct processes ac-
cept this broadcast. Thus, all correct processes send 〈ack v, ph〉
in round 1 of superround 3 of phase ph. Process p receives
all of these messages and decides v.

There are at least 2t+1 correct processes that do not share
their identifier with any other process (since n ≤ 2ℓ−3t). By
the argument above, these will all decide. By the agreement
property, they will all decide on the same value v. Eventu-
ally, all of these 2t+1 processes will send 〈decide v〉 messages
in superround 4 of each phase, and all correct processes will
receive these messages and decide on line 26.

A.2 Detailed Proof of Proposition 16
As described in Section 5.1, suppose there is an algorithm
A that solves Byzantine agreement with ℓ ≤ t. We consider
only executions of A with some fixed set of ℓ Byzantine
processes, chosen so that each of the ℓ identities is held by
one Byzantine process.

We use Ck to denote a configuration at end of round k.
From Ck, the system can reach different possible configu-
rations Ck+1. In an execution of algorithm A, the config-
uration Ck+1 is completely determined by (1) Ck and (2)
the messages sent by the Byzantine processes to the correct



processes in round k + 1. (The messages sent by correct
processes are determined by Ck and A.)

Lemma 21 There is a multivalent initial configuration.

Proof. For 0 ≤ j ≤ n − ℓ, let Cj
0 be the initial configu-

ration where the first j correct processes have input 1 and
the rest of the correct processes have input 0. By validity,
C0

0 is 0-valent and Cn−ℓ
0 is 1-valent. Choose j so that Cj

0 is

0-valent and Cj+1

0 is not 0-valent. Only one correct process
is in a different state in these two initial configurations, so
there is an execution from Cj+1

0 that decides 0, by Lemma

17. Thus, Cj+1

0 is multivalent.

Lemma 22 Every multivalent configuration ofA has a mul-
tivalent successor configuration.

Proof. Suppose the claim is false. Then there exists a
multivalent configuration Cθ of A such that every successor
configuration of Cθ is univalent. Then, some successor con-
figuration Cθ+1 is v-valent and some successor configuration
C′

θ+1 is v′-valent, where v 6= v′. For 0 ≤ j ≤ n− ℓ, let Cj

θ+1

be the successor of Cθ where, in round θ+1, the Byzantine
processes send the same messages to the first j correct pro-
cesses as they do in C′

θ+1, and send the same messages to the
rest of the processes as they do in Cθ+1. Then, C

0
θ+1 = Cθ+1

is v-valent and Cn−ℓ
θ+1

= C′

θ+1 is v′-valent. Choose j so that

Cj

θ+1
is v-valent and Cj+1

θ+1
is not v-valent. Only one correct

process is in a different state in these two configurations, so
by Lemma 17, some execution from Cj+1

θ+1
decides v. Thus,

Cj+1

θ+1
is multivalent, contradicting the assumption.

This lemma implies that, starting from the multivalent ini-
tial configuration of A, we can construct an infinite execu-
tion consisting only of multivalent configurations. No cor-
rect process can ever decide in this execution, which violates
the termination condition of consensus, so algorithm A can-
not exist. This completes the proof of Proposition 16.

A.3 Proof of Proposition 18
In this section we give an algorithm to prove the following
proposition.

Proposition 18 Partially synchronous Byzantine agreement

is solvable with numerate processes against restricted Byzan-

tine processes if ℓ > t.

The approach used to design the algorithm is similar to the
one used in Section 4.2, but various thresholds must be ad-
justed to take advantage of the restriction on the Byzan-
tine processes, and to make use of the processes’ ability to
count copies of identical messages. In combination, these
two factors allow us to weaken the condition on number of
identifiers from ℓ > n+3t

2
(which is required in Section 4.2)

to ℓ > t. The safety of our algorithm depends on the con-
dition n > 3t, while liveness is guaranteed by the condition
ℓ > t. The algorithm uses a more powerful version of the
authenticated broadcast primitive [20].

A.3.1 Authenticated Broadcast
The computation proceeds in superrounds. Superround r is
composed of the two rounds 2r and 2r+1. Our authenticated
broadcast is defined by two primitives: Broadcast(i,m, r),
where i is the identifier of the broadcaster, m is the mes-
sage and r is the superround number, andAccept(i, α,m, r)
where α is an integer (α is an estimate of the number of pro-
cesses with identifier i that have broadcast m in superround
r).

The authenticated broadcast primitive is specified as follows.
Consider any execution that uses authenticated broadcasts.
Let T be the first superround such that all messages sent
during or after superround T are delivered. Let fi be the
number of Byzantine processes with identifier i. The fi val-
ues are used only in the specification of the authenticated
broadcast; they are not known by the processes.

• Correctness: If α correct processes with identifier i per-
form Broadcast(i,m, r) in superround r ≥ T then ev-
ery correct process performs Accept(i, α′,m, r) with
α′ ≥ α during superround r.

• Relay: If a correct process performs Accept(i, α,m, r)
in superround r′ ≥ r then every correct process per-
forms Accept(i, α′,m, r) with α′ ≥ α in superround
max(r′, T ) + 1.

• Unforgeability: If α correct processes with identifier i
perform Broadcast(i,m, r) in superround r and some
correct process performs Accept(i, α′,m, r) in super-
round r′ then r ≤ r′ and 0 ≤ α′ ≤ α+ fi.

• Unicity: for each i, m and r, each correct process per-
forms at most one Accept(i, ∗,m, r) per superround.

We give an implementation of authenticated broadcast in
Figure 6. In the algorithm, we call a message sent by some
process with identifier i at round R valid if

• it contains at most one tuple (init, i, m, r) and 2r = R
in that tuple, and

• for each j, m and r, it contains at most one tuple
(echo, j,m, ∗, r) and R ≥ 2r in that tuple.

All messages sent by correct processes are valid.

In the following, we consider a run where, for each i, fi is
the number of Byzantine processes with identifier i. Let
ΠR(h,m, k) be the set of correct processes that send a mes-
sage containing (echo, h, ∗,m, k) in round R.

Lemma 23 Assume that α correct processes with identi-
fier i perform Broadcast(i,m, r) in round 2r. Let R ≥
2r + 1 be a round. For every q in ΠR(i,m, r), if q sends
(echo, i, aq,m, r) in round R then 0 ≤ aq ≤ α+ fi.

Proof. We prove this lemma by induction.

• R = 2r+ 1: Each of the α correct processes with iden-
tifier i who perform Broadcast(i,m, r) in superround



Code for process with identifier i ∈ {1, 2, . . . , ℓ}

Variable:

1 a[h,m, r] = 0 for all h,m and r
Main code:

2 IN ROUND R
3 M = ∅
4 For all h ∈ {1, 2, . . . , ℓ}
5 For all m ∈ possible messages
6 For all k ∈ {1, . . . , R/2}
7 if a[h,m, k] 6= 0 then M = M∪ {(echo, h, a[h,m, k], m, k)}
8 if R = 2r then
9 To perform Broadcast(i,m, r) : M = M∪ {(init, i,m, r)}

10 send (M, R) to all processes

11 For all h ∈ {1, 2, . . . , ℓ}
12 For all m ∈ possible messages
13 if (R = 2r) and the set of valid received messages contains α ≥ 1 messages (init, h,m, r) then
14 a[h,m, r] = α

15 For all k ∈ {1, ..., R/2}
16 if at least n− 2t valid messages containing (echo, h, ∗, m, k) were received this round then
17 α1 = max{α : at least n− 2t messages of the contained (echo, h, α′,m, k) with α′ ≥ α}
18 a[h,m, k] = max(α1, a[h,m, k])
19 if R is odd and at least n− t valid messages containing (echo, h, ∗, m, k) were received this round then
20 α2 = max{α : at least n− t of the messages contained (echo, h, α′,m, k) with α′ ≥ α}
21 Accept(h, α2,m, k)

Figure 6: An authenticated broadcast primitive for n partially synchronous, numerate processes and ℓ iden-
tifiers in a system with restricted Byzantine processes.

r sends (init, i,m, r) in round 2r. Each correct pro-
cess receives at most α + fi valid messages contain-
ing (init, i, m, r) in round 2r. Thus, if a process q in
Π2r+1(i,m, r) sends (echo, i, aq,m, r) in round 2r + 1
then 0 ≤ aq ≤ α+ fi.

• Let R > 2r + 1. Assume the lemma is true for round
R − 1. Let q be a correct process in ΠR(i,m, r). In
line 20 of round R− 1, process q either did not change
a[i,m, r] or set it to α1. If a[i,m, r] did not change, then
q sends the same tuple (echo, i, aq,m, r) that it sent
in the previous round, and the claim follows from the
induction hypothesis. Otherwise, suppose q changed
a[i,m, r] to α1 in round R − 1. Then, q must have
received at least n − 2t > t + 1 messages containing
tuples of the form (echo, h, α′,m, k) with α′ ≥ α1 in
the previous round. At least one of those messages was
from a correct process, which had α′ ≤ α + fi by the
induction hypothesis. Thus, α1 ≤ α+ fi and the claim
follows.

Lemma 24 Assume that α correct processes with identifier
i perform Broadcast(i,m, r) in round 2r ≥ T . Let R ≥
2r + 1. Then,

(1) if α > 0 then ΠR(i,m, r) is the set of correct processes,

(2) ΠR−1(i,m, r) ⊆ ΠR(i,m, r), and

(3) for every q in ΠR(i,m, r), q sends (echo, i, aq,m, k) in
round R with aq ≥ α in round R.

Proof. We prove this lemma by induction.

• R = 2r+ 1: Each of the α correct processes with iden-
tifier i who perform Broadcast(i,m, r) in superround
r sends (init, i, m, r) in round 2r. Since 2r ≥ T , every
correct process receives at least α messages contain-
ing (init, i,m, r) in round 2r. If α > 0, every correct
process q sends (echo, i, aq,m, r) in round 2r + 1 with
aq ≥ α. Thus, we have (1) and (3). From the algo-
rithm, a correct process never sends (echo, i, ∗, m, r) in
round 2r, so Π2r(i,m, r) = ∅. Thus, we have (2).

• Let R > 2r + 1. Assume the properties (1) , (2) and
(3) are true for round R− 1. Property (2) follows from
the fact that a[h,m, k] never decreases. Claim (1) for
round R follows from (2) and claim (1) of the induction
hypothesis. To prove claim (3), consider any process q
in ΠR(h,m, r). If α = 0, claim (3) is trivially true,
so assume α > 0. In line 20 of round R − 1, process
q either did not change a[i,m, r] or set it to α1. If
a[i,m, r] did not change, then q sends the same tuple
(echo, i, aq,m, r) that it sent in the previous round, and
the claim follows from the induction hypothesis. Other-
wise, suppose q changed a[i,m, r] to α1 in round R−1.
By claim (1) and (3) of the induction hypothesis each
of the n − t correct processes sends (echo, i, α′,m, r)
with α′ ≥ α in round R − 1. Since R > T , all of these
messages are received by q, so α1 ≥ α. Thus, q sends
(echo, i, α1,m, r) with α1 ≥ α in round R.

Proposition 25 (Unicity) For each i, m and r, each cor-



rect process performs at most one Accept(i, ∗,m, r) per
superround.

Proof. This follows directly from the code.

Proposition 26 (Correctness) If α correct processes with
identifier i performs Broadcast(i,m, r) in superround r ≥
T then every correct process performs accept(i, α′,m, r) with
α′ ≥ α in superround r.

Proof. Each of the α correct processes with identifier
i who perform Broadcast(i,m, r) in superround r ≥ T
sends (init, i,m, r) in round 2r. By Lemma 24, every correct
process q sends (echo, i, αq ,m, r) in round 2r+1, with αq ≥
α. All of these messages are delivered. Thus, every correct
process will set α2 to a value greater than or equal to α on
line 20 and then perform Accept(i, α2,m, r) at the end of
superround r.

Proposition 27 (Relay) If a correct process performs Ac

cept (i, α,m, r) in superround r′ ≥ r then every correct pro-
cess performs Accept(i, α′,m, r) with α′ ≥ α in superround
max(r′, T ) + 1.

Proof. Assume some correct process p performs Accept

(i, α,m, r) in superround r′. Then it must do so in round
2r′ + 1 (since a correct process accepts only in the sec-
ond round of the superround). Process p must have re-
ceived at least n− t messages containing tuples of the form
(echo, i, α′, m, r) with α′ ≥ α in this round. Among the n−t
senders of these messages, at least n− 2t are correct. Since
the value stored in each sender’s a[i,m, r] variable can only
increase, each of these n − 2t correct senders also sends a
tuple of the form (echo, i, α′,m, r) with α′ ≥ α in round
max(r′, T ). All of these messages are delivered. Thus, for
each correct process, the value of a[i,m, r] is at least α af-
ter the process executes line 18 in superround max(r′, T ).
Then, in superround max(r′, T ) + 1, each of the n − t cor-
rect processes sends a tuple of the form (echo, i, α′,m, r)
with α′ ≥ α. All of these messages are delivered. Thus,
each correct process performs accept(i, α′,m, r) with α′ ≥ α
in superround max(r′, T ) + 1.

Proposition 28 (Unforgeability) If α correct processes
with identifier i perform Broadcast(i,m, r) in superround
r and some correct process performs Accept(i, α′, m, r) in
superround r′ then r ≤ r′ and 0 ≤ α′ ≤ α+ fi.

Proof. Assume that some correct process q performs
Accept(i, α′,m, r) in superround r′. Then it received at
least n−tmessages containing tuples of the form (echo, h, α′′,
m, k) with α′′ ≥ α′. Because n− t ≥ t+1, one of those mes-
sages came from a correct process. By Lemma 23, the α′′ in
that message is less than or equal to α+ fi, so α′ ≤ α+ fi
and α′ ≥ 0 follows directly from the code.

Thus, we have the following theorem.

Theorem 29 The algorithm in Figure 6 ensures the unicity,
correctness, unforgeability and relay properties.

A.3.2 Consensus algorithm
A partially synchronous algorithm for Byzantine agreement
when n > 3t and ℓ > t is shown in Figure 7. It uses the
authenticated broadcast primitive described in the previous
subsection and follows the same general pattern as the algo-
rithm of Dwork, Lynch and Stockmeyer [9]. Each iteration
of the main loop is called a phase, which takes four super-
rounds.

Each process has a proper variable, which stores a set of val-
ues that can be output without violating validity. Initially,
only the process’s own value is in this set. In each round,
each process updates its proper variable as follows. Each
process appends its proper set to each message it sends. If
a process receives proper sets containing v in t+1 messages
in the same round, it adds v to its own proper set. Also, if
a process has received proper sets in 2t+1 messages during
the round and no value appears in t+1 of them, the process
adds all possible input values to its own proper set.

Consider a process p executing the algorithm. There are sev-
eral times when p needs to have an estimate of the number
of processes that performed a broadcast of a particular mes-
sage m in an earlier superround r ≤ r′. During superround
r′, p performs a number of Accept(i, αi, m, r). For each
identifier i, αi is p’s estimate of the number of processes
with identifier i that performed Broadcast(i,m, r). We
say that the number of witnesses that p has in superround
r′ for (m,r) is the sum, over all i, of the αi’s that appear
in all Accept(i, αi,m, r) actions that p performs during su-
perround r′. It follows from the properties of authenticated
broadcast that this estimate will eventually be at least as
large as the actual number of correct processes that per-
formed Broadcast(∗,m, r) and exceed that number by at
most t.

For the remainder of this section, we consider an execution in
which fi processes with identifier i are Byzantine processes,

for each identifier i. Let f =
ℓ∑

i=1

fi be the total number of

Byzantine processes in the execution.

Lemma 30 If some correct process p has n−t witnesses for
(m, r) in some superround r′ ≥ r, then there are at least n−
t− f correct processes that performed Broadcast(∗,m, r)
in round r.

Proof. For each identifier i, let αi be the number of cor-
rect processes with identifier i that perform Broadcast(i,m, r)
in round r. By unforgeability, if p performsAccept(i, α′

i,m, r)
in superround r′, then α′

i ≤ αi + fi. Thus, the number of
witnesses that p has for (m, r) in superround r′ is at most
ℓ∑

i=1

(αi+fi) = (
ℓ∑

i=1

αi)+f . So if p has n−t witnesses for (m, r)

in superround r′, then
ℓ∑

i=1

αi ≥ n− t− f , as required.

Lemma 31 If some correct process has n− t witnesses for
(m, r) and some correct process has n − t witnesses for
(m′, r′), then some correct process performed both Broad

cast (∗,m, r) and Broadcast(∗,m′, r′).



Code for process with identifier i ∈ {1, 2, ..., ℓ}

1 locks = ∅ ;
2 ph = 0;
3 proper = {v} /* v is the input value for the process (see page for how this variable is updated each round) */
4 while true

5 /* beginning of superround 1 of phase */
6 Let V be the set of values v ∈ proper such that there is no pair (w, ∗) ∈ locks for any w 6= v
7 for each v ∈ V do Broadcast(i,propose v, 4ph)

8 /* beginning of superround 2 of phase */
9 if i = ph mod ℓ+ 1 and there is some value v such that there are at least n− t witnesses for (propose v, 4ph)
10 then send 〈lock, v, ph〉 to all processes /* round 1 of superround 2 */

11 /* beginning of superround 3 of phase*/
12 if there is some value v for which the process received 〈lock, v, ph〉 from processes with identifier ph mod ℓ+ 1
13 and there are at least n− t witnesses for (propose v, 4ph)
14 then choose one such value v and perform Broadcast(i, vote v, 4ph+ 2)

15 /* beginning of superround 4 of phase */
16 if for some v, there are at least n− t witnesses for (vote v, 4ph+ 2)
17 then
18 add (v, ph) to locks and remove any other pair (v, ∗) from locks
19 send 〈ack, v, ph〉 to all processes /* round 1 of superround 4 */
20 if for some v:
21 There are at least n− t witnesses for (propose v, 4ph) and
22 received n− t messages 〈ack, v, ph〉 in this round
23 then decide v (but continue running the algorithm)
24 for each (v1, ph1) ∈ locks
25 if for some v2 6= v1 and ph2 > ph1, there are n− t witnesses for (vote v2, 4ph2 + 2)
26 then remove (v1, ph1) from locks
27 ph = ph+ 1

Figure 7: Partially Synchronous Byzantine agreement algorithm with n processes and ℓ identifiers.

Proof. By Lemma 30, there is a set A of at least n −
t− f correct processes that performed Broadcast(∗,m, r)
and there is a set B of at least n − t − f correct processes
that performed Broadcast(∗,m′, r′). Since there are n− f
correct processes, |A ∩ B| = |A|+ |B| − |A ∪ B| ≥ (n− t−
f)+ (n− t− f)− (n− f) = n− 2t− f ≥ n− 3t > 0, so there
is at least one process in A ∩B.

Lemma 32 If the messages 〈ack, v, ph〉 and 〈ack, v′, ph〉 are
both sent by correct processes, then v = v′.

Proof. Suppose a correct process p sends 〈ack, v, ph〉 and
a correct process p′ sends 〈ack, v′, ph〉. According to line
16, process p has n − t witnesses for (vote v, 4ph + 2) in
superround 3 of phase ph. Similarly, p′ has n−t witnesses for
(vote v, 4ph+2). By Lemma 31, there is at least one correct
process that performed Broadcast(∗, vote v, 4ph+ 2) and
performed Broadcast(∗, vote v′, 4ph + 2) in superround 3
of phase ph, so v = v′.

Lemma 33 If two correct processes decide on line 23 in the
same phase then they decide the same value.

Proof. Suppose two correct processes p and p′ decide
values v and v′, respectively, during some phase ph. Then
process p received n−t copies of 〈ack, v, ph〉, so some correct
process must have sent 〈ack, v, ph〉. Similarly, some correct
process must have sent 〈ack, v′, ph〉. By Lemma 22, v =
v′.

Lemma 34 At the end of each phase, the locks set of a
correct process contains at most one pair.

Proof. Let p be a correct process. We first prove that in
each phase ph, p can add at most one pair to its locks set.
For each pair (v, ph) added in phase ph, p has n−t witnesses
for (vote ∗, 4ph + 2). By Lemma 31 this condition can be
true for at most one value v. When p adds this unique pair
(v, ph) to locks, it removes all other pairs (v, ∗). Then in
line 24 to 26, p will remove all other pairs (v′, ph′) from the
locks set.

Lemma 35 Suppose that some correct process receives n−t
〈ack, v, ph〉 messages. Then at all times after phase ph, each
correct process that sent 〈ack, v, ph〉 in phase ph has a pair
(v, ph′) with ph′ ≥ ph in its locks set.

Proof. To derive a contradiction, suppose the claim is
false. Let A be the set of n− 2t correct processes that sent
〈ack, v, ph〉 in phase ph. Consider the first time the claim
is violated: some correct process q that sent an 〈ack, v, ph〉
message removes its lock on v (on line 26). This means that
there is some v′ 6= v and ph′ > ph such that q has n− t wit-
nesses for (vote v′, 4ph′ + 2). By Lemma 30, some correct
process performs Broadcast(∗, vote v′, 4ph′+2). That pro-
cess has n− t witnesses for (propose v′, 4ph′) in superround
2 of phase ph′. By Lemma 30 there is a set B of n−t−f cor-
rect processes that perform Broadcast(∗,propose v′, 4ph′).
Since there are n−f correct processes, |A∩B| = |A|+ |B|−



|A∪B| ≥ (n−2t)+(n− t−f)− (n−f) = n−3t > 0. Thus,
there is at least one correct process r that sends 〈ack, v, ph〉
in phase ph and performs Broadcast(∗,propose v′, 4ph′) in
phase ph′. According to line 6, this is possible only if (v, ∗)
is not in r′s locks set at the beginning of phase ph′. This
contradicts our assumption that all correct processes that
sent an 〈ack, v, ph〉 message in phase ph keep the value v in
their locks set from the time they execute line 12 of phase
ph until they execute line 26 of phase ph′.

Lemma 36 At the end of any phase ph3 that occurs after
T , if (v1, ph1) is in the locks variable of a correct process p1
and (v2, ph2) is in the locks variable of a correct process p2,
then v1 = v2.

Proof. Since, at the end of phase ph3, correct processes
have locks associated with phases ph1 and ph2, we must have
ph1 ≤ ph3 and ph2 ≤ ph3. If ph1 = ph2 then v1 = v2 follows
from Lemma 32 (because just after pi adds (vi, phi) to its
locks set, it sends 〈ack, vi, phi〉). So for the rest of the proof
assume, without loss of generality, that ph2 > ph1. Before
process p2 added (v2, ph2) to its locks set in phase ph2, it has
n− t witnesses for (vote v2, 4ph2+2). By the relay property
of the authenticated broadcasts, p1 will accept all of these
messages by the end of phase ph3 and remove (v1, ph1) from
its locks set, if v1 6= v2. Thus, v1 must be equal to v2.

Lemma 37 Let p be a correct process. Let ph be a phase
such that ph mod ℓ+1 is the identifier of p and phase ph−1
occurs after T . Then, p will send a lock message in super-
round 2 of phase ph.

Proof. By Lemma 36, at most one value will appear in
the locks variables of correct processes at the end of phase
ph− 1. We consider two cases.

Case 1: the locks set of some correct process q is non-empty
at the end of phase ph − 1. Let (v, phv) be the entry in
the locks set of q, where phv must be smaller than ph.
Then q has n − t witnesses for (vote v, 4phv + 2) in su-
perround 3 of phase phv. Thus, some correct process per-
formed Broadcast(∗, vote v, 4phv +2). That process must
have n − t ≥ 2t + 1 witnesses for (propose v, 4phv). By
Lemma 30, at least t + 1 different correct processes per-
formed Broadcast(∗, propose v, 4phv), which means v is
in the proper set of of at least t+ 1 correct processes at the
beginning of phase phv. Thus, by the end of phase ph− 1,
v will be in the proper set of every correct process. It fol-
lows that, in phase ph, every correct process will perform
Broadcast(∗,propose v, 4ph), and process p will be able to
find a value that it can send in superround 2 of phase ph.

Case 2: the locks set of every correct process is empty at
the end of phase ph− 1. If there are t+ 1 correct processes
with the same input value, that value will be in the proper
set of all correct processes by the beginning of phase ph.
Otherwise, every value will be in the proper set of all correct
processes by the beginning of phase ph. Either way, some
value will appear in the propose message that is broadcast

by correct processes in phase ph, so p will able to find a
value that it can send in superround 2 of phase ph.

Proposition 38 (Validity) If all correct processes propose
v then no correct process decides a value different from v.

Proof. Suppose all correct processes have the same in-
put value v0. Then no correct process ever adds any other
value to its proper set. So, a correct process can perform
Broadcast(∗, propose v, ∗) only if v = v0. Thus, accord-
ing to the test on line 12, a correct process can perform
Broadcast(∗, vote v, ∗) only if v = v0. Then, according
to the test on line 16, a correct process can send a message
〈ack, v, ∗〉 only if v = v0. Thus, no correct process decides a
value different from v0 on line 23.

Proposition 39 (Agreement) If two correct processes de-
cide v and v′ then v = v′.

Proof. If no correct processes ever decide, agreement is
trivially satisfied.

Suppose phase ph1 is the first phase during which some cor-
rect process p decides. By Lemma 33, there is a unique
value v1 such that correct processes decide during phase ph1.
From the code, process p has received n−t 〈ack, v1, ph1〉mes-
sages. Let A be a set of n − 2t correct processes that sent
〈ack, v1, ph1〉.

Suppose some correct q decides a value v2 in a phase ph2 >
ph1. We shall prove that v1 = v2. Process q has n − t wit-
nesses for (propose v2, 4ph2). By Lemma 30, there is a set B
of n−t−f correct processes that perform Broadcast(∗, pro
pose v2, 4ph2). Thus, there is some correct process h ∈ A∩B
that has sent an 〈ack, v1, ph1〉 in phase ph1.

By Lemma 35 and 34, (v1, ∗) is in the lock set of h at the be-
ginning of phase ph2 and this is the only pair in the lock set.
Thus, it performs only Broadcast(∗, propose v1, 4ph2) in
superround 4ph. But h ∈ B, so it performs Broadcast(∗,
propose v2, 4ph2). Thus, v1 = v2.

Proposition 40 (Termination) All correct processes de-
cide.

Proof. As there are ℓ > t identifiers, there is at least
one identifier such that all processes with this identifier are
correct. Suppose that it is identifier k. Let ph be a phase
such that ph mod ℓ + 1 = k and phase ph − 1 occurs after
T . By Lemma 37, each process pj with identifier k sends
a 〈lock, vj , ph〉 message in superround 2 of phase ph. Ac-
cording to the test in line 9, pj must have n − t witnesses
for (propose vj , 4ph) during superround 1 of phase ph. By
the relay property, all correct processes must have n− t wit-
nesses for (propose vj , 4ph) at the end of superround 2 of
phase ph.

Each correct process receives the same set of lock messages
from all processes with identifier k and deterministically
chooses one of them. Let v be the value chosen by all correct



processes. All correct processes then perform Broadcast(∗,
vote v, 4ph+2). Thus, according to the test in line 16, every
process has n−t witnesses for (vote v, 4ph+2) in superround
3. Thus, all correct processes send 〈ack, v, ph〉 in round 1 of
superround 4 of phase ph. Every correct process receives all
of these messages and has n−t witnesses for (propose v, 4ph)
in superround 3, and thus decides v.

A.4 Detailed Proof of Theorem 19
Theorem 19 Synchronous Byzantine agreement is solv-

able with innumerate processes against restricted Byzantine

processes if and only if ℓ > 3t.

Proof. The synchronous algorithm given in Section 3.2
obviously still works if the Byzantine processes are restricted.
To prove that ℓ > 3t is necessary, we use a simulation.

Assume that for ℓ < 3t, there is an algorithm A that solves
Byzantine agreement in a synchronous system H of n pro-
cesses, ℓ identifiers and t Byzantine processes. Let A(i) the
code executed by the processes with identifier i.

Then A solves also Byzantine agreement in H if we restrict
the power of the Byzantine processes: each Byzantine pro-
cess must send the same message to all processes with the
same identifier.

If ℓ ≥ t, the result is clear so we consider that ℓ > t.

Consider the classical synchronous system (where each pro-
cess has its own identifier) S, with ℓ processes and at most
t Byzantine processes (0 ≤ t < ℓ). Let {q0, q1, ..., qℓ−1}
be these processes . We construct with the help of A an
algorithm A′ that solves Byzantine agreement in the syn-
chronous model S with a number of processes less than 3t,
contradicting the result of [9,13].

In the distributed algorithm A′ for S, the code of the process
qi is A(i).

We now prove that each execution of the algorithm A′ in S
satisfies the specification of Byzantine agreement. Let αS be
an execution of A′, where the input of process qi is Input(i)
and that contains at most t Byzantine processes. Assume
that αS has b Byzantine processes, for example q1, . . . , qb,
for some b with 0 ≤ b ≤ t.

We consider a system H where (n−ℓ+1) processes have the
identifier 0, and the other processes have identifiers 1, . . . , ℓ−
1 (one process per identifier). We consider an execution
αH of th is system where (1) the processes with identifier i
(1 ≤ i ≤ b) are Byzantine, and they send the same messages
to the process with identifier j in round r as the Byzantine
process qi sends to qj in round r of αS , (2) the process with
identifier i (b + 1 ≤ i ≤ ℓ − 1) is correct and has as input
Input(i), and (3) all processes with identifier 0 are correct
and have input Input(0).

The processes with identifier 0 all have the same input and
receive the same messages, so they send the same message
m(r) in round r and have the same state at the end of each
round. The other processes receive from processes with iden-

tifier 0 only the message m(r) in round r.

The process qi in αS and a process with identifier i in αH

have the same state at the beginning of each round. As αH

satisfies the specification of Byzantine agreement, the exe-
cution αS satisfies the specification of the Byzantine agree-
ment. We have obtained a distributed algorithm A′ that
solves Byzantine agreement in the synchronous model with
the number of processes less than 3t, contradicting the result
of [9,13].


