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Abstract

Mixed-model assembly lines are widely used in a range of production set-
tings, such as the �nal assembly of the automotive and electronics industries,
where they are applied to mass-produce standardized commodities. One of
the greatest challenges when installing and recon�guring these lines is the
vast product variety modern mixed-model assembly lines have to cope with.
Traditionally, product variety is bypassed during mid-term assembly line bal-
ancing by applying a joint precedence graph, which represents an (arti�cial)
average model and serves as the input data for a single model assembly line
balancing procedure. However, this procedure might lead to considerable
variations in the station times, so that serious sequencing problems emerge
and work overload threatens. To avoid these di�culties di�erent extensions
of assembly line balancing for workload smoothing, i.e., horizontal balancing,
have been introduced in the literature.
The paper on hand presents a multitude of known and yet unknown ob-
jectives for workload smoothing and systematically tests these measures in
a comprehensive computational study. The results suggest that workload
smoothing is an essential task in mixed-model assembly lines and that some
(of the newly introduced) objectives are superior to others.

Keywords: Mixed-model assembly lines; assembly line balancing; sequencing;
workload smoothing
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1 Introduction

Assembly lines are production systems in which parts are added to a product sequen-
tially by employing a transportation system (usually a conveyor belt) which moves the
workpieces successively through productive units, called stations. They are applied to
mass-produce standardized commodities, e.g., in the automotive and electronics indus-
tries. While single model lines were the norm in the early days of industrial manufac-
turing, nowadays multi-skilled workers and automated tool-swaps enable the assembly
of a multitude of di�erent variants of a common base product in consecutive cycles with
negligible setup cost and time. How far �exibility in these mixed-model assembly lines
has progressed can be seen by looking at the number of options o�ered by today's car
manufacturers, amounting to up to 1032 di�erent models produced on the same assembly
line (Meyr, 2004).
Mixed-model assembly lines require the solution of two major planning tasks (see Meyr

(2004) and Boysen et al. (2007a) for surveys on the complete hierarchy of line planning):

• Whenever an assembly line is initially installed or recon�gured, the assembly line
balancing (ALB) problem is to be solved, which partitions the assembly work
among the stations while regarding precedence constraints among tasks and a
common cycle time with respect to some objective. To cope with multiple models
to be produced on the line a joint precedence graph representing an (arti�cial)
average model is introduced, which serves as the input data for a single model
ALB procedure (see Boysen et al., 2006).

• Additionally, a short-term sequencing problem is to be solved, which decides on the
succession of models to be launched down the line during a day or production shift.
Due to the fact that tasks can take di�ering amounts of time depending on which
model they are performed on, the sum of operating times of the tasks assigned
to a station can �uctuate greatly. For example, the task �mount sunroof� might
take longer for a model with an electrically powered sunroof compared to a model
with a manually operated one, or is absent when no sunroof is required at all. If
there are several models with electric sunroofs scheduled in a row the respective
station may become overloaded. Such work overload must be compensated, e.g.,
by utility workers, causing additional cost (Tsai, 1995). See Boysen et al. (2009)
for a detailed survey on assembly line sequencing.

Although there is a great temporal distance between balancing and sequencing deci-
sions, the two planning steps are anything but independent. By partitioning the workload
between stations, assembly line balancing determines the station time per model. Thus,
depending on the line balance di�erences in a station's workload may vary to a greater or
smaller extent, making it potentially impossible for a sequencing procedure to determine
�good� model sequences. Consequently, in addition to traditional balancing objectives,
e.g., the minimization of the number of stations (SALBP-1), work overload resulting
from model sequencing also becomes a quality criterion for line balancing. To account
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for this interdependency, line planning needs to integrate both essential planning tasks.
In general, there exist three alternatives:

Successive Planning: In its traditional form, interdependencies between both tasks
are neglected and planning is executed in two independent steps. Obviously, the result-
ing simpli�cation of line planning incurs more restricted sequencing problems typically
leading to higher short-term work overloads.

Simultaneous planning: The other extreme is to handle both planning tasks jointly
in a simultaneous balancing and sequencing problem. Respective approaches are pro-
vided by McMullen and Frazier (1998), Kim et al. (2000a,b, 2006), Miltenburg (2002),
Sawik (2002) as well as Bock et al. (2006). However, in many settings, these approaches
su�er from two serious drawbacks. First, the resulting planning models contain an
enormous number of decision variables and constraints, so that complexity impedes an
e�cient solution. Prolonged run-times of algorithms and/or a (comparatively) low solu-
tion quality are the consequences. An even more serious drawback is that both planning
tasks have a completely di�erent time frame. At the point in time where mid-term
line balancing is executed short-term model-mixes per shift are hard to anticipate accu-
rately. Thus it heavily depends on the forecast accuracy (and therefore the length of the
planning horizon) whether a simultaneous procedure indeed increases planning quality
compared to successive planning.

Anticipation: As the planning horizon of ALB is typically comparatively long, i.e.,
usually ranging from a few years when installing a new line (see Boysen et al., 2007a)
to several months or weeks when recon�guring an existing line, it seems generally more
practical to decompose the total decision problem into separate yet coordinated planning
steps. Respective line balancing approaches aim at anticipating the consequences on
model sequencing in a more aggregated fashion instead of based on detailed model-mixes
per shift. For instance, procedures known as horizontal balancing (see Merengo et al.,
1999) introduce an additional objective for line balancing, which aims at smoothing the
workload per station over all models. Note that a model-mix forecast is also required for
such an anticipation alternative. However, merely the average model-mix over multiple
sequencing periods, i.e., all shifts during the life-time of a line balance, is required and it is
a well known phenomenon that aggregated forecasts are more precise than disaggregated
ones (see, e.g., Chopra and Meindl, 2006).

It is the aim of this paper to identify suitable forms of anticipation during assembly
line balancing, which are able to identify robust line balances resulting in a reduction of
short-term work overloads. For this purpose, a comprehensive computational study is
conducted, which, �rst, determines line balances applying di�erent forms of anticipation
and then tests these line balances by determining the resulting work overload for di�erent
daily short-term model-mixes. Although some forms of anticipation have already been
introduced in the literature, these alternatives have not been tested systematically, yet.
Moreover, we introduce additional forms of anticipation and investigate the in�uence of
product-variety as well as forecast errors.
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P set of models/products (index p)
K set of stations (index k)
c cycle time
τpk processing time of model p at station k
bp production share of model p in the model-mix, with

∑
p∈P bp = 1

T ∗k average processing time at station k, with T ∗k =
∑

p∈P bp · τpk ∀ k ∈
K

T average station time assuming tasks can be divided at will, with
T = 1

|K| ·
∑

k∈K T
∗
k

Tp average processing time of model p over all stations, with Tp =
1
|K| ·

∑
k∈K τpk ∀ p ∈ P

Table 1: Notation

For this purpose, the remainder of the paper is organized as follows. In Section 2
the di�erent forms of anticipation and workload smoothing are introduced. Therefore,
we review the existing literature on this topic and systematically derive novel forms of
anticipation. Then, the setup of our computational study is described in detail (Section
3). Section 4 presents the results and Section 5 concludes the paper.

2 Workload smoothing

If sequencing issues are to be observed in ALB by an appropriate anticipation mecha-
nism, two choices need to be taken: (i) an appropriate workload smoothing criterion is
to be identi�ed and (ii) the selected anticipation criterion needs to be related to the pri-
mary objective of ALB, which is usually to minimize the number of stations or workers
required.
With regard to the �rst choice, an objective is required which both adequately esti-

mates the actual work overload and can be easily derived from the original input data of
ALB. In the literature, di�erent objectives are proposed to meet these two requirements.
Using the notation de�ned in Table 1, Table 2 enumerates possible objectives.
Columns A through C contain objective functions belonging to horizontal balancing,

whereas the objectives of column D belong to vertical balancing according to the nomen-
clature of Merengo et al. (1999). In horizontal balancing the objectives aim at a workload
smoothing per station k over all models p ∈ P , so that the deviation of the actual pro-
cessing time per model and station τpk from some target station time is minimized.
Target station times are (A) the cycle time, (B) the average processing time of a model
p per station and (C) the average processing time of all models per station, respectively.
In vertical balancing (Column D), the objectives aim at evenly distributing the work-
load among the stations, so that the average station time is to be adjusted towards the
average processing time of all models per station. In each column, di�erent functions
can be utilized to measure the distances, which additionally can either be unweighted
or weighted by the proportion of the respective product in the model-mix bp.
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Table 2: Objective functions for workload smoothing

Once one of the smoothing functions is selected, it needs to be related to the original
objective of ALB. In principle, any coupling mechanism of multi-objective optimization
can also be applied to ALB. However, in the existing assembly line literature these ob-
jectives are either put in lexicographic order or uni�ed to a unique objective function by
applying objective-speci�c weighting factors. The latter approach especially su�ers from
the problem of determining suited weighting factors, which mirror the actual underlying
relationship between (investment) cost of line balancing and cost caused by work over-
load in an adequate way. To avoid this problem, we restrict our computational study to
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the lexicographic case, where the most common balancing objective, the minimization
of the number of stations (SALBP-1), is given top priority and workload smoothing is
the secondary objective. This setting seems reasonable because, typically, due to the
high level of automatization, investment cost for an assembly line are much higher than
cost caused by daily work overload. Furthermore, SALBP-1 typically has many optimal
solutions having the same number of stations, so that enough degrees of freedom remain
to identify one of the optimal solutions which also optimizes the smoothing criterion.
Since the seminal work of Moodie and Young (1965) several papers have been pre-

sented which deal with workload smoothing. These papers can be subdivided into two
groups. The �rst group provides speci�c line balancing procedures for a given workload
smoothing criterion. The second group of workload smoothing literature deals with test-
ing di�erent smoothing criteria with regard to their ability in reducing work overload.
We summarize the �rst group in Table 3, where the smoothing criterion applied (accord-
ing to Table 2), the relation to the original ALB objective and the algorithmic approach
are given. The abbreviations are borrowed from the ALB-classi�cation of Boysen et al.
(2007b):

HI heuristic improvement procedure HS start heuristic for initial solution
GA genetic algorithm TS tabu search
SA simulated annealing ACO ant colony optimization
DP dynamic programming B&B branch-and-bound
B&C branch-and-cut
LEX lexicographic order WF weighting factor

The multitude of di�erent ALB approaches incorporating workload smoothing is an
indicator of its practical relevance in real-world applications. Nonetheless, apparently
only about half of the criteria of Table 2 have ever been actively researched. Also, a
suitable optimization approach for a given smoothing criterion is merely one side of the
coin. Moreover, the appropriateness of the di�erent smoothing approaches also needs to
be investigated. Up to now, this problem was merely tackled by Domschke et al. (1996,
summarized in Scholl, 1999, Ch. 3.2.2.3) and Bukchin (1998).
Domschke et al. (1996) present a simulation study similar to our setting. The smooth-

ing criteria (1), (12), (14), (15) and (27) from Table 2 are used as a secondary objective
to determine line balances. The resulting work overloads for these line balances are then
calculated by a mixed-model sequencing approach for di�erent daily model-mixes. As a
result from their simulation setting, criterion (1) seems especially suited in avoiding work
overloads. Bukchin (1998) de�nes a di�erent simulation setting. Here, random line bal-
ances are generated for which a signi�cant positive correlation between the actual work
overload and criterion (12) is identi�ed. However, in contrast to these previous studies
the paper on hand tests all smoothing criteria of Table 2 and, additionally, investigates
the in�uences of product variety and forecast errors.
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Publication smoothing cri-
terion

relation to
ALB

algorithm

Agnetis (1995) 1, 25, 27 LEX DP
Ajenblit und Wainwright (1998) 15 WF GA
Bhattacharjee and Sahu (1987) 5 LEX HS
Decker (1993) 15 LEX HI
Domschke et al. (1996) 1, 12, 14, 15, 27 LEX, WF B&B
Kim et al. (2006) 20 LEX GA
Matanachai and Yano (2001) 11, 19, 26 WF HI
McMullen and Frazier (1997, 1998), McMullen
and Tarasewich (2003, 2006)

5 WF GA

Merengo et al. (1999) 27 LEX HS, HI
Moodie and Young (1965) 27 LEX HI
Pastor and Corominas (2000) 26 LEX TS
Pinnoi and Wilhelm (1997) 7 LEX B&C
Ponnambalam et al. (2000) 27 WF GA
Rachamadugu and Talbot (1991) 26, 27 LEX HI
Rekiek et al. (2001, 2002) 5 LEX GA
Sabuncuoglu et al. (2000) 27 WF GA
Sarker and Shanthikumar (1983) 28 LEX HI
Sparling and Miltenburg (1998) 2, 20 LEX HI
Suresh and Sahu (1994), Suresh et al. (1996) 27 LEX GA, SA
Thomopoulos (1970) 12 LEX HI
Ugurdag et al. (1997) 27 LEX HI
Vilarinho and Simaria (2002, 2006) 16 LEX SA, ACO

Table 3: An overview on workload smoothing in the literature on assembly line balancing

3 Setup of the computational study

The basic idea of our study is to determine di�erent line balances with the 28 smoothing
criteria de�ned in Table 2. Thus, for each test instance, 28 di�erent ALB solutions and an
additional reference ALB solution without workload smoothing (successive planning) are
determined. Then, we randomly draw di�erent daily model-mixes (sequencing instances)
each of which is to be solved by a mixed-model sequencing approach. The resulting work
overload is our �nal measure to compare the workload smoothing criteria with regard to
their ability in reducing short-term work overloads. Moreover, to gain further insights we
aim at comparing workload smoothing in di�erent settings, namely high, medium and
low product variety as well as high, medium and low forecast uncertainty, respectively.
To describe the detailed setting of our computational study, the following three sections

elaborate on instance generation (Section 3.1), additional assumptions on the underly-
ing assembly system (Section 3.2) and the applied algorithms to solve the respective
optimization problems (Section 3.3).

3.1 Instance generation

Our test data is based on the 64 classic Talbot SALBP instances (Talbot et al., 1986),
which can be downloaded from http://www.assembly-line-balancing.de. For each
instance the original single-model precedence graph is taken as the joint precedence
graph of the set of assigned product models. It is the task of instance generation to split
each joint precedence graph (i) into its contributing models, which determine the overall
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model-mix, and (ii) into some representative daily model-mixes, which build the input
for the related sequencing problems.
ALB with the di�erent smoothing criteria is to be tested in di�erent settings, so

that the number of models |P | is varied and product variety is di�erentiated into high
(|P | = 150), medium (|P | = 75) and low (|P | = 10). For each of these settings a speci�c
line balance is to be determined, so that in total 64 · 29 · 3 = 5, 568 ALB problems
have to be solved. The resulting line balances are passed over to the next step, where
representative daily model-mixes are determined.
On the basis of a given parameter constellation, the input data is determined as

follows: Each model p ∈ P is assigned a random demand portion bp with 0 < bp <
1 and

∑
p∈P bp = 1. Then, a random task time tjp is determined for each model p

and each task j ∈ V (0 ≤ tjp ≤ 2 · tj with tj being the task time of the original
SALBP task) so that

∑
p∈P bp · tjp = tj ∀ j ∈ V . The station length l is equal for all

stations and is set to l = 1.1 · c and the total model demand per shift is expected to
be d = 200 units. Then, from the overall model-mix representative daily model-mixes
have to be drawn. For this purpose, the demand vector D = (d1, d2, . . . , d|P |) is given
by dp = bbp · d · (1 + (2 · rnd(0, 1)− 1) · α)e ∀ p ∈ P with 0 ≤ rnd(0, 1) ≤ 1 being a
uniformly distributed random number and b·e representing rounding to the next integer.
As a consequence, the demand for each model p in each shift is uniformly distributed,
ranging from (1− α) · bp · d to (1 + α) · bp · d.
Each line balance is to be tested with regard to its ability to reduce work overload fac-

ing high (α = 1.0), medium (α = 0.5) and low (α = 0.1) forecast uncertainty. Moreover,
multiple daily (Z = 20) model-mixes are to be tested to compute average performance,
so that in total 5, 568 · 3 · 20 = 334, 080 sequencing problems are to be solved. The total
run-time to solve this enormous number of optimization problems exceeded 2 months on
an x86 PC with an Intel Core 2 Quad Q9550 2.8 GHz CPU, with all algorithms being
implemented in Borland Delphi 2006.

3.2 Assumptions on the assembly system

To model assembly line operations and to determine the detailed work overload some
assumptions on the underlying assembly system have to be introduced. From the ALB
point of view, we assume an assembly system in line with the basic assumptions of
SALBP (see Baybars, 1986, Becker and Scholl, 2006), so that a single paced line without
bu�ers and any kind of paralleling or assignment constraints is presupposed. As the
original objective of ALB, we aim at minimizing the number of stations, so that the
underlying assembly system can be represented by the basic ALB problem SALBP-1.
Further assumptions on the assembly system are required to determine work overload

caused by di�erent model sequences. Therefore, the following additional premises hold
for our hypothetical assembly system (see Boysen et al., 2009):

• Working across the stations' boundaries is not possible (closed, non-overlapping
stations).

• The constant velocity of the conveyor belt is normalized to one.
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• The operators return with in�nite velocity to the next workpiece. This is an ade-
quate simpli�cation whenever the conveyor speed is much slower than the walking
speed of workers, as is typically the case in practice.

• Work overload is measured by the time or space necessary to complete all work in
excess of the respective station's right border (without compensation).

• Work overload has no impact on the succeeding station. Thus, the model assumes
that the work overload is either compensated by a utility worker or by accelerating
processing velocity.

With these premises on hand, a mixed-model sequencing approach can be applied to
determine a launch sequence of models which minimizes work overload. Such a mixed-
model sequencing approach schedules the models in detail at each station and cycle, by
explicitly taking into account processing times, worker movements and station borders.
According to a recent classi�cation of model sequencing approaches provided by Boysen
et al. (2009) the basic sequencing problem assumed here can be characterized by the
tupel MS[ | ]. Model formulations and solution procedures for this basic mixed-model
sequencing problem are provided by Yano and Rachamadugu (1991), Bard et al. (1992)
and Scholl et al. (1998).

3.3 Applied optimization approaches

The optimization is divided into an ALB part and a sequencing part.
First, the well-known branch-and-bound procedure SALOME (Scholl and Klein, 1997,

1999) is used to determine the optimum number of stations m∗ for the ALB problem
(SALBP-1). This solution is neither horizontally nor vertically balanced and serves
as the benchmark for the improvement of the smoothing criteria. Then, to carry out
the horizontal balancing, SALOME was adapted to incorporate secondary smoothing
objectives. An in-depth explanation of the original algorithm would be out of the scope
of this paper, so that exclusively the alterations required for workload smoothing are
explained.
The general idea is to generate all feasible solutions to the ALB problem given the

station count m∗ established in the previous step and the given cycle time c. Of these,
the one with the best secondary objective value is chosen. The algorithm is a station-
oriented branch-and-bound procedure, meaning that in each branching step alternative
subproblems are de�ned by complete station loads for the next empty station. The prob-
lems are continuously subdivided, creating a multilevel enumeration tree which contains
every possible solution to the given instance. In each node, a set of seven lower bounds
on the number of stations is calculated and compared to the desired number of stations
m∗ (see Scholl and Klein, 1997). If the lower bound is greater, the node is fathomed. Of
the logical tests, only the Simple Permutation Rule, the Task Time Incrementing Rule
and Pre�xing can be used to fathom nodes (see Scholl and Klein, 1997). All other tests
that SALOME originally employs potentially eliminate branches that lead to solutions
with a station count equal to m∗, therefore they cannot be used here.
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The number of feasible line balances grows exponentially with problem size. Even
SALBP-1 that the unmodi�ed SALOME solves by �nding just a single optimal solution
is NP-hard; �nding all solutions withm∗ stations can take a considerable amount of time.
It is therefore desirable to prune the enumeration tree not only with regard to capacity
oriented goals but to also ignore parts of the search space where no improvement with
regard to the secondary objective can be made. For this purpose, a new lower bound is
proposed, whose basic idea can easily be adapted to any of the 28 smoothing criteria.
All criteria of Table 2 aim at minimizing the deviations of station times from some
target value, like the cycle time c in Column A. Relaxing the indivisibility restriction of
the tasks, we can assume a perfectly smooth distribution of station times by dividing
the yet unassigned workload WLp(i) for a model p on tree level i by the number of
stations yet to be loaded m∗ − i. Since station loads cannot be any smoother than this,
actual deviations from the target value can never be greater than the lower bound. For
example, for criterion (1) the lower bound on tree level i is de�ned by:

LB(1) =
∑
p∈P

i∑
k=1

max{0, τpk − c}+
∑
p∈P

max
{

0,
⌈
WLp(i)
m∗ − i

⌉
− c
}

(1)

Lower bound LB(1) amounts to the sum of the cycle time exceedance that has occurred
in the stations already loaded (�rst term), plus the exceedance over cycle time c that
would occur if the yet unassigned workload WLp(i) would be equally split among m∗− i
remaining stations (second term), where the average workload can be rounded up due
to integer task times of ALB. The same basic idea can easily be adjusted for any other
smoothing criterion.
Concerning solution quality, the original SALOME used to determine the optimal

number of stations m∗ could solve all instances to optimality in very short time. The
modi�ed SALOME used for horizontal balancing could solve 54.89% of the instances to
(proven) optimality within a given time frame of 900 CPU-seconds for ALB.
Lastly, to solve the sequencing problem, a simulated annealing algorithm similar to

that proposed by McMullen and Frazier (2000) is used. Given a total demand of d units
in a given shift, the solution is represented as a sequence vector s = (s1, . . . , sd) where
each position st (t = 1, . . . , d) contains the model p ∈ P to be assembled in cycle t.
The initial solution is arbitrarily generated and neighboring solutions are reached by
choosing two positions randomly and swapping the corresponding values. The di�erence
between the work overload of the new (WOnew) and the current (WOcur) solution is
calculated as ∆ = 100 · WOnew−WOcur

WOcur
. The current solution is replaced by the new one if

e−∆/Tk > rnd(0, 1), with Tk being the current temperature and 0 ≤ rnd(0, 1) ≤ 1 being
a uniformly distributed random number. The initial temperature T1 is set high enough
to accept all transitions in the �rst phase. Given the current temperature Tk, the new
temperature Tk+1 is determined by Tk+1 = Tk/(1 + β · Tk), β = T1−TF

(LB−1)·T1·TF
(Lundy

and Mees, 1986). The epoch length L for the current temperature level is de�ned by
L = LB +bLB ·F c where F = 1−e−(fh−fl)/fh , fh and fl are the highest and lowest work
overloads measured during the last epoch, respectively, and LB = 100 is the initial epoch
length (Cho et al., 2005). When the current temperature drops below TF = 0.01 the
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optimization is �nished. Prior experimentation by McMullen and Frazier (2000) shows
that the simulated annealing algorithm �nds solutions to the sequencing problem very
close to the optimum (deviations are reported to be less than one percent). Another
study conducted by Boysen (2005) testing a similar algorithm con�rms these results.

4 Results

In order to assess the quality of the solutions obtained by the di�erent smoothing ob-
jectives the improvement over successive planning is measured by W (SC)−W (SM)

W (SC) , where

W (SC) and W (SM) are the work overloads summarized over all Z = 20 daily model-
mixes for the successive planning and the smoothing approach, respectively, averaged
over all instances.
The results are listed in Table 4. The average improvement as explained above is

labeled Imp. in the table. Additional performance measures computed for each criterion
are the number of instances where the respective criterion could �nd a solution with
the least work overload compared to the other criteria (abbreviated by # best) and the
number of instances where the respective criterion reduces work overload to zero (#
zero). Note that these numbers can be greater than 64 because each of the original
instances was tested with three product variety and three forecast uncertainty settings,
resulting in a total number of 64 · 3 · 3 = 576 instances. The values in square brackets
denote the same performance measures but only for the instances that were solved to
proven optimality.
The �rst conclusion to be drawn is that (irrespective of the speci�c criterion applied)

workload smoothing considerably reduces short-term work overload compared to succes-
sive planning, where ALB disregards smoothing aspects. However, no single criterion
outperforms all others with regard to all performance criteria, so that no single best cri-
terion can be identi�ed. In terms of improvement over the successive planning solution,
smoothing criteria (1), (2) and (4) work best, although all criteria � with the notable
exception of those concerned with vertical balancing in Column D � work well enough
to improve balances by over or at least close to 30%, as long as a distance measure other
than maximum divergence is used. Vertical balancing, while still e�ective, is consistently
less well suited to lowering work overloads than horizontal balancing (i.e., the criteria
in Columns A through C). Concerning distance measures, exceedance seems to be just a
tiny bit better than Manhattan and Euclidian distances which in turn are considerably
better than maximum divergence. Leaving out the latter uncompetitive distance mea-
sure, the criteria of Column A outperform those of the other columns almost without
exception, especially when taking into account that they found the best solution (#
best) far more often than the other criteria. This also holds true when comparing the
number of instances where work overload could be avoided altogether (# zero). Finally,
with regard to the question whether unweighted or weighted smoothing criteria perform
better no clear recommendation can be given as weighted criteria seem only slightly
superior. Note that these observations are valid regardless of whether all instances or
only the optimally solved ones are taken into consideration.
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Processing time of
model vs. cycle time
(A)

Processing time of
model vs. Ø
processing time of
model per station (B)

Processing time of
model vs. Ø
processing time of all
models per station (C)

Ø Station time vs. Ø
processing time of all
models per station (D)

E
x
ce
ed
a
n
ce

u
n
w
e
ig
h
te
d

Imp.: 32.78% [29.27]
# best: 63 [45]
# zero: 24 [18]

(1)

Imp.: 30.82% [28.18]
# best: 37 [30]
# zero: 15 [12]

(9)

Imp.: 30.30% [27.62]
# best: 35 [32]
# zero: 12 [12]

(17)

Imp.: 27.94% [24.08]
# best: 30 [23]
# zero: 12 [12]

(25)

w
e
ig
h
te
d

Imp.: 33.82% [29.95]
# best: 77 [42]
# zero: 21 [15]

(2)

Imp.: 31.09% [28.17]
# best: 38 [27]
# zero: 15 [12]

(10)

Imp.: 31.25% [28.51]
# best: 39 [32]
# zero: 12 [12]

(18)

�

M
a
n
h
a
tt
a
n
d
is
ta
n
ce

u
n
w
e
ig
h
te
d

Imp.: 31.70% [28.91]
# best: 51 [40]
# zero: 18 [18]

(3)

Imp.: 30.76% [28.30]
# best: 34 [27]
# zero: 15 [12]

(11)

Imp.: 30.14% [27.43]
# best: 30 [25]
# zero: 15 [12]

(19)

Imp.: 26.05% [23.99]
# best: 25 [19]
# zero: 12 [12]

(26)

w
e
ig
h
te
d

Imp.: 32.88% [30.00]
# best: 67 [46]
# zero: 18 [15]

(4)

Imp.: 31.16% [28.30]
# best: 54 [42]
# zero: 15 [12]

(12)

Imp.: 31.09% [28.41]
# best: 39 [32]
# zero: 15 [12]

(20)

�

E
u
cl
id
ia
n
d
is
ta
n
ce

u
n
w
e
ig
h
te
d

Imp.: 30.80% [28.49]
# best: 35 [29]
# zero: 12 [12]

(5)

Imp.: 30.85% [28.49]
# best: 32 [31]
# zero: 12 [12]

(13)

Imp.: 30.72% [28.63]
# best: 36 [32]
# zero: 12 [12]

(21)

Imp.: 25.65% [24.34]
# best: 23 [23]
# zero: 12 [12]

(27)

w
e
ig
h
te
d

Imp.: 29.80% [26.53]
# best: 43 [38]
# zero: 12 [12]

(6)

Imp.: 29.33% [25.45]
# best: 35 [33]
# zero: 12 [12]

(14)

Imp.: 29.60% [25.84]
# best: 29 [23]
# zero: 9 [9]

(22)

�

M
a
x
im
u
m

d
iv
er
g
en
ce

u
n
w
e
ig
h
te
d

Imp.: 19.96% [15.07]
# best: 12 [10]
# zero: 3 [3]

(7)

Imp.: 25.89% [20.30]
# best: 36 [18]
# zero: 16 [9]

(15)

Imp.: 24.51% [20.10]
# best: 48 [27]
# zero: 20 [12]

(23)

Imp.: 26.75%[21.11]
# best: 74 [20]
# zero: 15 [12]

(28)

w
e
ig
h
te
d

Imp.: 20.00% [13.18]
# best: 14 [10]
# zero: 6 [6]

(8)

Imp.: 25.95% [18.98]
# best: 51 [20]
# zero: 15 [9]

(16)

Imp.: 25.45% [18.42]
# best: 49 [28]
# zero: 18 [12]

(24)

�

Table 4: Average performance measures for each smoothing criterion

Finally, the in�uence of product variety and forecast uncertainty is to be investigated.
Figures 1a and 1b display the impact of both factors on average improvement over
successive planning. Both increasing product variety and forecast errors enlarge short-
term work overload. This �nding is in line with intuition because both factors increase
the deviation between the anticipated model-mix applied in medium-term ALB and the
daily model-mix occurring in sequencing, so that ALB increasingly operates on �wrong�
data. In both �gures only four selected smoothing criteria are displayed (one for each
column in Table 2; missing criteria exhibit very similar curves). Apparently, solutions
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su�er more from high product variety than increasing forecast errors. This is because
high product variety automatically entails increasing forecast errors. When there are a
lot of models which all are very unlikely to be produced during a day or shift the least bit
of uncertainty can have huge e�ects. For instance, assume that according to the model
mix a demand of 0.5 units per shift of model m is expected. This is not a very useful
piece of information, since in any given shift the model will either be in demand or not,
but half a unit of model m will de�nitely not be assembled. These �rounding errors� are
less signi�cant when the expected demands per model are higher, which only happens
under low product variety.

(a) The e�ects of forecast uncertainty

(b) The e�ects of product variety

Figure 1: The average performance of four criteria

More detailed �gures about the in�uence of product variety and forecast errors are pro-
vided by Table 5. This table lists the reduction of work overload compared to successive
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planning for each criterion, �rst under low product variety and low forecast uncertainty
(labeled L/L), second under low variety and high uncertainty (labeled HU), third un-
der low uncertainty and high variety (labeled HV) and, �nally, under high variety and
forecast uncertainty (labeled H/H). Obviously, vertical balancing (Column D) su�ers far
less when there are lots of models to choose from than the horizontal balancing criteria
(Columns A through C). This is logical, seeing that these objectives concern themselves
only with average capacity demands � which do not depend on the number of models.
This is not the case when horizontal balancing is applied: Model-speci�c information
is central to these objectives but grows increasingly unreliable under high variety and
uncertainty.
Table 5 also allows a meaningful comparison of weighted with unweighted criteria.

Considering only the values obtained under low forecast uncertainty and low variety,
regardless of column weighting is always better than not weighting, except when the
maximum divergence distance measure is used, where results are ambiguous. This ad-
vantage vanishes when either forecast errors or product variety (or both) rise. All in all,
while all criteria lose ground when demands become more volatile and some su�er more
than others, the ranking stays basically the same: in general, column A is still best,
column D is still worst and they all are still a lot better than the unimproved successive
planning solutions.
In conclusion, no single criterion delivers the best results in every instance. However,

some clear guidelines can be given:

• as long as there is no extreme product variety, horizontal balancing is superior to
vertical balancing

• among the horizontal balancing criteria, those of Column A are usually superior
to the others

• minimize the maximum divergence is usually the worst distance measure

• when demands are more or less certain, i.e., there is a reduced product variety and
trustworthy forecasts, it is better to weight the criteria with the expected demand
portion, irrespective of which criterion is eventually chosen

• the less certain demand forecasts are, the less well horizontal balancing works

All things considered, criteria (1), (2) and (4) work best. The average improvement
over successive planning is greatest overall as well as under high product variety and
forecast uncertainty. They found the best solution in the most instances and were the
most successful in reducing work overload to zero. These �ndings are in line with those
of Domschke et al. (1996) who found criterion (1) to clearly outperform (12), (14) and
(15). That being said, each and every of the tested criteria was capable of greatly
reducing work overloads. Taking into account that the study showed that horizontal
balancing becomes increasingly di�cult with rising product diversity, at some point
vertical balancing might actually be a better idea. If the number of variants is so
great that per-model information becomes virtually meaningless, the average capacity
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demands that the criteria of Column D observe might still be viable, as the graphs in
Figure 1b suggest.

Processing time of
model vs. cycle time
(A)

Processing time of
model vs. Ø
processing time of
model per station (B)

Processing time of
model vs. Ø
processing time of all
models per station (C)

Ø Station time vs. Ø
processing time of all
models per station (D)

E
x
ce
ed
a
n
ce

u
n
w
e
ig
h
te
d L/L: 39.83% [34.10]

HU: 38.56% [34.39]
HV: 28.93% [26.69]
H/H: 29.34% [27.67]

(1)

L/L: 35.84% [31.95]
HU: 34.55% [30.50]
HV: 28.12% [26.41]
H/H: 28.27% [26.69]

(9)

L/L: 34.98% [31.64]
HU: 33.77% [31.28]
HV: 27.71% [25.75]
H/H: 27.81% [26.28]

(17)

L/L: 28.68% [24.85]
HU: 27.90% [24.60]
HV: 28.05% [24.64]
H/H: 28.11% [24.95]

(25)

w
e
ig
h
te
d

L/L: 42.18% [36.19]
HU: 40.81% [35.22]
HV: 29.28% [26.77]
H/H: 28.97% [26.64]

(2)

L/L: 36.41% [32.17]
HU: 34.60% [31.06]
HV: 28.43% [26.32]
H/H: 28.71% [26.67]

(10)

L/L: 37.18% [33.38]
HU: 35.42% [33.29]
HV: 28.04% [25.89]
H/H: 28.22% [26.09]

(18)

�
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h
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n
d
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n
ce

u
n
w
e
ig
h
te
d L/L: 37.89% [34.02]

HU: 36.38% [32.63]
HV: 28.55% [26.76]
H/H: 28.73% [27.24]

(3)

L/L: 35.84% [31.80]
HU: 34.88% [31.56]
HV: 27.79% [26.29]
H/H: 28.07% [26.99]

(11)

L/L: 34.91% [31.63]
HU: 33.75% [30.21]
HV: 27.53% [25.71]
H/H: 27.90% [26.35]

(19)

L/L: 27.71% [25.47]
HU: 25.58% [24.19]
HV: 25.89% [24.48]
H/H: 25.99% [24.98]

(26)

w
e
ig
h
te
d

L/L: 40.18% [36.24]
HU: 37.93% [34.72]
HV: 28.86% [26.78]
H/H: 29.15% [27.24]

(4)

L/L: 36.54% [32.43]
HU: 35.14% [31.91]
HV: 28.30% [26.46]
H/H: 28.38% [26.70]

(12)

L/L: 36.90% [33.40]
HU: 36.05% [33.48]
HV: 27.79% [25.68]
H/H: 27.75% [25.93]

(20)
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u
n
w
e
ig
h
te
d L/L: 36.51% [33.22]

HU: 34.93% [31.36]
HV: 27.85% [26.52]
H/H: 27.95% [26.53]

(5)

L/L: 36.45% [33.28]
HU: 35.18% [30.77]
HV: 27.92% [26.61]
H/H: 28.01% [27.01]

(13)

L/L: 36.47% [33.35]
HU: 34.49% [32.34]
HV: 28.01% [26.72]
H/H: 28.18% [27.06]

(21)

L/L: 26.61% [26.22]
HU: 26.48% [26.25]
HV: 25.64% [24.17]
H/H: 25.47% [24.05]

(27)

w
e
ig
h
te
d

L/L: 37.12% [34.12]
HU: 34.84% [33.03]
HV: 24.73% [20.18]
H/H: 25.07% [20.94]

(6)

L/L: 37.13% [34.18]
HU: 36.98% [35.05]
HV: 24.12% [18.80]
H/H: 23.92% [18.64]

(14)

L/L: 37.20% [34.21]
HU: 36.32% [33.54]
HV: 23.99% [18.73]
H/H: 24.18% [18.72]

(22)
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u
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e
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d L/L: 23.12% [17.83]

HU: 22.94% [18.60]
HV: 19.92% [16.03]
H/H: 19.35% [15.30]

(7)

L/L: 31.49% [24.04]
HU: 29.37% [21.84]
HV: 24.16% [19.99]
H/H: 24.18% [19.72]

(15)

L/L: 29.06% [24.31]
HU: 27.46% [23.01]
HV: 23.39% [19.85]
H/H: 23.09% [19.90]

(23)

L/L: 25.71% [20.77]
HU: 24.59% [18.76]
HV: 27.52% [22.38]
H/H: 27.10% [21.91]

(28)

w
e
ig
h
te
d

L/L: 23.76% [14.97]
HU: 21.46% [12.60]
HV: 19.89% [15.75]
H/H: 19.72% [15.89]

(8)

L/L: 31.14% [21.46]
HU: 30.81% [21.49]
HV: 23.04% [18.18]
H/H: 23.23% [18.44]

(16)

L/L: 29.94% [19.54]
HU: 29.67% [20.68]
HV: 21.99% [15.98]
H/H: 21.93% [15.83]

(24)

�

Table 5: Performance under high/low forecast errors and product variety

5 Conclusions

The paper on hand investigates the anticipation of short-term sequencing issues by work-
load smoothing during medium-term line balancing. After introducing 28 di�erent forms
of anticipation mechanisms, all of them are tested in a comprehensive computational
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study. The results show that workload smoothing in general is always better than ignor-
ing the interdependencies between both planning tasks when executing them successively.
Furthermore, promising smoothing criteria among the 28 investigated are identi�ed and
the impact of product variety and forecast errors is tested. However, there remain mul-
tiple challenges for future research:

• Our computational study presupposed a basic assembly line setting to identify
elementary interdependencies between ALB and sequencing. However, it would be
a valuable contribution to test the impact of workload smoothing in more complex
settings, e.g., incorporating open station borders or parallel line segments, the
impact of line stoppage or more complex primary ALB objective functions.

• Moreover, it would be interesting to compare workload smoothing with simultane-
ous planning. However, such a comparison requires the determination of a reliable
and representative model-mix simultaneous balancing and sequencing is executed
on, which remains a yet unsolved problem.

• Finally, another problem remains, when product variety reaches dimensions of
modern automobile assembly lines with billions of possible models. In these di-
mensions of product variety there is no adequate basis for estimating future demand
rates. Instead, reliable estimations can be provided only for the frequency of op-
tion occurrences over all models (option-mix), e.g., the percentage of cars equipped
with air conditioning (see Röder and Tibken, 2006). Moreover, an ALB procedure
for workload smoothing, which has to iterate through all possible models, su�ers
from the extraordinary computational requirements in this order of magnitude.
Consequently, workload smoothing is to be altered to account for this fundamen-
tal change in information and the stations' workload is to be assigned to options.
An analogous procedure is provided by Boysen et al. (2006) for generating joint
precedence graphs.

All these challenges seem to be valuable �elds of future research because workload
smoothing at an early stage during ALB considerably eases and improves short-term
assembly line operations.
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