

The threshold value of group similarity in the formation of cellular manufacturing systems

Riccardo Manzini, Filippo Bindi, Arrigo Pareschi

▶ To cite this version:

Riccardo Manzini, Filippo Bindi, Arrigo Pareschi. The threshold value of group similarity in the formation of cellular manufacturing systems. International Journal of Production Research, 2010, 48 (10), pp.3029-3060. 10.1080/00207540802644860. hal-00580103

HAL Id: hal-00580103 https://hal.science/hal-00580103

Submitted on 26 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The threshold value of group similarity in the formation of cellular manufacturing systems

Journal:	International Journal of Production Research
Manuscript ID:	TPRS-2008-IJPR-0738
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	17-Sep-2008
Complete List of Authors:	Manzini, Riccardo; University of Bologna, Dipartimento DIEM (Sezioni Impianti) Bindi, Filippo; Bologna University, Dipartimento DIEM (Sezioni Impianti) Pareschi, Arrigo; Bologna University, Dipartimento DIEM (Sezioni Impianti)
Keywords:	CELL FORMATION, CELLULAR MANUFACTURE, CLUSTERING, GROUP TECHNOLOGY
Keywords (user):	SIMILARITY COEFFICIENT BASED METHOD (SCM)

The threshold value of group similarity in the formation of cellular manufacturing systems

Riccardo Manzini¹, Filippo Bindi and Arrigo Pareschi

.re Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia

Bologna University

Viale Risorgimento 2, 40136 Bologna, Italy

¹ Corresponding author: riccardo.manzini@unibo.it, +390512093406, fax +390512093411

Abstract

Cellular manufacturing is an effective alternative to batch-type production systems where different products are intermittently produced in small lot sizes with frequent setups, large in-process storage quantities, long production lead times, decreasing throughputs, and complex planning and control functions.

An effective approach to forming manufacturing cells and introducing families of similar parts, consequently increasing production volumes and machine utilization, is the use of similarity coefficients in conjunction with clustering procedures.

In a similarity coefficients based approach, the results of the clustering analysis depend on the minimum admissible level of similarity adopted for the generic group of clustered items. This is the so-called threshold value of group similarity. The aim of this paper is to identify effective values of the threshold value of group similarity to help practitioners and managers of manufacturing systems form machine groups and related part families. The proposed threshold values for a given similarity coefficient are based on calculation of the percentile of aggregations generated by the adopted clustering algorithm.

The importance of the proposed measure of group similarity has been demonstrated by experimental analysis conducted on a large set of significant instances of the cell formation problem in the literature. This analysis can also support the best determination of this percentile-based cut value especially when the number of manufacturing cells is not known in advance.

Keywords: cell formation (CF) problem; cellular manufacturing (CM); similarity coefficient; similarity coefficient based method (SCM); clustering algorithm; group technology (GT).

1. Introduction and literature review

Cellular Manufacturing (CM) is an application of the well-known group technology (GT) production philosophy where disjunctive groups of similar parts are produced in a multi-cellular manufacturing system. These groups are called *part families* and the generic part family is univocally assigned to a single group of machines (the *machine cell*). Since 1966 when the first contribution on CM and its topics was published (Yin and Yasuda 2006, Chan et al. 2008), the large number of advantages presented by CM compared to batch production (generally implemented in functional layouts) have been widely discussed in the literature e.g. inventory level reduction, production lead time reduction, reduced set-up times, etc.

In particular, Yin and Yasuda (2006) identify three major critical topics in CM:

- 1. *Applicability of CM*, i.e. feasibility, which relates to plant layout configurations mainly composed of product cell layouts, process cell layouts, hybrid layouts (combination of functional and cellular layouts), and mixture layouts.
- 2. *Implementation of CM*. It mainly relates to human, environmental, and organizational implications.
- 3. *Justification of CM*. This compares the system performance in cellular layouts and in functional layouts.
- 4. *System design in CM*. This topic and area of research includes cell formation (CF), cell layout, and production planning.

CF is the most extensively researched topic in the design of multi-cellular manufacturing systems and a very large number of contributions in the literature propose models and methods to support this crucial activity. Of these models, the so-called similarity coefficients based methods (SCM) have been shown to be effective and also flexible in helping CM design and management activities. Other CF methods discussed in the literature are: visual inspection, part coding and classification, machine-part group analysis (also known as product flow analysis - PFA), mathematical programming, fuzzy clustering, neural networks, metaheuristics, and heuristics in general.

The main aim of CM and GT is to effectively aggregate similar parts (i.e. components) into families and dissimilar machines (i.e. resources) into cells in a multi-cellular manufacturing system. The level of effectiveness is measured in terms of global production and logistic cost minimization. This cost minimization deals with the number of machines (costs for purchasing machines), manufacturing tools (tooling costs), human resources (labor costs), their level of utilization (variable cost of using machines, tools, and manpower), their plant location (material handling -MH costs), the assignment and scheduling of work orders, and other management decisions that are strongly influenced by the configuration of both clusters of machines and families of parts and components. Nevertheless, it is very difficult to quantify the performance of a multi cellular manufacturing system in terms of all these implications, and also in general i.e. for the generic production system in the generic operating sector. Sometimes the number of manufacturing cells is not known in advanced, consequently the aim of CM and CF models and methods is the determination of the number of cells and simultaneously the configuration of parts and machines groups. The simultaneous parts and machines clustering processes is usually based on the minimization of intercell movement of parts (Stawowy 2004) which specifically deals with the CF problem and methods. In other words, the object is to minimize the interactions between manufacturing cells, where an interaction occurs if a part requires machines belonging to two or

more cells. The degree of interaction between manufacturing cells is measured by the number of the *"exceptional elements"* as illustrated below in the discussion of the efficiency of the formation.

Several journals have recently published special issues on these topics, demonstrating their importance in both academic and industrial research. Significant surveys and comprehensive reviews of CM are presented by Shafer and Rogers (1993), Joines et al. (1996), Selim et al. (1998), Islam and Sarker (2000), Yin and Yasuda (2005, 2006), and Fraser et al. (2007a, b). In particular, Yin and Yasuda (2005, 2006) present a recent and comparative investigation into SCM applied to CM.

Manzini et al. (2004) present, discuss, and apply an original conceptual framework for planning, design, management, and control of a flexible cellular assembly system (FAS). Similarly, Manzini et al. (2006) present a supporting decision framework for multi-cellular flexible manufacturing systems (FMS) applied to the Italian automotive industry. Fraser et al. (2007a) introduced a useful framework for the implementation of a CM system based on technical issues, human factors, and organizational implications. Sobhanallahi et al. (2002) proposes a threshold value as a bound for the number of cells.

Several studies in the literature discuss the CF problem and in particular the so-called Machine-Part Matrix Clustering (MPMC) problem for identifying potential cells in the design of a CM system. Most of these studies propose techniques and rules to optimize this design process. The performances promised and obtained are generally compared with previous results presented in the literature, but they are often difficult to understand and apply in real world case studies, especially for practitioners and managers of different production systems in different industrial sectors.

The aim of this paper is to identify effective threshold values of group similarity in order to quickly identify the best number and configuration of machines cells and part families through the application of statistical clustering techniques. In particular, these similarity values can be useful to professionals working in manufacturing systems whose decisions can be rapidly and effectively supported by statistical tools for machines grouping and formation of part families without accessing advanced and complicated algorithms proposed in the literature. In fact, statistical clustering techniques based on similarity indices combined with clustering heuristic rules are very user-friendly tools because they are supported by commercially available software and they do not need very high knowledge and skill levels. To support the determination of effective solutions to the CF problem an experimental analysis conducted on several literature instances is illustrated. The proposed measure of group similarity can be used in combination with an ad-hoc what if

analysis conducted on the CM problem instance that the analyst has to face and solve thanks to the introduction of several key performance indices (KPI).

The remainder of this article is organized as follows: Section 2 presents the main decisional steps for CF adopting statistical similarity indices and clustering rules i.e. SCMs. Section 3 presents the criterion proposed for the selection of a percentile-based threshold similarity group value. Section 4 illustrates an example of the SCM approach and the *percentile-based similarity cut value* applied to an instance in the literature in order to demonstrate the importance and the effectiveness of the threshold similarity value in CF. Section 5 presents the results obtained from experimental analysis conducted on literature instances to which different percentile-based threshold values of similarity were applied. Finally, Section 6 discusses conclusions and further research.

2. Decision steps in a statistically-based hierarchical clustering process

This study refers to a clustering process based on the introduction of similarity indices and on the application of heuristic clustering techniques. The adopted process involves the following main decision steps for the design and configuration of a multi-cellular manufacturing system:

- 1. *Manufacturing data collection*. This deals with the analysis of products and resources of the production system paying particular attention to the bill of materials (BOM) and work cycles (i.e. cycle manufacturing routings) for each product in the product mix.
- 2. *Similarity index evaluation*. The generic similarity index refers to a generic pair of items in the group to be partitioned. In other words, it is a measure of similarity between two generic groups of machines, or possibly a group composed of only one machine (i.e. a group with only one member). In particular, the similarity value between two items represents the degree to which they need to belong to the same manufacturing cell.
- 3. Clustering analysis. This step is based on the application of an algorithm to group the machines into different disjunctive clusters that represents a partition of the original group of machines. The process of clustering items (e.g. machines) into homogeneous groups (e.g. cells) not only depends on the rule adopted but also on the threshold group value of similarity adopted, which represents the minimal admissible level of similarity within the members of a generic cell, as discussed in the following sections. In general, any *threshold cut level* of similarity identifies a cellular configuration of machines i.e. a partition of machines into manufacturing cells and parts into different families. This forms the aim of this study.

- 4. Part family formation, i.e. assignment of parts to the previously identified cells.
- 5. *Plant layout configuration*. This step deals with the determination of the location of each manufacturing resource (machines and human resources) in the production area.

These decision steps belong to a hierarchical process that involves several decisions and whose results in terms of performance depend on the effectiveness of each step and also on how well integrated the steps are, whereas the steps have traditionally been treated separately. In other words, the result of each step depends on the quality of input data whose a fraction is generally produced in the previous decision step.

For example, how effective the machines clustering task is depends on the quality and significance of the similarity index adopted, whose values must be evaluated correctly, and which provides the input data for the clustering algorithm. This algorithm also influences the partition of the machines.

The literature presents several performance indices with which to judge the effectiveness of a clustering result i.e. a multi-cellular system configuration. The aim of this paper is to compare the effectiveness of different threshold levels of similarity from the point of view of clustering i.e. after the grouping of machines/resources and the grouping of parts/components. However, the very crucial effect of the clustering process in terms of layout is not considered because it is very difficult to find general results and a set of recommendations suitable for academic research and for professionals to support their decisions in designing and managing manufacturing system. Consequently, step 5 is not considered in this study and the problem of grouping parts into families and machines into cells is studied from the point of view of maximizing the grouping efficacy.

The decision process based on SCM for CM represented in steps 1 to 4 was defined by McAuley in 1972. He illustrated the clustering analysis conducted on a part-machine incidence matrix using Jaccard's similarity index combined with the Single Linkage Cluster Method, with the results being represented using dendograms (McAuley 1972, Daita et al. 1999). Finally, McAuley identified two performance criteria to measure the effectiveness of the clustering analysis on CF.

Moreover, the idea of proposing an effective selection of the so-called similarity threshold value to support the clustering analysis was introduced by Seifoddini and Wolfe (1987) with little success, as demonstrated below. Seifoddini and Wolfe (1987) correctly suggest selecting a threshold value that minimizes the sum of the intercellular and intracellular MH costs, but they also quantify this cost and so solve the well known NP-hard plant layout problem i.e. simultaneously identify the best arrangement of cells and machines. It is certainly the best and most effective suggestion from a theoretical point of view, but a supporting decision model and method capable of fully satisfying

International Journal of Production Research

this need is very difficult to identify, and especially so for professionals and managers of very complicated production systems (based on large numbers of machines, parts, and components). Moreover, Seifoddini and Wolfe (1987) propose the selection of the best value of similarity by quantifying the global system travelling distance between cells i.e. for a given plant layout. In other words, they bypass the plant layout problem by simply measuring a cost function similar to that adopted by the well-known CRAFT (Computerized Relative Allocation of Facilities Technique) facility layout solving rule (Armour and Buffa, 1963).

Consequently, while the approach proposed by Seifoddini and Wolfe (1987) is theoretically effective but not practical, it would be better to adopt a percentile based threshold similarity coefficient value separating the CF problem from the plant layout problem in agreement with recent studies of CM in the literature.

The following subsections discuss and illustrate the previously cited decision steps paying particular attention to the assumptions they are based on.

2.1 Manufacturing data collection

In adopting an SCM, the first result of collecting data from the manufacturing process is the formation of the machine-part incidence matrix. This matrix indicates whether or not a part needs or does not need a machine for production. The generic entry a_{ik} is defined as follows:

 $a_{ik} = \begin{cases} 1 \text{ if part } i \text{ visits machine } k \\ 0 \text{ otherwise} \end{cases}$

where

i=1,..,I part index;

k=1,..,K machine index.,

Several models and methods for CM are presented in the literature, but these need more manufacturing data on the parts and components of the product mix than the proposed SCM based approach presented in this paper e.g. production times, production sequences, machines/resources alternatives, production volumes, etc. The proposed SCM based approach presented here simply needs the construction of the matrix introduced by (1): this is certainly an important simplification but is a significant advantage in the critical activity of data collection and computing which is subject to the decision steps in the following paragraphs.

2.2 Similarity index evaluation

A large number of similarity coefficients have been proposed in the literature (Yin and Yasuda 2006). In particular, Yin and Yasuda (2006) present a taxonomy for similarity indices and identify two distinct main groups of coefficients (*problem oriented* and *general purpose*) and list the most important contributions on CF in the literature since McAuley (1972) first defined the decision process for CM based on SCM.

The problem oriented group of indices deals with specific coefficients defined for CM, while the second group incorporates indices used in several disciplines e.g. biology, sociology, economics, medical science, etc., and available in a large number of commercially available statistical software packages.

Therefore, the general purpose indices are the subject of the CF problem as approached and discussed in this paper. In particular, Table 1 lists the similarity indices adopted by the proposed experimental analysis (Section 6) which supports the identification of effective threshold values of group similarity within each cluster i.e. cells, obtained using the clustering analysis. The notation adopted to define the generic index S_{ij} is:

- *a* number of parts visiting both machines;
- *b* number of parts visiting machine *i* but not j;
- *c* number of parts visiting machine *j* but not *i*;
- *d* number of parts visiting neither machine.

This list of similarity indices of the existing coefficients is not exhaustive, but all the same it represents a significant portion that can be used to evaluate the SCM performance with different threshold values. The generic and adopted similarity index represents the first free parameter in the experimental analysis, which is now illustrated.

[Insert about here Table 1]

2.3 Clustering analysis and cell formation

International Journal of Production Research

The cluster analysis in CM identifies and classifies machines on the basis of the similarity of the manufacturing characteristics they possess i.e. on the basis of a similarity coefficient (Section 2.2). The aim of CM has already been briefly introduced in Section 1 and at the beginning of Section 2 in which the contribution made by Seifoddini and Wolfe (1987) is discussed.

A realistic aim for CF is to minimize within-group (i.e. manufacturing cell) variance and maximize between-cells variance. The result of a CF and part families assignment is a number of heterogeneous groups of machines with homogeneous contents. The number of groups of machines (i.e. cells) can be predefined in advanced or it is one of the output of the CF problem.

There are usually substantial differences between the machine groups, but the individuals within an individual machine group are similar because they are similarly visited by different parts/components. The clustering process in statistical based heuristic algorithms is supported by the following well known hierarchical algorithms (Mosier 1989), which represent the second free parameter adopted in the proposed experimental analysis (see Section 6): Complete Linkage Method (CLINK), Single Linkage Method (SLINK), Unweighted Pair-Group Method using Arithmetic Average (UPGMA), Weighted Pair-Group Method using Arithmetic Average (Average Linkage), and Unweighted Pair-Group Method using Centroid (UPGMC).

The results of a clustering algorithm can be effectively illustrated by a type of a tree diagram called a dendogram (Sokal and Sneath 1968, McAuley 1972). An example of a dendogram is reported in Figure 1.

2.4 Formation of part families

Given a generic solution for cells, a part may have to visit more than one group of machines before it is completed. Consequently, the generic part has to be assigned to the manufacturing cell with the minimum number of inter-group journeys. Another way of reducing the number of inter-group journeys is to duplicate machines, but it can be very expensive in terms of space and monetary costs.

Part families can be formed concurrently with the cell/group machine formation (CF steps illustrated above), or otherwise executed after the cells have been defined. In particular, the second of these hypotheses is adopted in this paper, and in particular a heuristic rule is applied to assign parts to manufacturing cells. The main steps in this heuristic rule are:

STEP 1. Given a configuration of the disjunctive groups of machines (i.e. manufacturing cells)

(3)

(4)

name them as c=1,..,C. Then quantify the following measurements for each part *i* and each manufacturing cell *c* in accordance with the working cycle of part *i*:

- number of intra-cell movements: *ICM_{ic}*;
- number of tasks executed in the cell: *NTask_{ic}*;
- processing time of *i* in *c*: *Time*_{*ic*}.

STEP 2. Assign part *i* to cell c^* where:

$$ICM_{ic^*} > \max_{\substack{c=1,..,C\\c\neq c^*}} \{ICM_{ic}\}$$

$$(2)$$

If c^* does not exist than GO to STEP 3.

STEP 3. Assign part *i* to cell *c*' where:

$$NTask_{ic'} > \max_{\substack{c=1,..,C\\c\neq c'}} \{NTask_{ic}\}$$

If c' does not exist than GO to STEP 4.

STEP 4. Assign part *i* to cell *c* '' where:

$$\operatorname{Time}_{ic"} > \max_{\substack{c=1,\dots,C\\c\neq c"}} \left\{ \operatorname{Time}_{ic} \right\}$$

If c'' does not exist than assign part *i* randomly to set c=1,..,C.

A result of the assignment of parts to the manufacturing cells is the so-called block-diagonal incidence matrix shown in Figure 4.

2.5 Clustering performance evaluation

Sarker (2001) presents, discusses, and compares the most notable measurements of grouping efficiency in CM. The measurements adopted in the following illustrated experimental analysis are based on the following definitions:

- *Block*. This is a submatrix of the machine-part matrix composed of rows representing a part family and columns representing the related machine cell.
- *Void*. This is a "zero" element appearing in a diagonal block (see Figure 4).
- *Exceptional element*. This is a "one" appearing in off-diagonal blocks (see Figure 4). The exceptional element causes intercell movements.

The CM measurements of performance quantified in the experimental analysis are now listed and defined.

Problem Density – PD:

$$PD = \frac{number of "ones" in the incidence matrix}{number of elements in the incidence matrix}$$
(5)

Global Inside cells density – IDG:

$$IDG = \frac{number of "ones" in diagonal blocks}{number of elements in diagonal blocks}$$
(6)

Outside density – ODG:

$$ODG = \frac{number of "ones" outside the diagonal blocks}{number of elements outside the diagonal blocks}$$
(7)

Exceptional elements - EE

<i>EE</i> = <i>Number of exceptional elements within the diagonal-block incidence matrix</i>	(8)
Ratio of non-zero elements in cells – REC	
$REC = \frac{\text{total number of "ones"}}{\text{number of elements in diagonal blocks}}$	(9)
Ratio of exceptions – RE	
$RE = \frac{number of "ones" outside diagonal block}{total number of "ones" within the matrix}$	(10)
Group Efficacy – τ	
$\tau = \frac{e - e_0}{e + e_v} \tag{1}$	1)

where:

е	total number of "ones" in the matrix (i.e. the total number of operations);
$e_0 = EE$	number of exceptional elements (number of "ones" in the off-diagonal
	blocks);

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

 e_{v}

number of voids (number of "zeros" in the diagonal blocks).

3. Percentile based threshold group similarity value

This study introduces a percentile based similarity value to generate manufacturing cells (i.e. disjunctive groups of machines) in a multi cellular production system. In particular, for a given specific combination of a similarity coefficient and a clustering rule, this value does not cut the dendogram according to a predefined value of similarity but according to a percentile of the number of aggregations that are generated by the clustering analysis, which can be seen in the dendogram. The application of this new and simple criterion does not depend on the selection of a similarity coefficient and the adoption of the clustering rule, but on the number and nature of aggregations during the clustering process, as represented in the dendogram. Nevertheless, the result of applying this criterion depends on both the similarity coefficients and the clustering rules selected.

In other words, the combination of a similarity index and a clustering algorithm can produce aggregations associated with very low values of similarity e.g. nearly *zero*, otherwise the aggregations can be related to similarity values close to *1*. Consequently, the choice of a threshold group similarity measurement strongly influences the number and formation of manufacturing cells. Applying different combinations of indices and algorithms to a given instance of a CF problem, a common value of "cutting dendogram" (the so-called threshold value) can generate very different results in terms of CM configuration, and in particular, results are not feasible because they are based on too many or too few cells. In contrast, the introduction of a percentile-based threshold value of group similarity bypasses these risks and results in the generation of the expected and correct number of manufacturing cells as the result of a predefined number of aggregations between couples of under-construction clusters. An under construction cluster is a group of items potentially subject to new aggregations by the application of a clustering algorithm.

The basic idea of this criterion can be illustrated by an example. Figure 1 presents a dendogram generated by the application of clustering analysis. m1,...,m24 are the identifications of machine items. The number within the diagram (1,...,29) identify the aggregations (called nodes) ordered in agreement with the similarity measurements. In particular, low numbers identify aggregations between under construction clusters characterized by a high level of similarity (very similar

clusters). Table 2 reports the list and configuration of nodes as generated by the application of the clustering algorithm.

The percentile based threshold value proposed by the authors is a range of group similarity measurements which cuts the dendogram at the percentile number of aggregations identified by the clustering rule, as follows:

$$T_value_{\mathscr{H}_p} \in \left] simil\left\{ \left[\mathscr{H}_p \times N_{nodes} \right] \right\}, simil\left\{ \left[\mathscr{H}_p \times N_{nodes} \right] \right\} \right[$$
(12)

where:

\mathcal{W}_p	percentile of aggregations, expressed as a percentage;
Nnodes	number of nodes generated by the cluster algorithm;
$simil\{N\}$	similarity value which corresponds to the node N (e.g. see last

column in Table 2).

For example, for the dendogram in Figure 1 (related to Table 2) and a 75° percentile of aggregation (i.e. $\mathscr{D}_p=0.75$), equation (12) is:

$$T _ value_{75^{\circ}} \in]simil\{[0.75 \times 29]\}, simil\{[0.75 \times 29]\}[=]simil\{22\}, simil\{21\}[=]0.092, 0.098[$$

Similarly, for a percentile value of 25° (i.e. $\%_p=0.25$):

$$T _ value_{25^{\circ}} \in]simil\{[0.25 \times 29]\}, simil\{[0.25 \times 29]\}[=]simil\{8\}, simil\{7\}[=]0.333, 0.333[= 0.333]$$

[Insert about here Figure 1]

[Insert about here Table 2]

4. Numerical example

This section presents and discusses a numerical example relating to an instance (i.e. occurrence) of the CF problem introduced by Stanfel (1985). It is a 24x14 matrix (number of parts x number of machines). In particular, two different parameterizations of the problem are illustrated:

- *Parameterization A*. This refers to the application of the "*Simple Matching*" *similarity index* and the *Centroid clustering rule*.
- *Parameterization B*. This refers to the application of the "*Sokal & Sneath 2*" *similarity index* and the *Centroid clustering rule*.

Part-machine incidence matrix

Table 3 is the binary part-machine incidence matrix proposed by Stanfel (1985) and forming the subject of this illustrated example.

[Insert about here Table 3]

Similarity coefficient matrix

Tables 4 and 5 present the similarity coefficient matrices obtained by applying the "Simple Matching" and "Sokal & Sneath 2" coefficients respectively (the similarity indices are defined in Table 1).

[Insert about here Table 4]

[Insert about here Table 5]

Clustering rule application and construction of dendograms

The application of Centroid clustering rule to the "Simple Matching" similarity coefficient generates the dendogram illustrated in Figure 2, while Figure 3 presents the result obtained from the combination of the Centroid algorithm and the "Sokal & Sneath 2" similarity coefficient.

 [Insert about here Figure 2]

[Insert about here Figure 3]

Table 6 and 7 present the list of nodes generated by the clustering analysis relating respectively to the dendograms in Figure 2 and Figure 3.

Threshold similarity value adoption and formation of cells

Assuming the dendograms obtained at the previous steps are cut and assuming a percentile-based threshold value of 75°, the configuration of the manufacturing cells is as follows.

• System parameterization A - Simple Matching similarity index & Centroid rule:

Cell 1: m4-m5-m6-m7

Cell 2: m8-m9

Cell 3: m1-m2-m3-m10

Cell 4: m11-m12

Cell 5: m13-m14.

• System parameterization B - Sokal and Sneath 2 similarity index & Centroid rule:

Cell 1: m8-m9-m10

Cell 2: m11-m12

Cell 3: m4-m5-m6-m7

Cell 4: m1-m2-m3

Cell 5: m13-m14.

Parts assignment to manufacturing cells

The introduction of a set of hypotheses on manufacturing routings (and in particular on sequence of visited machines) and on processing times is necessary so that the previously introduced heuristic parts assignment procedure can be applied. Consequently, the following hypotheses have been introduced:

- 1. If $a_{ik}=1$: $t_{ik}=1$, i.e. $a_{ik}=t_{ik}$. The processing time defined for the generic part which visits machine *k* is set to 1.
- 2. The routing sequence of machines visited by part *i* is the sequence of machines reported in the binary incidence matrix, where $a_{ik}=1$.

The assignments of parts to the manufacturing cells obtained are:

• System parameterization A

Part family 1: *p3-p4-p21-p24*

Part family 2: *p1-p2-p17-p19-p20-p23*

Part family 3: *p6-p7-p8-p18*

Part family 4: *p5-p9-p10-p11-p12- p14-p15-p16-p22*

Part family 5: *p13*

• System parameterization B.

Part family 1: *p1-p2-p17-p19-p20-p23*

Part family 2: *p5-p9-p10-p11-p12-p14-p15-p16-p22*

Part family 3: *p3-p4-p21-p24*

Part family 4: *p6-p7-p8-p18*

Part family 5: *p13*.

In particular, Figure 4 presents the block-diagonal incidence matrix associated with the "parameterization A" system/problem and to a threshold group similarity value of 75°, while Figure 5 refers to the "parameterization B".

[Insert about here Figure 4]

[Insert about here Figure 5]

Performance evaluation

The results obtained for the two system/problem parameterizations using the clustering analysis and parts assignment, in accordance with the previously introduced performance measurements, are reported in Table 8.

[Insert about here Table 8]

5. Experimental analysis

In order to identify values of similarity capable of effectively supporting the clustering activity in CM when using the previously discussed and illustrated hierarchical decision process, an experimental analysis needs to be carried out on different similarity indices (FACTOR 1, i.e. free parameter/degree of freedom n°1) combined with different clustering rules (FACTOR 2, i.e. free parameter n°2) and combined with different threshold levels of similarity (FACTOR 3, i.e. free parameter n°3).

The experimental analysis has been conducted on 22 literature instances which have been selected from several literature studies (see Table 9 for citations and references). Selected instances refer to binary incidence matrices of different dimensions (i.e. number of elements), different numbers of columns and rows, and different values of "problem density – PD". In order to characterize each matrix correctly, the set of instances has been classified as follows:

Incidence matrix dimension, i.e. the number of available cells ("Matrix dim." in Table 9).
 Four different levels have been introduced:

<i>S</i> , if	Matrix dim.<100;
<i>M</i> , if	<i>100 ≤ Matrix dim.</i> < <i>500</i>
<i>L</i> , if	<i>500 ≤ Matrix dim.<1000</i>
XL, if	$1000 \leq Matrix dim.$

2. PD value. Three different levels have been introduced:

Lo, if *PD value* < 0.2

$$M,$$
 if $0.2 \le PD$ value $H,$ if $0.4 \le PD$ value

[Insert about here Table 9]

Consequently, the following results refer to significant case studies i.e. examples previously discussed in the literature, and are useful in comparing the performance of different clustering problem parameterizations. They identify good levels of threshold group similarity (FACTOR 3) that can be used to support a generic and reliable multi-cellular system configuration. Three different percentile values were considered: 25° (i.e. 0.25), 40° (i.e. 0.4) and 75° (i.e. 0.75).

The rule adopted for part assignment is the heuristic illustrated in Section 2.4. This is only one of a large number of rules for the part assignment available in the literature. Nevertheless, this study deals with the determination of an effective threshold cut level of similarity for cell determination (i.e. *machines grouping*): as a consequence the authors choose not to introduce another free parameter (FACTOR) dealing with *parts grouping* into the decision problem.

The instances from the literature in Table 9 are binary incidence matrices that do not represent production data related to machine sequences and processing times, which are very useful in "product oriented" SCMs not studied in this paper. Consequently, the same hypotheses illustrated in the previously discussed numerical example (Section 4) have been adopted and related performances for each combination of system factors and for each instance have been evaluated. The set of results evaluated and compared is composed of 3300 problem configurations (22 incidence matrices, 10 similarity indices, 5 clustering algorithms, and 3 percentile based threshold group similarity values).

Tables 10 and 11 present the number of cells (CELLs) and the EE values obtained in the scenarios simulated and grouped for different threshold values. In particular, the statistics collected and compared are the mean values and the cumulated values (sum statistics) of the performance. In agreement with the definition introduced in equation (10), the RE values are similar to the EE values.

When all 3300 simulated scenarios are considered, the cumulative number of cells (CELLs) passes from 16315 (%p = 0.25, i.e. the 25° percentile) to 13319 (%p = 0.40, i.e. the 40° percentile) and to

6402 (%p = 0.75, i.e. the 75° percentile). The corresponding mean values are: 14.84, 12.11, and 5.82.

Similarly the cumulated number of EE passes from 62040 (%p = 0.25) to 53350 (%p = 0.40) to 33066 (%p = 0.75). Corresponding mean values are: 56.40, 48.50, and 30.06. Passing from %p=0.25 to %p=0.75 means the number of exceptional elements is reduced by 46.7%.

Table 12 summarizes mean and cumulative values obtained for the performance evaluated by assuming different values of percentile-based threshold cut values. In particular, the generic value is compared with the performance obtained for % p=0.25 (see Table 12): in passing from % p=0.25 to % p=0.75, two new performance measures, *ODG* and *RE*, need to be minimized and are subject to a reduction of 45.4% and 50.8% respectively.

[Insert about here Table 10, Table 11 and 12]

Figures 6 to 10 present the *main effects plots* and the *interaction plots* for the previously cited and defined performance (Section 2): *EE*, *IDG*, *ODG*, *RE*, and τ . The behavior of *IDG* differs from *ODG* and *EE*, which are minimized by %p=0.75: IDG mean value is maximized for %p=0.40. *EE* and *RE* performance perform better in short matrix (i.e. "S") and "Lo" incidence matrix, ODG and IDG in large ("XL") and "H" instances. These figures demonstrate also that the main effects of the clustering algorithm (*ALGO*) adopted and the similarity coefficient (*COEFF*) are not very important. Figure 11 illustrates the trend of EE, RE, IDG, and ODG assuming different values of the threshold percentile-based cut similarity value (*Percentile* [%]) combined with the 22 examples from the literature subject to the analysis.

[Insert about here Figure 6, 7, 8, 9, 10 and 11]

Finally, Figures 12 and 13 present some illustrative results obtained using a 2^k factorial analysis. They demonstrate that the problem density (factor "E", PD label), the part-machine incidence matrix (i.e. the example) dimension (factor "D", *dim. Label*) and the percentile-based threshold value (factor "A", %) are the most significant factors affecting the performance *ODG*, *IDG* (see the *Pareto chart of the standardized effects* in Figure 12), and *EE* (see the *Normal plot of the* *standardized effects* in Figure 13). These results are also valid for different 2^k factorial campaigns of analysis and take all the performance evaluation introduced in Section 2 into consideration.

6. Conclusion and further research

As demonstrated by the large number of studies in the literature, the design and management of a cellular manufacturing system is a very critical and time-consuming issue. In particular, several industrial companies whose success is significantly based on flexibility are forced to confront the cell formation problem and the optimization of their multi-cellular production systems.

Among the numerous supporting decisions models and methods, those based on similarity (in particular "general purpose") and clustering analysis are very popular thanks to the widespread diffusion of commercially available statistical software and its flexibility and user friendliness to manufacturing system professionals and managers.

This study demonstrates how important identifying an effective similarity value for the group of machines is. This is named the threshold cut similarity level. So the authors have introduced a percentile-based cut similarity measurement and illustrate the main results obtained using an experimental statistical analysis conducted on a set of examples from the literature, such as part machine binary incidence matrix. The significance of the proposed cut threshold measurement clearly emerges.

The proposed method, the use of the percentile-based similarity threshold and the results obtained by the experimental analysis can be applied both to instances and applications where the number of cells is predefined in advanced and where this number is not known and is a free parameter of the decision process.

By the result obtained with the experimental analysis the similarity value which corresponds to the 75° percentile of the number of aggregations identified by the clustering analysis is the best performing value because it reduces the number of exceptional elements which are the main causes of intercellular movements and duplication of manufacturing resources. Nevertheless this result is not general but can represent an effective best practice in the design of a multi cellular manufacturing system. In conclusion, the proposed approach based on the group similarity evaluation and control is very effective and so useful to professionls in manufacturing and assembly systems.

Further research should focus on the analysis of problem oriented similarity and clustering analysis, on the development of automated supporting tools for industrial applications, and on the analysis of industrial case studies.

7. References

Armour, G.C., and Buffa, E.S., 1963, A heuristic algorithm and simulation approach to relative location of facilities, Management Science, 9(1), 294-309.

Boctor, F.F, 1991, A linear formulation of the machine-part cell formation problems. International Journal of Production Research, 29(2), 343–56.

Boe W.J. and Cheng C.H., 1991, A close neighbour algorithm for designing cellular manufacturing systems. International Journal of Production Research, 29(10), 2097–116.

Carrie, A.S., 1973, Numerical taxonomy applied to group technology and plant layout. International Journal of Production Research, 11(4), 399–416.

Chan, F.T.S., Lau, K.W., Chan, L.Y. and Lo, V.H., 2008, Cell formation problem with consideration of both intracellular and intercellular movements. International Journal of Production Research, 46(10), 2589-2620.

Chandrasekharan, M.P and Rajagopalan R., 1986a, An ideal seed non-hieraechical clustering algorithm for cellular manufacturing. International Journal of Production Research, 24(2):451-64.

Chandrasekharan, M.P and Rajagopalan R., 1986b, MODROC: An extension of rank order clustering for group technology. International Journal of Production Research, 24(5), 1221–33.

Chandrasekharan, M.P, Rajagopalan, R., 1989, Groupability: an analysis of the properties of binary data for group technology. International Journal of Production Research, 27(6), 1035–52.

Daita, S.T.S., Irani, S.A. and Kotamraju, S., 1999, Algorithms for production flow analysis. International Journal of Production research, Vol.37, No.11, 2609-2638.

Fraser, K., Harris, H. and Luong, L., 2007a, Improving the implementation effectiveness of cellular manufacturing: a comprehensive framework for practitioners. International Journal of Production research, Vol. 45 (24), 5835-5856.

Fraser, K., Harris, H., Luong, L., 2007b, Team-based cellular manufacturing: A review and survey to identify important social factors. Journal of Manufacturing Technology Management, V 18(6), 714-730.

Islam, K.S. and Sarker, B.R., 2000, A similarity coefficient measure and machine-parts grouping in cellular manufacturing systems. International Journal of Production Research, Vol. 38 (3), 699-720.

Joines, J.A., King, R.E., Culbreth, C.T., 1996, A comprehensive review of production-oriented manufacturing cell formation techniques. International Journal of Flexible Automation and Integrated manufacturing. Vol. 3 (3&4), 161-200.

King J.R., 1980, Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. International Journal of Production Research, 18(2), 213–32.

King, J.R., Nakornchai V., 1982, Machine-component group formation in group technology: review and extension. International Journal of Production Research, 20(2), 117-133.

Kusiak, A and Chow, W.S, 1987, Efficient solving of the group technology problem. Journal of Manufacturing Systems, 6(2), 117–24.

Kumar K.R., Kusiak A. and Vannelli A., 1986, Grouping of parts and components in flexible manufacturing systems. European Journal of Operational Research, 24(3), 387–97.

Kumar R. and Vannelli A., 1987, Strategic subcontracting for efficient disaggregated manufacturing. International Journal of Production Research, 25(12), 1715–28.

Lee M. K., Luong, H.S. and Abhary, K., 1997, Genetic algorithm based cell design considering alternative routing. Computer Integrated Manufacturing Systems, v 10, n 2, May, 1997, p 93-107

Manzini, R., Gamberi, M., Regattieri, A., Persona, A., 2004, Framework for designing a flexible cellular assembly system. International Journal of Production Research, Vol. 42(17), 3505-3528.

Manzini, R., Persona, A., Regattieri, A., 2006, Framework for designing and controlling a multicellular flexible manufacturing system. International Journal of Services and Operations Management, Vol. 2 (1), 1-21.

McAuley, J., 1972, Machine grouping for efficient production. The Production Engineer, Vol.51, 53-57.

Mosier, C. and Taube, L., 1985, The facets of group technology and their impacts on implementations—a state-of-the-art survey. OMEGA: The International Journal of Management Science, 13(6), 381–91.

Mosier, C.T., 1989, An experiment investigating the application of clustering procedures and similarity coefficients to the GT machine cell formation problem. International Journal of Production Research, Vol. 27 (10), 1811-1835.

Sarker, B.R., 2001, Measures of grouping efficiency in cellular manufacturing systems. European Journal of Operational Research, Vol. 130, 588-611.

Selim, H.M., Askin, R.G., Vakharia A.J., 1998, Cell formation in group technology: review, evaluation and direction for future research. Computers and Industrial Engineering. 34(1), 3-20.

Shafer, S.M., Rogers, D.F., 1993, Similarity and distance measures for cellular manufacturing. Part I. A survey. International Journal of Production Research, Vol.31 (5), 1133-1142.

Seifoddini, H. and Wolfe P.M., 1987, Selection of a threshold value based on material handling cost in machine-component grouping. IIE Transactions, Vol.19(3), 266-270.

Seifoddini, H., 1989, Single linkage versus average linkage clustering in machine cells formation application. Computers and Industrial Engineering, 16(3), 419–26.

Seifoddini, H., Tjahjana B. ,1999, Part-family formation for cellular manufacturing: A case study at Harnischfeger. International Journal of Production Research , 37(14):3263-3273.

Sobhanallahi, M.A., Jahanshahloo, G.R., Amin, G.R., Shayan, E., 2002, Threshold value for the number of cells in group technology. Computers & Industrial Engineering, 42, 231-236.

Sokal, R.R. and Sneath, P.H.A., 1968, Principle of Numerical Taxonomy. W.H.Freeman. San Francisco, CA.

Srinivasan G., Narendran T., Mahadevan B., 1990, An assignment model for the part families problem in group technology. International Journal of Production Research, 28(1), 145–52.

Stanfel, L.E., 1985, Machine clustering for economic production. Engineering Costs and Production Economics, Vol. 9, 73-81.

Stawowy, A., 2004, Evolutionary strategy for manufacturing cell design. Omega. The International Journal of Management Science, 34, 1-18.

Waghodekar, P.H and Sahu, S., 1984, Machine-component cell formation in group technology: MACE. International Journal of Production Research, 22(6), 937–48.

Yin, Y. and Yasuda, K., 2005, Similarity coefficient methods applied to the cell formation problem: a comparative investigation. Computers and Industrial engineering, 48, 471-489.

Yin, Y. and Yasuda, K., 2006, Similarity coefficient methods applied to cell formation problem: A taxonomy and review. International Journal of Production Economics, 101, 329-352.

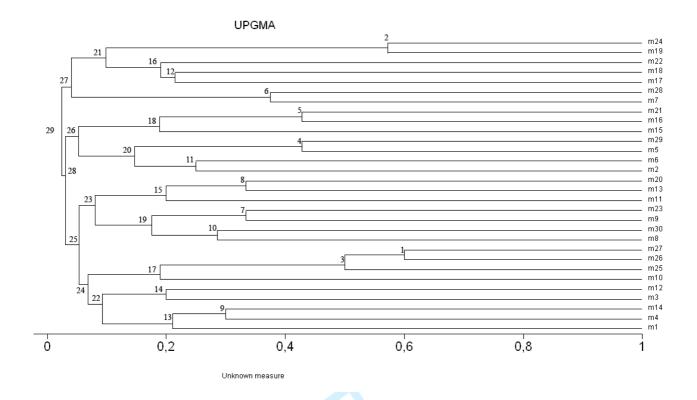


Figure 1. Clustering analysis. Dendogram and nodes (1,...,29)

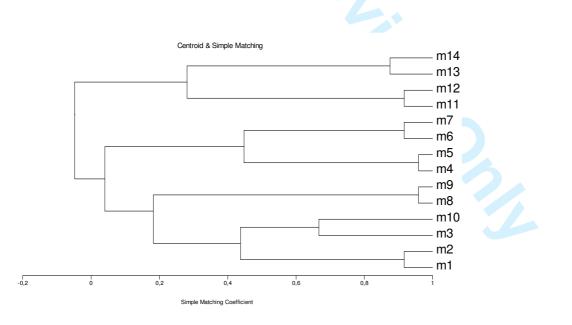


Figure 2. Dendogram of the Centroid rule and Simple Matching similarity coefficient

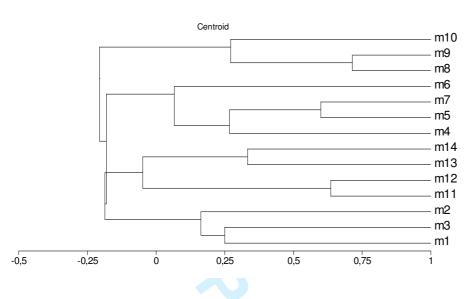


Figure 3. Dendogram of the Centroid rule and Sokal & Sneath 2 similarity coefficient

	p3 p	o4	521 J	o24 p	01	02 p	017 J	p19	p20 p	123 p	6 p	7 p	8	o18 p	05 p	9	p10 p	011 J	p12	p14	p15	p16 p	522 p	013
Cell 1																								
m4	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m6	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m7	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cell 2																								
m8	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m9	0	0	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cell 3																								
m1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
m2	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
m3	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
m10	0	0	0	0	1	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Cell 4																								
m11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0
m12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1	1	0
Cell 5																								
m13	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	0	1
m14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	1

Figure 4. Block-diagonal matrix. System parameterization A and similarity threshold value 75°

							-				10					_	-		~ ·	_				
	p1	p2	p17	019	p20	p23 p)5	o9	p10	p11	p12 p	014 p	015 p	016 p)22 p	03 P)4	o21 p)24 p	06 p	57 p	08 p	018 p	513
Cell 1																								
m8	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m9	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m10	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Cell 2						_																		
m11	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
m12	0	0	0	0	0	0	1	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0
Cell 3																								
m4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
m5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
m6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0
m7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0
Cell 4																								
m1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
m2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
m3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
Cell 5																								
m13	0	0	0	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	1
m14	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1

Figure 5. Block-diagonal matrix. System parameterization B and similarity threshold value 75°

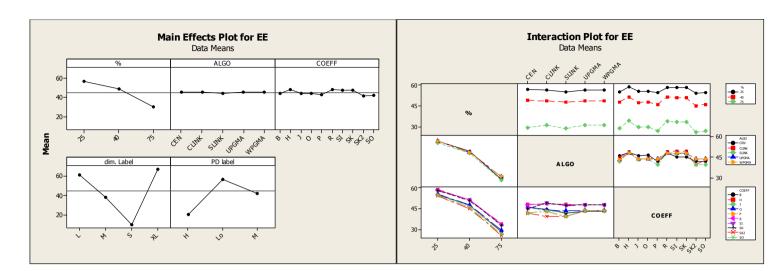


Figure 6. Main effects plot and Interaction plots for EE.



Figure 7. Main effects plot and Interaction plots for IDG.

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

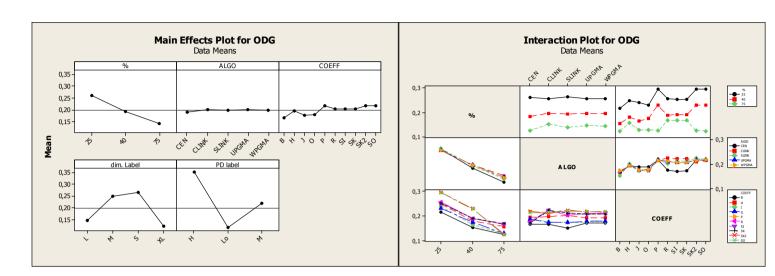


Figure 8. Main effects plot and Interaction plots for ODG.

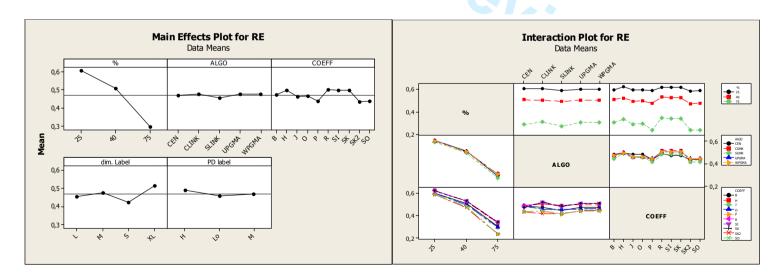


Figure 9. Main effects plot and Interaction plots for RE.

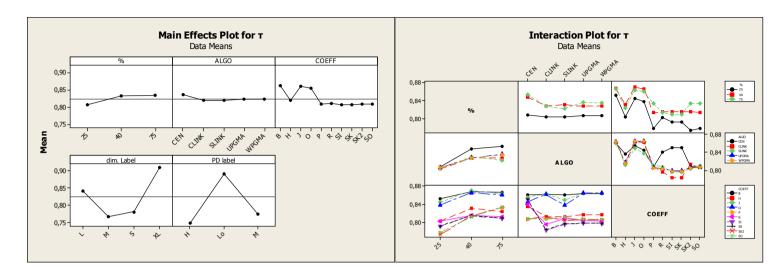


Figure 10. Main effects plot and Interaction plots for τ .

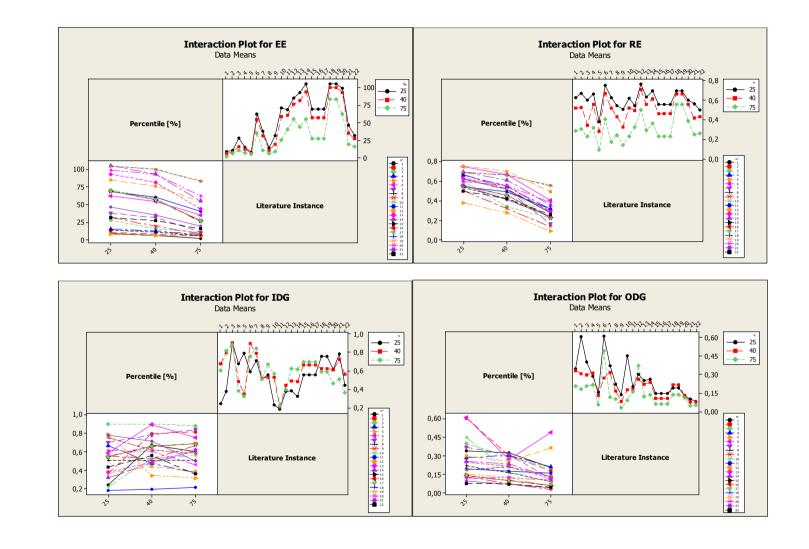


Figure 11. Main effects plot and Interaction plots for ODG.

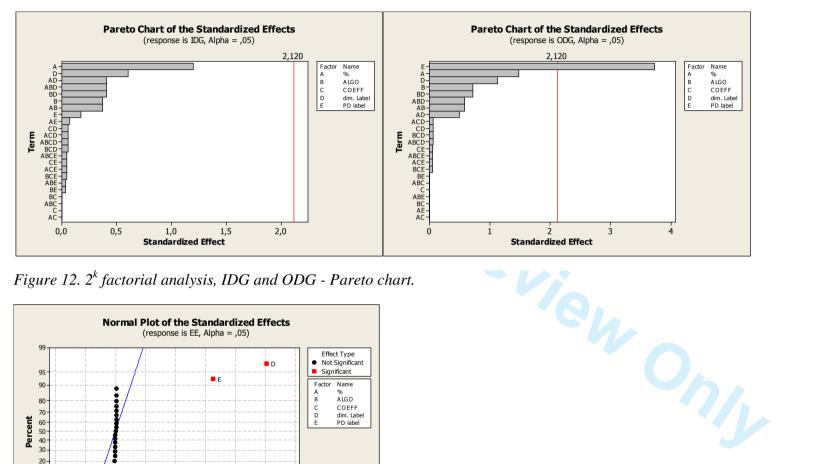


Figure 12. 2^k factorial analysis, IDG and ODG - Pareto chart.

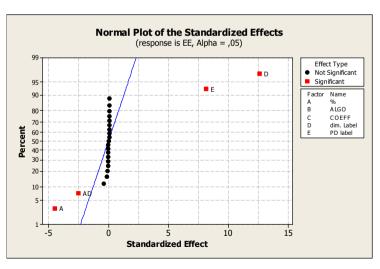


Figure 13. 2^k factorial analysis, EE normal plot.

Code	Coefficient	Range	S_{ij}
J	Jaccard	0–1	a/(a+b+c)
Н	Hamann	-1 to 1	[(a+d)-(b+c)]/[(a+d)+(b+c)]
SI	Simple matching	0–1	(a+d)/(a+b+c+d)
SO	Sorenson	0–1	2a/(2a+b+c)
R	Rogers and Tanimoto	0–1	(a+d)/[a+2(b+c)+d]
SK	Sokal and Sneath	0–1	2(a+d)/[2(a+d)+b+c]
В	Baroni-Urbani and Buser	0–1	$[a+(ad)^{1/2}]/[a+b+c+(ad)^{1/2}]$
0	Ochiai	0–1	a/[(a+b)(a+c) ^{1/2}]
Р	PSC	0–1	$a^{2}/[(b+a)(c+a)]$
SK2	Sokal and Sneath 2	0–1	a/[a+2(b+c)]

Table 1. Statistical-based similarity coefficient

Node	Group 1	Group 2	Simil.	Objects in group
1	m26	m27	0,6	2
2	m19	m24	0,571	2
3	m25	Node 1	0,5	3
4	m5	m29	0,429	2
5	m16	m21	0,429	2
6	m7	m28	0,375	2
7	m9	m23	0,333	2
8	m13	m20	0,333	2
9	m4	m14	0,3	2
10	m8	m30	0,286	2
11	m2	m6	0,25	2
12	m17	m18	0,214	2
13	m1	Node 9	0,211	3
14	m3	m12	0,2	2
15	m11	Node 8	0,2	3
16	Node 12	m22	0,191	3
17	m10	Node 3	0,19	4
18	m15	Node 5	0,188	3
19	Node 10	Node 7	0,175	4
20	Node 11	Node 4	0,146	4
21	Node 16	Node 2	0,098	5
22	Node 13	Node 14	0,092	5
23	Node 19	Node 15	0,08	7
24	Node 22	Node 17	0,068	9
25	Node 24	Node 23	0,054	16
26	Node 20	Node 18	0,052	7
27	Node 6	Node 21	0,04	7
28	Node 25	Node 26	0,03	23
29	Node 28	Node 27	0,024	30

Table 2. List and configuration of nodes generated by the clustering analysis

1	
2	
3	
4	
5	
2 3 4 5 6 7 8	
7	
8	
à	
10	
10	
11	
12	
13	
14	
15	
16	
17	
<pre> o 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 9 30 1 2 2 3 1 2 2 3 1 2 2 3 3 1 2 2 3 3 1 2 3 3 3 3</pre>	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
28 29 30 31 32 33 34 35 36 37 38 39	
39 40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55 56	
56	
57	
58	
50	

	m1	m2	m3	m4	m5	m6	m7	m8	m9	m10	m11	m12	m13	m14
p1	0	0	0	0	0	0	0	1	1	1	0	0	0	0
p2	0	0	0	0	0	0	0	1	1	1	0	0	0	0
p3	0	0	0	1	1	1	1	0	0	0	0	0	0	0
p4	0	0	0	1	1	0	1	0	0	0	0	0	0	0
p5	0	0	0	0	0	0	0	0	0	0	0	1	1	0
p6	1	0	1	0	0	0	0	0	0	0	0	0	0	0
p7	1	1	1	0	0	0	0	0	0	1	0	0	0	0
p8	0	1	1	0	0	0	0	0	0	0	0	0	0	0
p9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
p10	0	0	0	0	0	0	0	0	0	0	1	1	0	0
p11	0	0	0	0	0	0	0	0	0	0	1	0	0	1
p12	0	0	0	0	0	0	0	0	0	0	1	1	1	0
p13	0	0	0	0	0	0	0	0	0	0	0	0	1	1
p14	0	0	0	0	0	0	0	0	0	0	1	1	0	0
p15	0	0	0	0	0	0	0	0	0	0	1	1	1	1
p16	0	0	0	0	0	0	0	0	0	0	1	1	0	0
p17	0	0	0	0	0	0	0	1	1	1	0	0	0	0
p18	0	0	1	0	0	0	0	0	0	0	0	0	0	0
p19	0	0	0	0	0	0	0	1	0	0	0	0	0	0
p20	0	0	0	0	0	0	0	1	1	1	0	0	0	0
p21	0	0	0	0	1	0	1	0	0	0	0	0	0	0
p22	0	0	0	0	0	0	0	0	0	0	1	1	0	0
p23	0	0	1	0	0	0	0	1	1	0	0	0	0	0
p24	0	0	0	0	0	1	1	0	0	0	0	0	0	0

Table 3. 24x14 part-machine incidence matrix, Stanfel (1985)

m1	m2	m3	m4	m5	m6	m7	m8	m9	m10	m11	m12	m13	m14
1													
0.9167	1												
0.875	0.875	1											
0.8333	0.8333	0.7083	1										
0.7917	0.7917	0.6667	0.9583	1									
0.8333	0.8333	0.7083	0.9167	0.875	1								
0.75	0.75	0.625	0.9167	0.9583	0.9167	1							
0.6667	0.6667	0.625	0.6667	0.625	0.6667	0.5833	1						
0.7083	0.7083	0.6667	0.7083	0.6667	0.7083	0.625	0.9583	1					
0.7917	0.7917	0.6667	0.7083	0.6667	0.7083	0.625	0.875	0.9167	1				
0.5833	0.5833	0.4583	0.5833	0.5417	0.5833	0.5	0.4167	0.4583	0.4583	1			
0.5833	0.5833	0.4583	0.5833	0.5417	0.5833	0.5	0.4167	0.4583	0.4583	0.9167	1		
0.7083	0.7083	0.5833	0.7083	0.6667	0.7083	0.625	0.5417	0.5833	0.5833	0.7083	0.7917	1	
0.75	0.75	0.625	0.75	0.7083	0.75	0.6667	0.5833	0.625	0.625	0.75	0.6667	0.875	1

Table 4. "Simple Matching" similarity matrix, Stanfel (1985) instance

m1	m2	m3	m4	m5	m6	m7	m8	m9	m10	m11	m12	m13	m14
1													
0.2	1												
0.25	0.25	1											
0	0	0	1										
0	0	0	0.5	1									
0	0	0	0.2	0.1429	1								
0	0	0	0.3333	0.6	0.3333	1							
0	0	0.0526	0	0	0	0	1						
0	0	0.0588	0	0	0	0	0.7143	1					
0.0909	0.0909	0.0588	0	0	0	0	0.4	0.5	1				
0	0	0	0	0	0	0	0	0	0	1			
0	0	0	0	0	0	0	0	0	0	0.6364	1		
0	0	0	0	0	0	0	0	0	0	0.1765	0.2857	1	
0	0	0	0	0	0	0	0	0	0	0.2	0.1111	0.3333	1

Table 5. "Sokal & Sneath 2" similarity matrix of Stanfel (1985) example

Node	Group 1	Group 2	Simil.	Objects in group	No	ode	Group 1	Group 2	Simil.	Objects in group
1	m4	m5	0.958	2	1	1	m8	m9	0.714	2
2	m8	m9	0.958	2	2	2	m11	m12	0.636	2
3	m1	m2	0.917	2	3	3	m5	m7	0.6	2
4	m6	m7	0.917	2	4	4	m13	m14	0.333	2
5	m11	m12	0.917	2	5	5	Node 1	m10	0.272	3
6	m13	m14	0.875	2	6	6	m4	Node 3	0.267	3
7	m3	m10	0.667	2		7	m1	m3	0.25	2
8		Node 4	0.448	4	a a a a a a a a a a a a a a a a a a a	8	Node 7	m2	0.163	3
9		Node 7	0.438	4		9	Node 6	m6	0.066	4
10				4		10	Node 2	Node 4	-0.049	4
		Node 6	0.281							
11	Node 9	Node 2	0.182	6		11	Node 8	Node 10	-0.187	7
12	Node 11	Node 8	0.04	10	1.	12	Node 11	Node 9	-0.182	11
13	Node 12	Node 10	-0.048	14	1	13	Node 12	Node 5	-0.206	14

Table 6. Stanfel (1985) instance. Clustering nodes obtained by applying Centroid & "Simple Matching"

Table 7. Stanfel (1985) instance. Clustering nodes obtained by applying Centroid & "Sokal & Sneath 2"

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

	CENTROID rule &	CENTROID rule &
	Simple Matching	"Sokal e Sneath 2"
Percentile [%]	75	75
Number of Cells - C	5	5
Problem Density - PD	0.181	0.181
Inside density - IDG	0.75	0.773
Exceptional Elements - EE	13	10
Outside density - ODG	0.123	0.057
REC	0.953	0.924
RE	0.213	0.163
Group efficacy - τ	0.918	0.929

Table 8. Performance evaluation of numerical example

ld.	Reference	Kxl	Matrix dimen.	PD value	PD label	num machines	num parts	matrix's dim	dim. Label
1 King and	Nakornchai (1982)	5x7	35	0,4	Н	5	7	35	S
2 Waghod	ekar and Sahu (1984)	5x7	35	0,571	Н	5	7	35	S
3 Seifoddii	ni (1989)	5x18	90	0,511	Н	5	18	90	S
4 Kusiak a	nd Chow (1987)	7x11	77	0,298	М	7	11	77	S
5 Boctor (*	1991)	7x11	77	0,272	М	7	11	77	S
6 Chandra	sekharan and Rajagopalan (1986a)	8x20	160	0,55	Н	8	20	160	М
7 Chandra	sekharan and Rajagopalan (1986b)	8x20	160	0,38	М	8	20	160	М
8 Mosier a	nd Taube (1985)	10x10	100	0,26	М	10	10	100	М
9 Stanfel (1985)	14x24	336	0,181	Lo	14	24	336	М
10 Srinivasa	an et al. (1990)	16x30	480	0,241	М	16	30	480	М
11 King (19	80)	16x43	688	0,183	Lo	16	43	688	L
12 Kumar e	t al. (1986)	23x20	460	0,245	М	23	20	460	М
13 Carrie (1	973)	20x35	700	0,194	Lo	20	35	700	L
14 Boe and	Cheng (1991)	20x35	700	0,218	М	20	35	700	L
15 Chandra	sekharan and Rajagopalan (1989)	24x40 (1)	960	0,136	Lo	24	40	960	L
16 Chandra	sekharan and Rajagopalan (1989)	24x40 (2)	960	0,135	Lo	24	40	960	L
17 Chandra	sekharan and Rajagopalan (1989)	24x40 (3)	960	0,134	Lo	24	40	960	L
18 Lee et al	. (1997)	30x40	1200	0,12	Lo	30	40	1200	XL
19 Kumar a	nd Vannelli (1987)	30x41	1230	0,104	Lo	30	41	1230	XL
20 Stanfel (1985)	30x50	1500	0,111	Lo	30	50	1500	XL
21 Seifoddii	ni and Tjahjana (1999)	50x22	1100	0,07	Lo	50	22	1100	XL
	ni and Tjahjana (1999)	68x21	1428	0,07	Lo	68	21	1428	XL

Table 9. Experimental analysis, examples in the literature

		COEFF	Data																				
		В		Н		J		0		Р		R		SI		SK		SK2		SO		Mean CELLs tota	Sum CELLs totale
%	ALGO	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs	Mean CELLs	Sum CELLs		
	25 CEN	14.91	328	14.91	328	14.91	328	14.91	328	14.86	327	14.91	328	14.91	328	14.91	328	14.86	327	14.86	327	14.90	3277
	CLINK	14.91	328	14.91	328	14.91	328	14.91	328	14.86	327	14.91	328	14.91	328	14.91	328	14.86	327	14.86	327	14.90	3277
	SLINK	14.91	328	14.91	328	14.91	328	14.91	328	14.86	327	14.91	328	14.91	328	14.91	328	14.86	327	14.86	327	14.90	3277
	UPGMA	14.91	328	14.91	328	12.45	274	14.91	328	14.86	327	14.91	328	14.91	328	14.91	328	14.86	327	14.86	327	14.65	3223
	WPGMA	14.91	328	14.91	328	14.91	328	14.36	316	14.86	327	14.91	328	14.91	328	14.91	328	14.86	327	14.86	327	14.84	3265
25 Total		14.91	1640	14.91	1640	14.42	1586	14.80	1628	14.86	1635	14.91	1640	14.91	1640	14.91	1640	14.86	1635	14.86	1635	14.84	16319
	40 CEN	12.18	268	12.18	268	12.23	269	12.18	268	12.18	268	12.18	268	12.14	267	12.14	267	12.18	268	12.18	268	12.18	2679
	CLINK	11.68	257	12.23	269	12.18	268	12.18	268	11.64	256	12.23	269	12.23	269	12.23	269	11.64	256	11.64	256	11.99	2637
	SLINK	11.68	257	12.23	269	12.18	268	12.18	268	11.64	256	12.27	270	12.18	268	12.18	268	11.64	256	11.64	256	11.98	2636
	UPGMA	12.18	268	12.23	269	12.18	268	12.18	268	12.14	267	12.27	270	12.23	269	12.23	269	12.14	267	12.14	267	12.19	2682
0 Total	WPGMA	12.18 11.98	268 1318	12.23	269 1344	12.18	268 1341	12.32 12.21	271 1343	12.14 11.95	267 1314	12.27 12.25	270 1347	12.23 12.20	269 1342	12.23 12.20	269 1342	12.14 11.95	267 1314	12.14 11.95	267 1314	12.20 12.11	2685 13319
iu rotai	75 CEN	5.82	128	5.82	1344	5.86	129	5.86	1343	5.82	128	5.82	1347	5.86	1342	5.86	129	5.82	128	5.77	127	5.83	1283
	CLINK	5.82	128	5.82	128	5.91	130	5.86	129	5.64	120	5.82	128	5.82	129	5.82	129	5.68	125	5.64	127	5.78	1203
	SLINK	5.59	123	5.91	130	5.86	129	5.82	128	5.64	124	5.91	130	5.95	131	5.95	131	5.64	124	5.64	124	5.79	1274
	UPGMA	5.86	129	5.82	128	5.86	129	5.91	130	5.86	129	5.82	128	5.82	128	5.82	128	5.86	129	5.86	129	5.85	1287
	WPGMA	5.86	129	5.82	128	5.82	128	5.91	130	5.86	129	5.82	128	5.82	128	5.82	128	5.86	129	5.86	129	5.85	1286
'5 Total		5.79	637	5.84	642	5.86	645	5.87	646	5.76	634	5.84	642	5.85	644	5.85	644	5.77	635	5.75	633	5.82	6402
OTAL		10.89	3595	10.99	3626	10.82	3572	10.96	3617	10.86	3583	11.00	3629	10.99	3626	10.99	3626	10.86	3584	10.85	3582	10.92	36040

 Table 10. Experimental analysis, number of cells (mean and cumulative values)

		COEFF	Data																				
		В		Н		J		0		Р		R		SI		SK		SK2		SO		Mean EE totale	Sum EE totale
%	ALGO	Mean EE	Sum EE	Mean EE	Sum EE	Mean EE	Sum EE																
	25 CEN	56.36	1240	59.45	1308	57.27	1260	57.45	1264	55.50	1221	58.95	1297	56.41	1241	56.41	1241	55.50	1221	55.50	1221	56.88	12514
	CLINK	55.55	1222	58.77	1293	55.32	1217	55.73	1226	55.55	1222	58.73	1292	59.36	1306	59.36	1306	52.55	1156	55.55	1222	56.65	12462
	SLINK	54.73	1204	58.50	1287	54.36	1196	54.41	1197	52.36	1152	58.27	1282	58.09	1278	58.09	1278	52.45	1154	52.36	1152	55.36	12180
	UPGMA	54.77	1205	58.73	1292	55.32	1217	55.32	1217	55.18	1214	58.50	1287	58.68	1291	58.68	1291	55.18	1214	55.18	1214	56.55	12442
	WPGMA	54.77	1205	58.73	1292	55.32	1217	55.32	1217	55.18	1214	58.50	1287	58.68	1291	58.68	1291	55.18	1214	55.18	1214	56.55	12442
5 Total		55.24	6076	58.84	6472	55.52	6107	55.65	6121	54.75	6023	58.59	6445	58.25	6407	58.25	6407	54.17	5959	54.75	6023	56.40	62040
	40 CEN	50.50	1111	52.23	1149	49.41	1087	49.68	1093	46.41	1021	52.14	1147	49.73	1094	49.73	1094	4 6.41	1021	46.41	1021	49.26	10838
	CLINK	49.27	1084	51.95	1143	45.36	998	46.73	1028	46.23	1017	52.73	1160	52.09	1146	52.09	1146	42.05	925	46.32	1019	48.48	10666
	SLINK	45.05	991	51.09	1124	49.55	1090	49.77	1095	43.82	964	50.45	1110	50.64	1114	50.64	1114	43.50	957	43.95	967	47.85	10526
	UPGMA	46.59	1025	51.32	1129	46.23	1017	46.45	1022	46.77	1029	51.36	1130	51.14	1125	51.14	1125	46.77	1029	46.77	1029	48.45	10660
	WPGMA	46.59	1025	51.32	1129	46.23	1017	46.45	1022	46.77	1029	51.36	1130	51.14	1125	51.14	1125	46.77	1029	46.77	1029	48.45	10660
0 Total		47.60	5236	51.58	5674	47.35	5209	47.82	5260	46.00	5060	51.61	5677	50.95	5604	50.95	5604	45.10	4961	46.05	5065	48.50	53350
	75 CEN	31.23	687	32.82	722	31.23	687	31.68	697	24.14	531	32.00	704	29.50	649	29.68	653	24.14	531	24.09	530	29.05	6391
	CLINK	29.14	641	35.55	782	29.55	650	29.45	648	27.68	609	35.55	782	35.73	786	35.68	785	23.41	515	27.77	611	30.95	6809
	SLINK	26.36	580	34.86	767	26.45	582	26.68	587	22.14	487	34.77	765	33.64	740	33.59	739	22.77	501	22.14	487	28.34	6235
	UPGMA	28.18	620	33.82	744	29.50	649	29.55	650	29.05	639	33.41	735	33.68	741	33.68	741	29.05	639	29.05	639	30.90	6797
	WPGMA	28.23	621	33.91	746	29.50	649	29.55	650	29.73	654	33.50	737	33.77	743	33.68	741	29.73	654	29.05	639	31.06	6834
5 Total		28.63	3149	34.19	3761	29.25	3217	29.38	3232	26.55	2920	33.85	3723	33.26	3659	33.26	3659	25.82	2840	26.42	2906	30.06	33066
OTAL		43.82	14461	48.20	15907	44.04	14533	44.28	14613	42.43	14003	48.02	15845	47.48	15670	47.48	15670	41.70	13760	42.41	13994	44.99	148456

Table 11. Experimental analysis, exceptional elements (mean and cumulative values)

	Cells E			EE			IDG			ODG			REC			RE			τ		
	Mean	Sum	Δ%	Mean	Sum	Δ%	Mean	Sum	Δ%	Mean	Sum	Δ%	Mean	Sum	Δ%	Mean	Sum	Δ%	Mean	Sum	Δ%
25	14,835	16319	0,00%	56,400	62040	0,00%	0,537	590,78	0,00%	0,259	284,9	0,00%	2,931	3224,1	0,00%	0,605	665,47	0,00%	0,806	886,07	0,00%
40	12,108	13319	-18,38%	48,500	53350	-14,01%	0,599	658,4	11,45%	0,220	241,59	-15,20%	1,998	2197,6	-31,84%	0,506	556,79	-16,33%	0,832	915,45	3,32%
75	5,820	6402	-60,77%	30,060	33066	-46,70%	0,580	637,83	7,96%	0,142	155,69	-45,35%	0,890	979,09	-69,63%	0,298	327,31	-50,82%	0,835	918,32	3,64%

Table 12. Experimental analysis, mean and sum values. Percentage comparison with %p=0.25.