Riccardo ; Manzini 
email: riccardo.manzini@unibo.it@390512093406
  
Filippo Bindi 
  
Arrigo Pareschi 
  
The threshold value of group similarity in the formation of cellular manufacturing systems

Keywords: CELL FORMATION, CELLULAR MANUFACTURE, CLUSTERING, GROUP TECHNOLOGY SIMILARITY COEFFICIENT BASED METHOD (SCM cell formation (CF) problem, cellular manufacturing (CM), similarity coefficient, similarity coefficient based method (SCM), clustering algorithm, group technology (GT)

Cellular manufacturing is an effective alternative to batch-type production systems where different products are intermittently produced in small lot sizes with frequent setups, large in-process storage quantities, long production lead times, decreasing throughputs, and complex planning and control functions.

An effective approach to forming manufacturing cells and introducing families of similar parts, consequently increasing production volumes and machine utilization, is the use of similarity coefficients in conjunction with clustering procedures.

In a similarity coefficients based approach, the results of the clustering analysis depend on the minimum admissible level of similarity adopted for the generic group of clustered items. This is the so-called threshold value of group similarity. The aim of this paper is to identify effective values of the threshold value of group similarity to help practitioners and managers of manufacturing systems form machine groups and related part families. The proposed threshold values for a given similarity coefficient are based on calculation of the percentile of aggregations generated by the adopted clustering algorithm.

The importance of the proposed measure of group similarity has been demonstrated by experimental analysis conducted on a large set of significant instances of the cell formation problem in the literature. This analysis can also support the best determination of this percentile-based cut value especially when the number of manufacturing cells is not known in advance.

production philosophy where disjunctive groups of similar parts are produced in a multi-cellular manufacturing system. These groups are called part families and the generic part family is univocally assigned to a single group of machines (the machine cell). Since 1966 when the first contribution on CM and its topics was published (Yin andYasuda 2006, Chan et al. 2008), the large number of advantages presented by CM compared to batch production (generally implemented in functional layouts) have been widely discussed in the literature e.g. inventory level reduction, production lead time reduction, reduced set-up times, etc.

In particular, Yin and Yasuda (2006) identify three major critical topics in CM: 1. Applicability of CM, i.e. feasibility, which relates to plant layout configurations mainly composed of product cell layouts, process cell layouts, hybrid layouts (combination of functional and cellular layouts), and mixture layouts.

2. Implementation of CM. It mainly relates to human, environmental, and organizational implications.

3. Justification of CM. This compares the system performance in cellular layouts and in functional layouts.

4. System design in CM. This topic and area of research includes cell formation (CF), cell layout, and production planning.

CF is the most extensively researched topic in the design of multi-cellular manufacturing systems and a very large number of contributions in the literature propose models and methods to support this crucial activity. Of these models, the so-called similarity coefficients based methods (SCM) have been shown to be effective and also flexible in helping CM design and management activities.

Other CF methods discussed in the literature are: visual inspection, part coding and classification, machine-part group analysis (also known as product flow analysis -PFA), mathematical programming, fuzzy clustering, neural networks, metaheuristics, and heuristics in general.

The main aim of CM and GT is to effectively aggregate similar parts (i.e. components) into families and dissimilar machines (i.e. resources) into cells in a multi-cellular manufacturing system. The level of effectiveness is measured in terms of global production and logistic cost minimization. This cost minimization deals with the number of machines (costs for purchasing machines), manufacturing tools (tooling costs), human resources (labor costs), their level of utilization (variable cost of using machines, tools, and manpower), their plant location (material handling -MH costs), the assignment and scheduling of work orders, and other management decisions that are strongly influenced by the configuration of both clusters of machines and families of parts and components. Nevertheless, it is very difficult to quantify the performance of a multi cellular manufacturing system in terms of all these implications, and also in general i.e. for the generic production system in the generic operating sector. Sometimes the number of manufacturing cells is not known in advanced, consequently the aim of CM and CF models and methods is the determination of the number of cells and simultaneously the configuration of parts and machines groups. The simultaneous parts and machines clustering processes is usually based on the minimization of intercell movement of parts [START_REF] Stawowy | Evolutionary strategy for manufacturing cell design[END_REF]) which specifically deals with the CF problem and methods. In other words, the object is to minimize the interactions between manufacturing cells, where an interaction occurs if a part requires machines belonging to two or more cells. The degree of interaction between manufacturing cells is measured by the number of the "exceptional elements" as illustrated below in the discussion of the efficiency of the formation.

Several journals have recently published special issues on these topics, demonstrating their importance in both academic and industrial research. Significant surveys and comprehensive reviews of CM are presented by [START_REF] Shafer | Similarity and distance measures for cellular manufacturing. Part I. A survey[END_REF], [START_REF] Joines | A comprehensive review of production-oriented manufacturing cell formation techniques[END_REF], [START_REF] Selim | Cell formation in group technology: review, evaluation and direction for future research[END_REF], [START_REF] Islam | A similarity coefficient measure and machine-parts grouping in cellular manufacturing systems[END_REF], Yin andYasuda (2005, 2006), and Fraser et al. (2007a, b). In particular, Yin andYasuda (2005, 2006) present a recent and comparative investigation into SCM applied to CM. [START_REF] Manzini | Framework for designing a flexible cellular assembly system[END_REF] present, discuss, and apply an original conceptual framework for planning, design, management, and control of a flexible cellular assembly system (FAS). Similarly, [START_REF] Manzini | Framework for designing and controlling a multicellular flexible manufacturing system[END_REF] present a supporting decision framework for multi-cellular flexible manufacturing systems (FMS) applied to the Italian automotive industry. Fraser et al. (2007a) introduced a useful framework for the implementation of a CM system based on technical issues, human factors, and organizational implications. [START_REF] Sobhanallahi | Threshold value for the number of cells in group technology[END_REF] proposes a threshold value as a bound for the number of cells.

Several studies in the literature discuss the CF problem and in particular the so-called Machine-Part Matrix Clustering (MPMC) problem for identifying potential cells in the design of a CM system.

Most of these studies propose techniques and rules to optimize this design process. The performances promised and obtained are generally compared with previous results presented in the literature, but they are often difficult to understand and apply in real world case studies, especially for practitioners and managers of different production systems in different industrial sectors.

The aim of this paper is to identify effective threshold values of group similarity in order to quickly identify the best number and configuration of machines cells and part families through the application of statistical clustering techniques. In particular, these similarity values can be useful to professionals working in manufacturing systems whose decisions can be rapidly and effectively supported by statistical tools for machines grouping and formation of part families without The remainder of this article is organized as follows: Section 2 presents the main decisional steps for CF adopting statistical similarity indices and clustering rules i.e. SCMs. Section 3 presents the criterion proposed for the selection of a percentile-based threshold similarity group value. Section 4 illustrates an example of the SCM approach and the percentile-based similarity cut value applied to an instance in the literature in order to demonstrate the importance and the effectiveness of the threshold similarity value in CF. Section 5 presents the results obtained from experimental analysis conducted on literature instances to which different percentile-based threshold values of similarity were applied. Finally, Section 6 discusses conclusions and further research.

Decision steps in a statistically-based hierarchical clustering process

This study refers to a clustering process based on the introduction of similarity indices and on the application of heuristic clustering techniques. The adopted process involves the following main decision steps for the design and configuration of a multi-cellular manufacturing system: 1. Manufacturing data collection. This deals with the analysis of products and resources of the production system paying particular attention to the bill of materials (BOM) and work cycles (i.e. cycle manufacturing routings) for each product in the product mix.

2. Similarity index evaluation. The generic similarity index refers to a generic pair of items in the group to be partitioned. In other words, it is a measure of similarity between two generic groups of machines, or possibly a group composed of only one machine (i.e. a group with only one member). In particular, the similarity value between two items represents the degree to which they need to belong to the same manufacturing cell.

3. Clustering analysis. This step is based on the application of an algorithm to group the machines into different disjunctive clusters that represents a partition of the original group of machines. The process of clustering items (e.g. machines) into homogeneous groups (e.g. cells) not only depends on the rule adopted but also on the threshold group value of similarity adopted, which represents the minimal admissible level of similarity within the members of a generic cell, as discussed in the following sections.

In general, any threshold cut level of similarity identifies a cellular configuration of machines i.e. a partition of machines into manufacturing cells and parts into different families. This forms the aim of this study. 5. Plant layout configuration. This step deals with the determination of the location of each manufacturing resource (machines and human resources) in the production area.

These decision steps belong to a hierarchical process that involves several decisions and whose results in terms of performance depend on the effectiveness of each step and also on how well integrated the steps are, whereas the steps have traditionally been treated separately. In other words, the result of each step depends on the quality of input data whose a fraction is generally produced in the previous decision step.

For example, how effective the machines clustering task is depends on the quality and significance of the similarity index adopted, whose values must be evaluated correctly, and which provides the input data for the clustering algorithm. This algorithm also influences the partition of the machines.

The literature presents several performance indices with which to judge the effectiveness of a clustering result i.e. a multi-cellular system configuration. The aim of this paper is to compare the effectiveness of different threshold levels of similarity from the point of view of clustering i.e. after the grouping of machines/resources and the grouping of parts/components. However, the very crucial effect of the clustering process in terms of layout is not considered because it is very difficult to find general results and a set of recommendations suitable for academic research and for professionals to support their decisions in designing and managing manufacturing system. Consequently, step 5 is not considered in this study and the problem of grouping parts into families and machines into cells is studied from the point of view of maximizing the grouping efficacy.

The decision process based on SCM for CM represented in steps 1 to 4 was defined by McAuley in 1972. He illustrated the clustering analysis conducted on a part-machine incidence matrix using Jaccard's similarity index combined with the Single Linkage Cluster Method, with the results being represented using dendograms [START_REF] Mcauley | Machine grouping for efficient production[END_REF][START_REF] Daita | Algorithms for production flow analysis[END_REF]. Finally, McAuley identified two performance criteria to measure the effectiveness of the clustering analysis on CF.

Moreover, the idea of proposing an effective selection of the so-called similarity threshold value to support the clustering analysis was introduced by [START_REF] Seifoddini | Selection of a threshold value based on material handling cost in machine-component grouping[END_REF] with little success, as demonstrated below. [START_REF] Seifoddini | Selection of a threshold value based on material handling cost in machine-component grouping[END_REF] correctly suggest selecting a threshold value that minimizes the sum of the intercellular and intracellular MH costs, but they also quantify this cost and so solve the well known NP-hard plant layout problem i.e. simultaneously identify the best arrangement of cells and machines. It is certainly the best and most effective suggestion from a theoretical point of view, but a supporting decision model and method capable of fully satisfying this need is very difficult to identify, and especially so for professionals and managers of very complicated production systems (based on large numbers of machines, parts, and components).

Moreover, [START_REF] Seifoddini | Selection of a threshold value based on material handling cost in machine-component grouping[END_REF] propose the selection of the best value of similarity by quantifying the global system travelling distance between cells i.e. for a given plant layout. In other words, they bypass the plant layout problem by simply measuring a cost function similar to that adopted by the well-known CRAFT (Computerized Relative Allocation of Facilities Technique) facility layout solving rule [START_REF] Armour | A heuristic algorithm and simulation approach to relative location of facilities[END_REF].

Consequently, while the approach proposed by [START_REF] Seifoddini | Selection of a threshold value based on material handling cost in machine-component grouping[END_REF] is theoretically effective but not practical, it would be better to adopt a percentile based threshold similarity coefficient value separating the CF problem from the plant layout problem in agreement with recent studies of CM in the literature.

The following subsections discuss and illustrate the previously cited decision steps paying particular attention to the assumptions they are based on.

Manufacturing data collection

In adopting an SCM, the first result of collecting data from the manufacturing process is the formation of the machine-part incidence matrix. This matrix indicates whether or not a part needs or does not need a machine for production. The generic entry a ik is defined as follows:

1 0 if part i visits machine k otherwise ik a  =   (1) 
where i=1,..,I part index; k=1,..,K machine index., Several models and methods for CM are presented in the literature, but these need more manufacturing data on the parts and components of the product mix than the proposed SCM based approach presented in this paper e.g. production times, production sequences, machines/resources alternatives, production volumes, etc. The proposed SCM based approach presented here simply needs the construction of the matrix introduced by (1): this is certainly an important simplification but is a significant advantage in the critical activity of data collection and computing which is subject to the decision steps in the following paragraphs. The problem oriented group of indices deals with specific coefficients defined for CM, while the second group incorporates indices used in several disciplines e.g. biology, sociology, economics, medical science, etc., and available in a large number of commercially available statistical software packages.

Therefore, the general purpose indices are the subject of the CF problem as approached and discussed in this paper. In particular, Table 1 lists the similarity indices adopted by the proposed experimental analysis (Section 6) which supports the identification of effective threshold values of group similarity within each cluster i.e. cells, obtained using the clustering analysis. The notation adopted to define the generic index S ij is: a number of parts visiting both machines; b number of parts visiting machine i but not j; c number of parts visiting machine j but not i; d number of parts visiting neither machine.

This list of similarity indices of the existing coefficients is not exhaustive, but all the same it represents a significant portion that can be used to evaluate the SCM performance with different threshold values. The generic and adopted similarity index represents the first free parameter in the experimental analysis, which is now illustrated.

[Insert about here The cluster analysis in CM identifies and classifies machines on the basis of the similarity of the manufacturing characteristics they possess i.e. on the basis of a similarity coefficient (Section 2.2).

The aim of CM has already been briefly introduced in Section 1 and at the beginning of Section 2 in which the contribution made by [START_REF] Seifoddini | Selection of a threshold value based on material handling cost in machine-component grouping[END_REF] is discussed.

A realistic aim for CF is to minimize within-group (i.e. manufacturing cell) variance and maximize between-cells variance. The result of a CF and part families assignment is a number of heterogeneous groups of machines with homogeneous contents. The number of groups of machines (i.e. cells) can be predefined in advanced or it is one of the output of the CF problem.

There are usually substantial differences between the machine groups, but the individuals within an individual machine group are similar because they are similarly visited by different parts/components. The clustering process in statistical based heuristic algorithms is supported by the following well known hierarchical algorithms [START_REF] Mosier | An experiment investigating the application of clustering procedures and similarity coefficients to the GT machine cell formation problem[END_REF], which represent the second free parameter adopted in the proposed experimental analysis (see Section 6): Complete Linkage Method (CLINK), Single Linkage Method (SLINK), Unweighted Pair-Group Method using Arithmetic Average (UPGMA), Weighted Pair-Group Method using Arithmetic Average (Average Linkage), and Unweighted Pair-Group Method using Centroid (UPGMC).

The results of a clustering algorithm can be effectively illustrated by a type of a tree diagram called a dendogram [START_REF] Sokal | An assignment model for the part families problem in group technology[END_REF]Sneath 1968, McAuley 1972). An example of a dendogram is reported in Figure 1.

Formation of part families

Given a generic solution for cells, a part may have to visit more than one group of machines before it is completed. Consequently, the generic part has to be assigned to the manufacturing cell with the minimum number of inter-group journeys. Another way of reducing the number of inter-group journeys is to duplicate machines, but it can be very expensive in terms of space and monetary costs.

Part families can be formed concurrently with the cell/group machine formation (CF steps illustrated above), or otherwise executed after the cells have been defined. In particular, the second of these hypotheses is adopted in this paper, and in particular a heuristic rule is applied to assign parts to manufacturing cells. The main steps in this heuristic rule are:

STEP 1. Given a configuration of the disjunctive groups of machines (i.e. manufacturing cells) • number of intra-cell movements: ICM ic ;

• number of tasks executed in the cell: NTask ic ;

• processing time of i in c: Time ic . STEP 2. Assign part i to cell c* where:

{ } * * 1,.., max ic ic c C c c ICM ICM = ≠ > (2)
If c* does not exist than GO to STEP 3. STEP 3. Assign part i to cell c' where:

{ } ' 1,.., ' max ic ic c C c c NTask NTask = ≠ > (3) 
If c' does not exist than GO to STEP 4. A result of the assignment of parts to the manufacturing cells is the so-called block-diagonal incidence matrix shown in Figure 4.

Clustering performance evaluation

Sarker (2001) presents, discusses, and compares the most notable measurements of grouping efficiency in CM. The measurements adopted in the following illustrated experimental analysis are based on the following definitions:

• Block. This is a submatrix of the machine-part matrix composed of rows representing a part family and columns representing the related machine cell.

• Void. This is a "zero" element appearing in a diagonal block (see Figure 4).

• Exceptional element. This is a "one" appearing in off-diagonal blocks (see Figure 4). 

Percentile based threshold group similarity value

This study introduces a percentile based similarity value to generate manufacturing cells (i.e.

disjunctive groups of machines) in a multi cellular production system. In particular, for a given specific combination of a similarity coefficient and a clustering rule, this value does not cut the dendogram according to a predefined value of similarity but according to a percentile of the number of aggregations that are generated by the clustering analysis, which can be seen in the dendogram.

The application of this new and simple criterion does not depend on the selection of a similarity coefficient and the adoption of the clustering rule, but on the number and nature of aggregations during the clustering process, as represented in the dendogram. Nevertheless, the result of applying this criterion depends on both the similarity coefficients and the clustering rules selected.

In other words, the combination of a similarity index and a clustering algorithm can produce aggregations associated with very low values of similarity e.g. nearly zero, otherwise the aggregations can be related to similarity values close to 1. Consequently, the choice of a threshold group similarity measurement strongly influences the number and formation of manufacturing cells.

Applying different combinations of indices and algorithms to a given instance of a CF problem, a common value of "cutting dendogram" (the so-called threshold value) can generate very different results in terms of CM configuration, and in particular, results are not feasible because they are based on too many or too few cells. In contrast, the introduction of a percentile-based threshold value of group similarity bypasses these risks and results in the generation of the expected and correct number of manufacturing cells as the result of a predefined number of aggregations between couples of under-construction clusters. An under construction cluster is a group of items potentially subject to new aggregations by the application of a clustering algorithm.

The basic idea of this criterion can be illustrated by an example. Figure 1 

{ } { } % _ % , % p p nodes p nodes T value simil N simil N       ∈ × ×       (12) 
where:

% p percentile of aggregations, expressed as a percentage;

N nodes number of nodes generated by the cluster algorithm;

{ }

simil N similarity value which corresponds to the node N (e.g. see last column in Table 2).

For example, for the dendogram in Figure 1 (related to 

°  ∈ × × =             = =   T value simil simil simil simil
Similarly, for a percentile value of 25° (i.e. % p =0.25): 

{ } { } { } { } ] [ 25 _ 0.
°  ∈ × × =             = = =   T value simil simil simil simil
[Insert about here Figure 1]

[Insert about here This section presents and discusses a numerical example relating to an instance (i.e. occurrence) of the CF problem introduced by [START_REF] Stanfel | Machine clustering for economic production[END_REF]. It is a 24x14 matrix (number of parts x number of machines). In particular, two different parameterizations of the problem are illustrated:

• Parameterization A. This refers to the application of the "Simple Matching" similarity index and the Centroid clustering rule.

• Parameterization B. This refers to the application of the "Sokal & Sneath 2" similarity index and the Centroid clustering rule.

Part-machine incidence matrix

Table 3 is the binary part-machine incidence matrix proposed by [START_REF] Stanfel | Machine clustering for economic production[END_REF] and forming the subject of this illustrated example.

[Insert about here Table 3]

Similarity coefficient matrix

Tables 4 and5 present the similarity coefficient matrices obtained by applying the "Simple

Matching" and "Sokal & Sneath 2" coefficients respectively (the similarity indices are defined in Table 1).

[Insert about here Table 4]

[Insert about here Table 5]

Clustering rule application and construction of dendograms

The application of Centroid clustering rule to the "Simple Matching" similarity coefficient generates the dendogram illustrated in Figure 2, while Figure 3 [Insert about here Figure 3] Table 6 and 7 present the list of nodes generated by the clustering analysis relating respectively to the dendograms in Figure 2 and Figure 3.

Threshold similarity value adoption and formation of cells

Assuming the dendograms obtained at the previous steps are cut and assuming a percentile-based threshold value of 75°, the configuration of the manufacturing cells is as follows.

• System parameterization A -Simple Matching similarity index & Centroid rule:

Cell 1: m4-m5-m6-m7

Cell 2: m8-m9

Cell 3: m1-m2-m3-m10

Cell 4: m11-m12

Cell 5: m13-m14.

• System parameterization B -Sokal and Sneath 2 similarity index & Centroid rule:

Cell 1: m8-m9-m10

Cell 2: m11-m12

Cell 3: m4-m5-m6-m7

Cell 4: m1-m2-m3

Cell 5: m13-m14. The introduction of a set of hypotheses on manufacturing routings (and in particular on sequence of visited machines) and on processing times is necessary so that the previously introduced heuristic parts assignment procedure can be applied. Consequently, the following hypotheses have been introduced:

Parts assignment to manufacturing cells

1. If a ik =1: t ik =1, i.e. a ik =t ik . The processing time defined for the generic part which visits machine k is set to 1.

2. The routing sequence of machines visited by part i is the sequence of machines reported in the binary incidence matrix, where a ik =1.

The assignments of parts to the manufacturing cells obtained are:

• System parameterization A Part family 1: p3-p4-p21-p24
Part family 2: p1-p2-p17-p19-p20-p23

Part family 3: p6-p7-p8-p18

Part family 4: p5-p9-p10-p11-p12-p14-p15-p16-p22

Part family 5: p13

• System parameterization B.

Part family 1: p1-p2-p17-p19-p20-p23

Part family 2: p5-p9-p10-p11-p12-p14-p15-p16-p22

Part family 3: p3-p4-p21-p24

Part family 4: p6-p7-p8-p18

Part family 5: p13.

In particular, Figure 4 presents the block-diagonal incidence matrix associated with the "parameterization A" system/problem and to a threshold group similarity value of 75°, while Figure 5 refers to the "parameterization B".

[Insert about here Figure 4] 

Performance evaluation

The results obtained for the two system/problem parameterizations using the clustering analysis and parts assignment, in accordance with the previously introduced performance measurements, are reported in Table 8.

[Insert about here Table 8]

Experimental analysis

In order to identify values of similarity capable of effectively supporting the clustering activity in CM when using the previously discussed and illustrated hierarchical decision process, an experimental analysis needs to be carried out on different similarity indices (FACTOR 1, i.e. free parameter/degree of freedom n°1) combined with different clustering rules (FACTOR 2, i.e. free parameter n°2) and combined with different threshold levels of similarity (FACTOR 3, i.e. free parameter n°3).

The experimental analysis has been conducted on 22 literature instances which have been selected from several literature studies (see Table 9 for citations and references). Selected instances refer to binary incidence matrices of different dimensions (i.e. number of elements), different numbers of columns and rows, and different values of "problem density -PD". In order to characterize each matrix correctly, the set of instances has been classified as follows:

1. Incidence matrix dimension, i.e. the number of available cells ("Matrix dim." in Table 9). that can be used to support a generic and reliable multi-cellular system configuration. Three different percentile values were considered: 25° (i.e. 0.25), 40° (i.e. 0.4) and 75° (i.e. 0.75).

The rule adopted for part assignment is the heuristic illustrated in Section 2.4. This is only one of a large number of rules for the part assignment available in the literature. Nevertheless, this study deals with the determination of an effective threshold cut level of similarity for cell determination (i.e. machines grouping): as a consequence the authors choose not to introduce another free parameter (FACTOR) dealing with parts grouping into the decision problem.

The instances from the literature in Table 9 are binary incidence matrices that do not represent production data related to machine sequences and processing times, which are very useful in "product oriented" SCMs not studied in this paper. Consequently, the same hypotheses illustrated in the previously discussed numerical example (Section 4) have been adopted and related performances for each combination of system factors and for each instance have been evaluated.

The set of results evaluated and compared is composed of 3300 problem configurations ( 22incidence matrices, 10 similarity indices, 5 clustering algorithms, and 3 percentile based threshold group similarity values).

Tables 10 and11 [Insert about here Table 10, Table 11 and12 standardized effects in Figure 13). These results are also valid for different 2 k factorial campaigns of analysis and take all the performance evaluation introduced in Section 2 into consideration.

Conclusion and further research

As demonstrated by the large number of studies in the literature, the design and management of a cellular manufacturing system is a very critical and time-consuming issue. In particular, several industrial companies whose success is significantly based on flexibility are forced to confront the cell formation problem and the optimization of their multi-cellular production systems.

Among the numerous supporting decisions models and methods, those based on similarity (in particular "general purpose") and clustering analysis are very popular thanks to the widespread diffusion of commercially available statistical software and its flexibility and user friendliness to manufacturing system professionals and managers.

This study demonstrates how important identifying an effective similarity value for the group of machines is. This is named the threshold cut similarity level. So the authors have introduced a percentile-based cut similarity measurement and illustrate the main results obtained using an experimental statistical analysis conducted on a set of examples from the literature, such as part machine binary incidence matrix. The significance of the proposed cut threshold measurement clearly emerges.

The proposed method, the use of the percentile-based similarity threshold and the results obtained by the experimental analysis can be applied both to instances and applications where the number of cells is predefined in advanced and where this number is not known and is a free parameter of the decision process.

By the result obtained with the experimental analysis the similarity value which corresponds to the 75° percentile of the number of aggregations identified by the clustering analysis is the best performing value because it reduces the number of exceptional elements which are the main causes of intercellular movements and duplication of manufacturing resources. Nevertheless this result is not general but can represent an effective best practice in the design of a multi cellular manufacturing system. In conclusion, the proposed approach based on the group similarity evaluation and control is very effective and so useful to professionls in manufacturing and assembly systems. p3 p4 p21 p24 p1 p2 p17 p19 p20 p23 p6 p7 p8 p18 p5 p9 p10 p11 p12 p14 p15 p16 p22 p13 Cell

1 m4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m6 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m7 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cell 2 m8 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m9 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cell 3 m1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 m2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 m3 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 m10 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Cell 4 m11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 m12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 Cell 5 m13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 m14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1

Figure 4. Block-diagonal matrix. System parameterization A and similarity threshold value 75°

p1 p2 p17 p19 p20 p23 p5 p9 p10 p11 p12 p14 p15 p16 p22 p3 p4 p21 p24 p6 p7 p8 p18 p13 Cell 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 

1 m8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m9 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m10 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Cell 2 m11 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 m12 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 Cell 3 m4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 m5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 m6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 m7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 Cell 4 m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 m2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 m3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 Cell 5 m13 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 m14 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
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  Part family formation, i.e. assignment of parts to the previously identified cells.

  of similarity coefficients have been proposed in the literature (Yin and Yasuda 2006). In particular, Yin and Yasuda (2006) present a taxonomy for similarity indices and identify two distinct main groups of coefficients (problem oriented and general purpose) and list the most important contributions on CF in the literature since McAuley (1972) first defined the decision process for CM based on SCM.

  c=1,..,C. Then quantify the following measurements for each part i and each manufacturing cell c in accordance with the working cycle of part i:

STEP 4 .

 4 Assign part i to cell c'' where: c'' does not exist than assign part i randomly to set c=1,..,C.

  presents the result obtained from the combination of the Centroid algorithm and the "Sokal & Sneath 2" similarity coefficient.

  present the number of cells (CELLs) and the EE values obtained in the scenarios simulated and grouped for different threshold values. In particular, the statistics collected and compared are the mean values and the cumulated values (sum statistics) of the performance. In agreement with the definition introduced in equation (10), the RE values are similar to the EE values. When all 3300 simulated scenarios are considered, the cumulative number of cells (CELLs) passes from 16315 (%p = 0.25, i.e. the 25° percentile) to 13319 (%p = 0.40, i.e. the 40° percentile) and to = 0.75, i.e. the 75° percentile). The corresponding mean values are: 14.84, 12.11, and 5.82. Similarly the cumulated number of EE passes from 62040 (%p = 0.25) to 53350 (%p = 0.40) to 33066 (%p = 0.75). Corresponding mean values are: 56.40, 48.50, and 30.06. Passing from %p=0.25 to %p=0.75 means the number of exceptional elements is reduced by 46.7%.

]Figures 6

 6 Figures 6 to 10 present the main effects plots and the interaction plots for the previously cited and defined performance (Section 2): EE, IDG, ODG, RE, and τ. The behavior of IDG differs from ODG and EE, which are minimized by %p=0.75: IDG mean value is maximized for %p=0.40. EE and RE performance perform better in short matrix (i.e. "S") and "Lo" incidence matrix, ODG and IDG in large ("XL") and "H" instances. These figures demonstrate also that the main effects of the clustering algorithm (ALGO) adopted and the similarity coefficient (COEFF) are not very important. Figure11illustrates the trend of EE, RE, IDG, and ODG assuming different values of the threshold percentile-based cut similarity value (Percentile [%]) combined with the 22 examples from the literature subject to the analysis.
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 123 Figure1. Clustering analysis.Dendogram and nodes (1,..,29) 
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 56 Figure 5. Block-diagonal matrix. System parameterization B and similarity threshold value 75°
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 7 Figure 7. Main effects plot and Interaction plots for IDG.
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 8 Figure 8. Main effects plot and Interaction plots for ODG.
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 9 Figure 9. Main effects plot and Interaction plots for RE.
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 10 Figure 10. Main effects plot and Interaction plots for τ.

Figure 11 .

 11 Figure 11. Main effects plot and Interaction plots for ODG.

  Figure 12. 2 k factorial analysis, IDG and ODG -Pareto chart.
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 13 Figure 13. 2 k factorial analysis, EE normal plot.

  

Table 1 ] 2.3 Clustering analysis and cell formation
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  clusters). Table2reports the list and configuration of nodes as generated by the application of the clustering algorithm.The percentile based threshold value proposed by the authors is a range of group similarity measurements which cuts the dendogram at the percentile number of aggregations identified by the clustering rule, as follows:
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	presents a dendogram
	generated by the application of clustering analysis. m1,..,m24 are the identifications of machine
	items. The number within the diagram (1,..,29) identify the aggregations (called nodes) ordered in
	agreement with the similarity measurements. In particular, low numbers identify aggregations
	between under construction clusters characterized by a high level of similarity (very similar

Table 2

 2 

	) and a 75° percentile of aggregation

Table 2

 2 

	]
	4. Numerical example

Table 12

 12 summarizes mean and cumulative values obtained for the performance evaluated by assuming different values of percentile-based threshold cut values. In particular, the generic value is compared with the performance obtained for %p=0.25 (see Table12): in passing from %p=0.25 to %p=0.75, two new performance measures, ODG and RE, need to be minimized and are subject to a reduction of 45.4% and 50.8% respectively.
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 2 List and configuration of nodes generated by the clustering analysis
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Table 4

 4 

. "Simple Matching" similarity matrix,

[START_REF] Stanfel | Machine clustering for economic production[END_REF] 

instance

Table 5 .

 5 "Sokal & Sneath 2" similarity matrix of Stanfel (1985) example
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	Node Group 1 Group 2	Simil. Objects in group CENTROID rule &	CENTROID rule &	Node Group 1	Group 2	Simil. Objects in group
	1	m4	m5	0.958 Simple Matching 2	"Sokal e Sneath 2"	1	m8	m9	0.714	2
	2 Percentile [%] m8	m9	0.958	75	2	75	2	m11	m12	0.636	2
	3 Number of Cells -C m1	m2	0.917	5	2	5	3	m5	m7	0.6	2
	4 Problem Density -PD m6 m7	0.917	0.181	2	0.181	4	m13	m14	0.333	2
	5 Inside density -IDG m11 m12	0.917	0.75	2	0.773	5	Node 1	m10	0.272	3
	6 7 8 Exceptional Elements -EE m13 m14 m3 m10 Node 1 Node 4 F Outside density -ODG o 0.875 0.667 0.448 r REC	13 0.123 0.953	2 2 4	10 0.057 0.924	6 7 8	m4 m1 Node 7	Node 3 m3 m2	0.267 0.25 0.163	3 2 3
	9 10 Node 5 Node 6 Node 3 Node 7 Group efficacy -τ RE	0.438 0.281 P 0.213 e 0.918	4 4	0.163 0.929	9 10	Node 6 Node 2	m6 Node 4	0.066 -0.049	4 4
	11 Node 9 Node 2	0.182	6 e r		11	Node 8	Node 10	-0.187	7
	12 Node 11 Node 8	0.04	10		12 Node 11	Node 9	-0.182	11
	13 Node 12 Node 10	-0.048	14 R	13 Node 12	Node 5	-0.206	14
						e				
	Table 6. Stanfel (1985) instance. Clustering nodes obtained by applying Centroid & "Simple Matching" v i e	Table 7. Stanfel (1985) instance. Clustering nodes obtained by applying Centroid & "Sokal & Sneath 2"
							w				
							O n l				
							y				

Table 8 .

 8 Performance evaluation of numerical example

	Id.	Reference	K x I	Matrix dimen.	PD value PD label	num machines	num parts	matrix's dim	dim. Label
	1 King and Nakornchai (1982)	5x7	35	0,4	H	5	7	35	S
	2 Waghodekar and Sahu (1984)	5x7	35	0,571	H	5	7	35	S
	3 Seifoddini (1989)		5x18	90	0,511	H	5	18	90	S
	4 Kusiak and Chow (1987)	7x11	77	0,298	M	7	11	77	S
	5 Boctor (1991)		7x11	77	0,272	M	7	11	77	S
	6 Chandrasekharan and Rajagopalan (1986a)	8x20	160	0,55	H	8	20	160	M
	7 Chandrasekharan and Rajagopalan (1986b)	8x20	160	0,38	M	8	20	160	M
	8 Mosier and Taube (1985)	10x10	100	0,26	M	10	10	100	M
	9 Stanfel (1985)		14x24	336	0,181	Lo	14	24	336	M
	10 Srinivasan et al. (1990)	16x30	480	0,241	M	16	30	480	M
	11 King (1980)		16x43	688	0,183	Lo	16	43	688	L
	12 Kumar et al. (1986)	23x20	460	0,245	M	23	20	460	M
	13 Carrie (1973)		20x35	700	0,194	Lo	20	35	700	L
	14 Boe and Cheng (1991)	20x35	700	0,218	M	20	35	700	L
	15 Chandrasekharan and Rajagopalan (1989)	24x40 (1)	960	0,136	Lo	24	40	960	L
	16 Chandrasekharan and Rajagopalan (1989)	24x40 (2)	960	0,135	Lo	24	40	960	L
	17 Chandrasekharan and Rajagopalan (1989)	24x40 (3)	960	0,134	Lo	24	40	960	L
	18 Lee et al. (1997)		30x40	1200	0,12	Lo	30	40	1200	XL
	19 Kumar and Vannelli (1987)	30x41	1230	0,104	Lo	30	41	1230	XL
	20 Stanfel (1985)		30x50	1500	0,111	Lo	30	50	1500	XL
	21 Seifoddini and Tjahjana (1999)	50x22	1100	0,07	Lo	50	22	1100	XL
	22 Seifoddini and Tjahjana (1999)	68x21	1428	0,07	Lo	68	21	1428	XL

Table 9 .

 9 Experimental analysis, examples in the literature
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m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14