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Abstract

Consider the first time an Ornstein-Uhlenbeck process starting from zero crosses
a constant positive threshold. Assuming that the asymptotic mean is above the
threshold, conditions on the asymptotic variance relative to the distance between
the threshold and the asymptotic mean are given that ensures the finiteness of the
positive Laplace transforms.
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1 Introduction

The first-passage time of an Ornstein-Uhlenbeck process through a constant
threshold has been used in diverse areas of applied mathematics when it is
reasonable to assume an underlying stochastic process in a problem of interest,
which eventually will reach a certain level that leads to some observed event.
In biology, it has been used as a model for neuronal activity (see e.g. Bulsara
et al, 1996; Lansky, Sacerdote and Tomasetti, 1995; Ricciardi and Sacerdote,
1979; Shimokawa et al, 2000; Tuckwell, Wan and Rospars, 2002), in survival
analysis the model has been applied by Aalen and Gjessing (2004), and also
in mathematical finance it has found applications (see e.g. Jeanblanc and
Rutkowski, 2000; Leblanc and Scaillet, 1998; Linetsky, 2004). A large literature
has been dedicated to find the distribution of the first-passage time (for an
overview see Alili, Patie and Pedersen, 2005).

The theoretical results of the present paper have been used to define moment
estimators from observations of first-passage times in the context of neuronal
modeling (Ditlevsen and Lansky, 2005). The same techniques were applied
in (Ditlevsen and Lansky, 2006) for defining estimators in the Cox-Ingersoll-
Ross process (Cox, Ingersoll and Ross, 1985), which in the neuronal literature
is called the Feller process (Lansky, Sacerdote and Tomasetti, 1995) because
(Feller, 1951) proposed it as a model for population growth.

In this paper a formula for the conditional moments of any order of the
Ornstein-Uhlenbeck-process is first derived, and then used to define suitable
martingales. The martingales are then applied to give conditions on the pa-
rameter space so that the positive Laplace transform of the first-passage time
of the process through a constant threshold is finite.

2 The Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process:

dXt =−β(Xt − α)dt + σdWt ; X0 = x0 = 0, (1)

where W is a Wiener process, and θ = (α, β, σ) ∈ R×R+×R+. The generator
of (1) is the differential operator

Lθ =
1

2
σ2 d2

dx2
− β(x− α)

d

dx

2
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defined for all twice differentiable functions. An eigenfunction ϕ(x; θ) for Lθ

with associated eigenvalue λ(θ) is a twice continuously differentiable function
that fulfills

Lθϕ(x; θ) =−λ(θ)ϕ(x; θ) (2)

for all x ∈ R. For simplicity consider the centered process X̃t = Xt−α, which
has eigenfunctions

ϕk =

[ k
2
]∑

m=0

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

xk−2m

for k ∈ N, where [a] denotes the largest integer such that [a] ≤ a. The as-
sociated eigenvalues are λk = kβ. This can easily be checked by substitution
into (2). In Karlin and Taylor (1981, p.333) the eigenfunctions are given for

σ = β = 1. Note that ϕk(x) = (σ2/4β)k/2Hk(x
√

β/σ2), where Hk are Hermite

polynomials (Lebedev, 1972). For this model we have for t > s that

E
[
ϕk(X̃t; θ)|X̃s

]
= e−kβ(t−s)ϕk(X̃s; θ), (3)

(Kessler and Sørensen, 1999), where E[·] denotes expectation under the law
of (1). This yields the formula for the conditional moments

E[X̃k
t | X̃s] = e−kβ(t−s)

[ k
2
]∑

m=0

k!

(k − 2m)!m!

(
σ2

4β

)m

(e2β(t−s) − 1)mX̃k−2m
s . (4)

In effect, (4) is obviously true for k = 1 and 2. Assume it is true for k − 2m
for all 1 ≤ m ≤ [k

2
]. First note that

E
[
ϕk(X̃t; θ)|X̃s

]
=

[ k
2
]∑

m=0

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

E
[
X̃k−2m

t |X̃s

]

= E
[
X̃k

t |X̃s

]
+

[ k
2
]∑

m=1

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

E
[
X̃k−2m

t |X̃s

]
so that (3) yields

E
[
X̃k

t |X̃s

]
= e−kβ(t−s)

[ k
2
]∑

m=0

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

X̃k−2m
s

−
[ k
2
]∑

m=1

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

E
[
X̃k−2m

t |X̃s

]
.

3
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The last summand on the right hand side can by the induction assumption be
written

−
[ k
2
]∑

m=1

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

e−(k−2m)β(t−s) ×

[ k−2m
2

]∑
j=0

(k − 2m)!

(k − 2(m + j))!j!

(
σ2

4β

)j

(e2β(t−s) − 1)jX̃k−2(m+j)
s

=−
[ k
2
]∑

n=1

n∑
m=1

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

e−(k−2m)β(t−s) ×

(k − 2m)!

(k − 2n)!(n−m)!

(
σ2

4β

)(n−m)

(e2β(t−s) − 1)(n−m)X̃k−2n
s

=−
[ k
2
]∑

n=1

k!

(k − 2n)!n!

(
σ2

4β

)n

e−kβ(t−s)X̃k−2n
s ×

n∑
m=1

(
n

m

)
(−e2β(t−s))m(e2β(t−s) − 1)(n−m)

=−
[ k
2
]∑

n=1

k!

(k − 2n)!n!

(
σ2

4β

)n

e−kβ(t−s)X̃k−2n
s

(
(−1)n − (e2β(t−s) − 1)n

)

where we have used the identities
∑N

m=1

∑N−m
j=0 am,j =

∑N
n=1

∑n
m=1 am,n−m

through the change of variable n = m + j, and (a + b)n =
∑n

i=0

(
n
i

)
a(n−i)bi =

an +
∑n

i=1

(
n
i

)
a(n−i)bi, where a = (e2β(t−s) − 1) and b = −e2β(t−s). This yields

E
[
X̃k

t |X̃s

]
= e−kβ(t−s)

[ k
2
]∑

m=0

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

X̃k−2m
s

−
[ k
2
]∑

n=1

k!

(k − 2n)!n!

(
σ2

4β

)n

e−kβ(t−s)
(
(−1)n− (e2β(t−s)− 1)n

)
X̃k−2n

s

so that the coefficient to X̃k−2i
s for 1 ≤ i ≤ [k

2
] is

e−kβ(t−s) k!

(k − 2i)!i!

(
σ2

4β

)i (
(−1)i −

(
(−1)i − (e2β(t−s) − 1)i

))

= e−kβ(t−s) k!

(k − 2i)!i!

(
σ2

4β

)i

(e2β(t−s) − 1)i

which is also the case for i = 0. We have finally obtained (4). 2

4
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3 The first-passage time through a constant threshold

Define the stopping time

T = inf{t > 0; Xt ≥ S > 0}, (5)

which is the first-passage time of Xt through a constant threshold. The Laplace
transform of T is given by the representation

E
[
eλβT

]
=

exp{α2β
2σ2 }Dλ

(
α
√

2β/σ
)

exp{ (α−S)2β
2σ2 }Dλ

(
(α− S)

√
2β/σ

) =
Hλ

(
α
√

β/σ
)

Hλ

(
(α− S)

√
β/σ

) (6)

for λ < 0, where Dλ(·) and Hλ(·) are parabolic cylinder and Hermite func-
tions, respectively, see Lebedev (1972, p.98) and Borodin and Salminen (2002,
p.542). The result can be extended to λ > 0 with certain restrictions on the

parameter space to ensure that E
[
eλβT

]
< ∞. A decreasing sequence of sub-

sets of the parameter space is found by defining suitable martingales using the
conditional moments of (1), which provides conditions on the parameters for
which (6) is finite. The expression becomes particularly simple when k ∈ N,
because then (6) reduces to a fraction of Hermite polynomials.

4 Main result

Theorem 1 Let Xt and T be given by (1) and (5), respectively, and let

(α, β, σ) = θ ∈ Θ(k) = {θ |α > S,
√

σ2/β < (α − S)/λ(k)} for k ∈ N, where

λ(k) is the largest root of the k’th Hermite polynomial. Then

E
[
eλβT

]
=

Hλ

(
α
√

β/σ
)

Hλ

(
(α− S)

√
β/σ

)
for λ ≤ k, where Hλ is the Hermite function.

Note first that this is intuitively true, since for λ a positive integer, (6) is
well-defined when θ fulfills the condition given in Theorem 1.

Proof: Define the processes

M
(k)
t =

[ k
2
]∑

m=0

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

(1− e−2βt)mekβtX̃k−2m
t = hk

t Hk

(
X̃te

βt

2ht

)

5
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where Hk(·) are the Hermite polynomials and ht =
√

σ2(e2βt − 1)/4β. The

M
(k)
t are martingales with respect to the natural filtration Ft = σ(Xs; 0 ≤

s ≤ t), the sigma-algebra generated by Xs for 0 ≤ s ≤ t. First observe that

M
(k)
t have finite expectation for all k since they are polynomial functions of a

Gaussian variable, which possesses moments of any order. Moreover, for s < t
we have

E[M
(k)
t |Fs] = E[M

(k)
t |X̃s]

=

[ k
2
]∑

m=0

(−1)mk!

(k − 2m)!m!

(
σ2

4β

)m

(1− e−2βt)mekβtE[X̃k−2m
t |X̃s]

=

[ k
2
]∑

m=0

[ k−2m
2

]∑
j=0

(−1)mk!

(k−2(m+j))!m!j!

(
σ2

4β

)(m+j)

(1−e−2βt)mekβse2mβ(t−s)(e2β(t−s)−1)jX̃k−2(m+j)
s

=

[ k
2
]∑

n=0

n∑
m=0

(−1)mk!

(k−2n)!m!(n−m)!

(
σ2

4β

)n

(e2β(t−s)−e−2βs)mekβs(e2β(t−s)−1)n−mX̃k−2n
s

=

[ k
2
]∑

n=0

k!

(k−2n)!n!

(
σ2

4β

)n

ekβsX̃k−2n
s

n∑
m=0

(
n

m

)
(e−2βs−e2β(t−s))m(e2β(t−s)−1)n−m

=

[ k
2
]∑

n=0

(−1)nk!

(k−2n)!n!

(
σ2

4β

)n

ekβsX̃k−2n
s (1− e−2βs)n

= M (k)
s .

Therefore also M
(k)
T∧t, the processes stopped at T , are martingales (Williams,

1991, p.99), where T is given by (5). This yields

αk = (−1)kE[M
(k)
0 ] = (−1)kE[M

(k)
T∧t] = E

[
hk

T∧tHk

(
(α−XT∧t)e

β(T∧t)

2hT∧t

)]
. (7)

Define λ(k) to be the largest positive root of the kth Hermite polynomial. Then
λ(1) < λ(2) < · · · < λ(k) < λ(k+1) < · · · (Szegö, 1975, p.46). The first four are

λ(1) = 0, λ(2) = 1/
√

2, λ(3) =
√

3/2 and λ(4) =
√

(3 +
√

6)/2. Moreover, Hk(x)

is positive and monotonically increasing for x > λ(k). Define the decreasing
sequence of subsets of the parameter space

Θ(k) = {θ |α > S,
√

σ2/β < (α− S)/λ(k)}

where division by 0 is defined to be infinity. The first inequality in the definition
of the subsets Θ(k) defines the supra-threshold regime, where the asymptotic
mean α of Xt is larger than the threshold S. The second inequality restricts

the asymptotic standard deviation
√

σ2/2β of Xt to be smaller than a factor

6
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proportional to the distance between the asymptotic mean and the threshold,
and inversely proportional to the largest positive root of the kth Hermite
polynomial. Thus, when k increases, the variance has to be smaller for the
exponential moments to be finite, which is a natural requirement. Assume
θ ∈ Θ(k), then

(α−XT∧t)e
β(T∧t)

2hT∧t

=
(α−XT∧t)e

β(T∧t)√
σ2/β

√
(e2β(T∧t) − 1)

>
(α− S)√

σ2/β
> λ(k)

for all t, so that if θ ∈ Θ(k), then (7) yields

αk≥E

[
hk

T∧tHk

(
(α− S)eβ(T∧t)

2hT∧t

)]

=

[ k
2
]∑

m=0

gkm(θ)E
[
ekβ(T∧t)(1− e−2β(T∧t))m

]

=

[ k
2
]∑

m=0

gkm(θ)
m∑

i=0

(
m

i

)
(−1)iE

[
e(k−2i)β(T∧t)

]

=

[ k
2
]∑

m=0

gkm(θ)E
[
ekβ(T∧t)

]
+

[ k
2
]∑

m=1

gkm(θ)
m∑

i=1

(
m

i

)
(−1)iE

[
e(k−2i)β(T∧t)

]

where gkm(θ) =
(−1)mk!

(k − 2m)! m!

(
σ2

4β

)m

(α−S)k−2m. The coefficient to E
[
ekβ(T∧t)

]

is
∑[ k

2
]

m=0 gkm(θ) =

(
σ2

4β

) k
2

Hk

(
(α− S)

√
β

σ

)
, which is positive when θ ∈ Θ(k).

We can therefore rearrange

αk −∑[ k
2
]

m=1 gkm(θ)
∑m

i=1

(
m
i

)
(−1)iE

[
e(k−2i)β(T∧t)

]
∑[ k

2
]

m=0 gkm(θ)
≥E

[
ekβ(T∧t)

]
(8)

This is valid for all k ∈ N. For k = 1 we obtain α/(α − S) ≥ E
[
eβ(T∧t)

]
for

α > S, and when k = 2 then (8) yields (α2 − σ2/2β) / ((α− S)2 − σ2/2β) ≥
E
[
e2β(T∧t)

]
for α > S and σ2/2β < (α − S)2. Therefore, by induction and

because Θ(k) ⊂ Θ(k−1), the left hand side will be finite, say less than some
constant Kk depending on k. Taking limits on both sides we obtain

Kk≥ lim
t→∞

E
[
ekβ(T∧t)

]
= E

[
ekβT

]

7
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by monotone convergence. We have thus obtained conditions on the parameter
space for which E[ekβT ] < ∞, so that (6) can be applied. 2

Note that substituting E
[
e(k−2i)β(T∧t)

]
in (8) with expression (6) for λ = k−2i

we obtain that in the limit when t → ∞, (8) is an equality, using the same
techniques as in the proof of (4). This implies that when θ ∈ Θ(k), then

E[M
(k)
0 ] = (−α)k = E[M

(k)
T ].

In Table 1 the first four moments are given with indication of the subset of
the parameter space in which the expressions are valid.
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k λ(k) E
[
ekβT

]
1 0

α

(α− S)

2
1√
2

α2 − σ2

2β

(α− S)2 − σ2

2β

3
√

3
2

α

(α− S)

 α2 − 3σ2

2β

(α− S)2 − 3σ2

2β



4

√
3 +

√
6

2

(
α2 − 3σ2

2β

)2

− 3σ4

2β2(
(α− S)2 − 3σ2

2β

)2

− 3σ4

2β2

Table 1
The first 4 moments of eβT , where T is the first-passage time of an Ornstein-
Uhlenbeck process with parameters θ = (α, β, σ) through a constant threshold S,
which is valid for θ ∈ Θ(k) = {θ |α > S,

√
σ2/β < (α− S)/λ(k)}.
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