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Consider the first time an Ornstein-Uhlenbeck process starting from zero crosses a constant positive threshold. Assuming that the asymptotic mean is above the threshold, conditions on the asymptotic variance relative to the distance between the threshold and the asymptotic mean are given that ensures the finiteness of the positive Laplace transforms.

A c c e p t e d m a n u s c r i p t 1 Introduction

The first-passage time of an Ornstein-Uhlenbeck process through a constant threshold has been used in diverse areas of applied mathematics when it is reasonable to assume an underlying stochastic process in a problem of interest, which eventually will reach a certain level that leads to some observed event.

In biology, it has been used as a model for neuronal activity (see e.g. [START_REF] Bulsara | Cooperative behavior in periodically driven noisy integrate-and-fire models of neuronal dynamics[END_REF][START_REF] Lansky | On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity[END_REF][START_REF] Ricciardi | The Ornstein-Uhlenbeck process as a model of neuronal activity[END_REF][START_REF] Shimokawa | A firstpassage-time analysis of the periodically forced noisy leaky integrate-andfire model[END_REF]Tuckwell, Wan and Rospars, 2002), in survival analysis the model has been applied by [START_REF] Aalen | Survival models based on the Ornstein-Uhlenbeck process[END_REF], and also in mathematical finance it has found applications (see e.g. [START_REF] Jeanblanc | Modelling of default risk: An overview[END_REF][START_REF] Leblanc | Path dependent options on yields in the affine term structure[END_REF][START_REF] Linetsky | Computing hitting time densities for CIR and OU diffusions: applications to mean-reverting models[END_REF]. A large literature has been dedicated to find the distribution of the first-passage time (for an overview see [START_REF] Alili | Representations of the first hitting time density of an Ornstein-Uhlenbeck process[END_REF].

The theoretical results of the present paper have been used to define moment estimators from observations of first-passage times in the context of neuronal modeling [START_REF] Ditlevsen | Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model[END_REF]. The same techniques were applied in [START_REF] Ditlevsen | Estimation of the input parameters in the Feller neuronal model[END_REF] for defining estimators in the Cox-Ingersoll-Ross process [START_REF] Cox | A theory of the term structure of interest rates[END_REF], which in the neuronal literature is called the Feller process [START_REF] Lansky | On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity[END_REF] because [START_REF] Feller | Diffusion processes in genetics[END_REF] proposed it as a model for population growth.

In this paper a formula for the conditional moments of any order of the Ornstein-Uhlenbeck-process is first derived, and then used to define suitable martingales. The martingales are then applied to give conditions on the parameter space so that the positive Laplace transform of the first-passage time of the process through a constant threshold is finite.

The Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process:

dX t = -β(X t -α)dt + σdW t ; X 0 = x 0 = 0, ( 1 
)
where W is a Wiener process, and θ = (α, β, σ) ∈ R × R + × R + . The generator of (1) is the differential operator

L θ = 1 2 σ 2 d 2 dx 2 -β(x -α) d dx
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defined for all twice differentiable functions. An eigenfunction ϕ(x; θ) for L θ with associated eigenvalue λ(θ) is a twice continuously differentiable function that fulfills

L θ ϕ(x; θ) = -λ(θ)ϕ(x; θ) (2)
for all x ∈ R. For simplicity consider the centered process Xt = X t -α, which has eigenfunctions

ϕ k = [ k 2 ] m=0 (-1) m k! (k -2m)!m! σ 2 4β m x k-2m
for k ∈ N, where [a] denotes the largest integer such that [a] ≤ a. The associated eigenvalues are λ k = kβ. This can easily be checked by substitution into (2). In Karlin and Taylor (1981, p.333) the eigenfunctions are given for

σ = β = 1. Note that ϕ k (x) = (σ 2 /4β) k/2 H k (x β/σ 2 )
, where H k are Hermite polynomials [START_REF] Lebedev | Special functions and their applications[END_REF]. For this model we have for t > s that [START_REF] Kessler | Estimating equations based on eigenfunctions for a discretely observed diffusion process[END_REF], where E[•] denotes expectation under the law of (1). This yields the formula for the conditional moments

E ϕ k ( Xt ; θ)| Xs = e -kβ(t-s) ϕ k ( Xs ; θ), (3) 
E[ Xk t | Xs ] = e -kβ(t-s) [ k 2 ] m=0 k! (k -2m)!m! σ 2 4β m (e 2β(t-s) -1) m Xk-2m s . (4)
In effect, (4) is obviously true for k = 1 and 2. Assume it is true for k

-2m for all 1 ≤ m ≤ [ k 2 ]. First note that E ϕ k ( Xt ; θ)| Xs = [ k 2 ] m=0 (-1) m k! (k -2m)!m! σ 2 4β m E Xk-2m t | Xs = E Xk t | Xs + [ k 2 ] m=1 (-1) m k! (k -2m)!m! σ 2 4β m E Xk-2m t | Xs so that (3) yields E Xk t | Xs = e -kβ(t-s) [ k 2 ] m=0 (-1) m k! (k -2m)!m! σ 2 4β m Xk-2m s - [ k 2 ] m=1 (-1) m k! (k -2m)!m! σ 2 4β m E Xk-2m t | Xs .
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The last summand on the right hand side can by the induction assumption be written

- [ k 2 ] m=1 (-1) m k! (k -2m)!m! σ 2 4β m e -(k-2m)β(t-s) × [ k-2m 2 ] j=0 (k -2m)! (k -2(m + j))!j! σ 2 4β j (e 2β(t-s) -1) j Xk-2(m+j) s = - [ k 2 ] n=1 n m=1 (-1) m k! (k -2m)!m! σ 2 4β m e -(k-2m)β(t-s) × (k -2m)! (k -2n)!(n -m)! σ 2 4β (n-m) (e 2β(t-s) -1) (n-m) Xk-2n s = - [ k 2 ] n=1 k! (k -2n)!n! σ 2 4β n e -kβ(t-s) Xk-2n s × n m=1 n m (-e 2β(t-s) ) m (e 2β(t-s) -1) (n-m) = - [ k 2 ] n=1 k! (k -2n)!n! σ 2 4β n e -kβ(t-s) Xk-2n s (-1) n -(e 2β(t-s) -1) n
where we have used the identities N 

n = n i=0 n i a (n-i) b i = a n + n i=1 n i a (n-i) b i
, where a = (e 2β(t-s) -1) and b = -e 2β(t-s) . This yields

E Xk t | Xs = e -kβ(t-s) [ k 2 ] m=0 (-1) m k! (k -2m)!m! σ 2 4β m Xk-2m s - [ k 2 ] n=1 k! (k -2n)!n! σ 2 4β n e -kβ(t-s) (-1) n -(e 2β(t-s) -1) n Xk-2n s so that the coefficient to Xk-2i s for 1 ≤ i ≤ [ k 2 ] is e -kβ(t-s) k! (k -2i)!i! σ 2 4β i (-1) i -(-1) i -(e 2β(t-s) -1) i = e -kβ(t-s) k! (k -2i)!i! σ 2 4β i (e 2β(t-s) -1) i
which is also the case for i = 0. We have finally obtained (4). 

T = inf{t > 0; X t ≥ S > 0}, (5) 
which is the first-passage time of X t through a constant threshold. The Laplace transform of T is given by the representation

E e λβT = exp{ α 2 β 2σ 2 }D λ α √ 2β/σ exp{ (α-S) 2 β 2σ 2 }D λ (α -S) √ 2β/σ = H λ α √ β/σ H λ (α -S) √ β/σ (6) 
for λ < 0, where D λ (•) and H λ (•) are parabolic cylinder and Hermite functions, respectively, see Lebedev (1972, p.98) and Borodin and Salminen (2002, p.542). The result can be extended to λ > 0 with certain restrictions on the parameter space to ensure that E e λβT < ∞. A decreasing sequence of subsets of the parameter space is found by defining suitable martingales using the conditional moments of ( 1), which provides conditions on the parameters for which ( 6) is finite. The expression becomes particularly simple when k ∈ N, because then (6) reduces to a fraction of Hermite polynomials.

Main result

Theorem 1 Let X t and T be given by ( 1) and ( 5), respectively, and let k) is the largest root of the k'th Hermite polynomial. Then

(α, β, σ) = θ ∈ Θ (k) = {θ | α > S, σ 2 /β < (α -S)/λ (k) } for k ∈ N, where λ (
E e λβT = H λ α √ β/σ H λ (α -S) √ β/σ
for λ ≤ k, where H λ is the Hermite function.

Note first that this is intuitively true, since for λ a positive integer, ( 6) is well-defined when θ fulfills the condition given in Theorem 1.

Proof: Define the processes are martingales with respect to the natural filtration F t = σ(X s ; 0 ≤ s ≤ t), the sigma-algebra generated by X s for 0 ≤ s ≤ t. First observe that M (k) t have finite expectation for all k since they are polynomial functions of a Gaussian variable, which possesses moments of any order. Moreover, for s < t we have

M (k) t = [ k 2 ] m=0 (-1) m k! (k -2m)!m! σ 2 4β m (1 -e -2βt ) m e kβt Xk-2m t = h k t H k Xt e βt
E[M (k) t |F s ] = E[M (k) t | Xs ] = [ k 2 ] m=0 (-1) m k! (k -2m)!m! σ 2 4β m (1 -e -2βt ) m e kβt E[ Xk-2m t | Xs ] = [ k 2 ] m=0 [ k-2m 2 ] j=0 (-1) m k! (k-2(m+j))!m!j! σ 2 4β (m+j) (1-e -2βt
) m e kβs e 2mβ(t-s) (e 2β(t-s) -1) j Xk-2(m+j)

s = [ k 2 ] n=0 n m=0 (-1) m k! (k-2n)!m!(n-m)! σ 2 4β n (e 2β(t-s) -e -2βs ) m e kβs (e 2β(t-s) -1) n-m Xk-2n s = [ k 2 ] n=0 k! (k-2n)!n! σ 2 4β n e kβs Xk-2n s n m=0 n m (e -2βs -e 2β(t-s) ) m (e 2β(t-s) -1) n-m = [ k 2 ] n=0 (-1) n k! (k-2n)!n! σ 2 4β n e kβs Xk-2n s (1 -e -2βs ) n = M (k) s .
Therefore also

M (k)
T ∧t , the processes stopped at T , are martingales (Williams, 1991, p.99), where T is given by (5). This yields

α k = (-1) k E[M (k) 0 ] = (-1) k E[M (k) T ∧t ] = E h k T ∧t H k (α-X T ∧t )e β(T ∧t) 2h T ∧t . (7) 
Define λ (k) to be the largest positive root of the kth Hermite polynomial. Then Szegö, 1975, p.46). The first four are

λ (1) < λ (2) < • • • < λ (k) < λ (k+1) < • • • (
λ (1) = 0, λ (2) = 1/ √ 2, λ (3) = 3/2 and λ (4) = (3 + √ 6)/2. Moreover, H k (x)
is positive and monotonically increasing for x > λ (k) . Define the decreasing sequence of subsets of the parameter space

Θ (k) = {θ | α > S, σ 2 /β < (α -S)/λ (k) }
where division by 0 is defined to be infinity. The first inequality in the definition of the subsets Θ (k) defines the supra-threshold regime, where the asymptotic mean α of X t is larger than the threshold S. The second inequality restricts the asymptotic standard deviation σ 2 /2β of X t to be smaller than a factor proportional to the distance between the asymptotic mean and the threshold, and inversely proportional to the largest positive root of the kth Hermite polynomial. Thus, when k increases, the variance has to be smaller for the exponential moments to be finite, which is a natural requirement. Assume θ ∈ Θ (k) , then

(α -X T ∧t )e β(T ∧t) 2h T ∧t = (α -X T ∧t )e β(T ∧t)
σ 2 /β (e 2β(T ∧t) -1)

> (α -S) σ 2 /β > λ (k)
for all t, so that if θ ∈ Θ (k) , then (7) yields

α k ≥ E h k T ∧t H k (α -S)e β(T ∧t) 2h T ∧t = [ k 2 ] m=0 g km (θ)E e kβ(T ∧t) (1 -e -2β(T ∧t) ) m = [ k 2 ] m=0 g km (θ) m i=0 m i (-1) i E e (k-2i)β(T ∧t) = [ k 2 ] m=0 g km (θ)E e kβ(T ∧t) + [ k 2 ] m=1 g km (θ) m i=1 m i (-1) i E e (k-2i)β(T ∧t)
where

g km (θ) = (-1) m k! (k -2m)! m! σ 2 4β m (α-S) k-2m . The coefficient to E e kβ(T ∧t) is [ k 2 ] m=0 g km (θ) = σ 2 4β k 2 H k (α -S) √ β σ
, which is positive when θ ∈ Θ (k) .

We can therefore rearrange

α k - [ k 2 ] m=1 g km (θ) m i=1 m i (-1) i E e (k-2i)β(T ∧t) [ k 2 ] m=0 g km (θ) ≥ E e kβ(T ∧t) (8) 
This is valid for all k ∈ N. For k = 1 we obtain α/(α -S) ≥ E e β(T ∧t) for α > S, and when k = 2 then (8 ∧t) for α > S and σ 2 /2β < (α -S) 2 . Therefore, by induction and because Θ (k) ⊂ Θ (k-1) , the left hand side will be finite, say less than some constant K k depending on k. Taking limits on both sides we obtain We have thus obtained conditions on the parameter space for which E[e kβT ] < ∞, so that (6) can be applied. 2

) yields (α 2 -σ 2 /2β) / ((α -S) 2 -σ 2 /2β) ≥ E e 2β(T
K k ≥ lim t→∞ E e kβ(T ∧t) = E e kβT
Note that substituting E e (k-2i)β(T ∧t) in ( 8) with expression (6) for λ = k -2i we obtain that in the limit when t → ∞, (8) is an equality, using the same techniques as in the proof of (4). This implies that when θ ∈ Θ (k) , then

E[M (k) 0 ] = (-α) k = E[M (k) T ].
In Table 1 the first four moments are given with indication of the subset of the parameter space in which the expressions are valid. 
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