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A Class of Controlled Bisexual Branching Processes

with Mating Depending on the Number of

Progenitor Couples

Manuel Molina∗, Inés M. del Puerto, Alfonso Ramos.

Department of Mathematics. University of Extremadura. 06071 Badajoz, Spain

Abstract

We introduce a class of bisexual branching processes where a control is achieved

on the number of couples and the mating depends on the number of progenitor

couples. We establish several probabilistic properties and some results about its

extinction probability.

Keywords: branching processes; bisexual processes; controlled processes.

1. Introduction

In order to describe the probabilistic evolution of two-sex populations, several

classes of bisexual processes have been investigated, see e.g. Alsmeyer and Rösler

(1996), Bruss (1984), Daley (1968), González et al. (2000, 2001), Molina et al. (2002)

or Xing and Wang (2005). We refer the reader to Hull (2003) or Haccou et al. (2005)
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for surveys about these processes. However, the range of bisexual models investigated

is not large enough in order to get an optimum modelling in some populations. By

environmental, social, or other factors, it could be advisable to carry out a control

on the number of couples (female-male mating units) in the population. Furthermore

it is reasonable to admit that, in different generations, the same number of females

and males gives rise to different number of couples. In an attempt to contribute

some solution to these situations, in this work we introduce the class of controlled

bisexual branching processes with mating depending on the number of progenitor

couples and we provide some theoretical results about it. In Section 2, we give its

mathematical formal description and its intuitive interpretation. Section 3 is devoted

to determining several probabilistic properties about the model and Section 4 deals

with its extinction probability.

2. The model

We introduce the controlled bisexual process with mating depending on the number

of progenitor couples as a two-sex model {(Fn,Mn)}n≥1 initiated with Z∗0 = N∗ ≥ 1

couples and defined, for n ∈ Z+, in the recursive form:

(Fn+1,Mn+1) =
Z∗n∑

i=1

(fn,i, mn,i), Zn+1 = LZ∗n(Fn+1,Mn+1), Z∗n+1 = φ(Zn+1) (1)

where {(fn,i,mn,i)}n≥0;i≥1 is a sequence of independent and identically distributed

non-negative, integer-valued random vectors; {Lk}k≥0 is a sequence of non-negative

real functions on R+ × R+, for each k fixed Lk is assumed to be monotonic non-

decreasing in each argument, integer-valued on the integers, Lk(x, 0) = Lk(0, y) =

0, x, y ∈ R+; and φ is a non-negative real function on R+ such that φ(0) = 0 and

φ(k) ∈ Z+
0 , k ∈ Z+

0 , with Z+ and R+ denoting the non-negative integer and real num-
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bers, respectively, and Z+
0 = Z+−{0}. Intuitively, (fn,i, mn,i) represents the number

of females and males descending from the ith couple of the nth generation. Hence

(Fn+1, Mn+1) is the number of females and males in the (n + 1)th generation, which

form Zn+1 couples through the mating function LZ∗n , where Z∗n = φ(Zn) denotes the

number of progenitor couples, namely, the couples that after the control governed

by φ really participated in the reproduction. We remark that, if φ(Zn) > Zn then

φ(Zn)−Zn couples are introduced in the population; if φ(Zn) < Zn then Zn−φ(Zn)

couples leave the population; and no control is made if φ(Zn) = Zn.

It is easy to verify that {(Zn−1, Fn,Mn)}n≥1, {Zn}n≥1 and {Z∗n}n≥0 are homo-

geneous Markov chains with 0 being an absorbing state for {Zn}n≥1 and {Z∗n}n≥0.

Moreover its theoretical interest, the bisexual model introduced in this work has

several practical implications in population dynamics. For example, in phenomena

concerning to inhabit or re-inhabit environments with animal species which have sex-

ual reproduction, the probable evolution of the numbers of females, males, originated

couples, and progenitor couples, may be described in term of this model. Indeed, the

motivation behind the process (1) is the interest in developing stochastic models to

describe probabilistically such situations.

Remark 2.1 The class of processes given in (1) includes some models investigated

in the bisexual branching process literature. Indeed, when φ(x) = x, x ≥ 0 one obtains

the class of bisexual models introduced in Molina et al. (2002). We remark that if φ is

non-decreasing then one has, for each k ∈ Z+, that L∗k = φ ◦Lk is a mating function.

In such a particular case, the model (1) may be considered under the perspective

of the class of processes studied in Molina et al. (2002) but losing the information

provided by the sequence {Zn}n≥1. In this context, the theory developed for this
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class of processes is completed with the results established in the present work for φ

superadditive. Furthermore, if φ is the identity and Lk(x, y) = L(x, y), x, y ∈ R+, k ∈

Z+ then the class (1) is reduced to the class of models given in Daley (1968).

We will consider the following working assumptions about the mating functions:

(A1): For each k ∈ Z+, Lk is a superadditive function, namely, for n ≥ 2

Lk

(
n∑

i=1

xi,

n∑

i=1

yi

)
≥

n∑

i=1

Lk(xi, yi), xi, yi ∈ R+, i = 1, . . . , n.

(A2): For each x, y ∈ R+ fixed, the sequence {Lk(x, y)}k≥0 is non-decreasing.

Assumption (A1) expresses the fact that
∑n

i=1 xi females and
∑n

i=1 yi males coex-

isting together will form a number of couples greater than or equal to the total number

of couples produced from n groups of xi females and yi males, i = 1, . . . , n, living

separately. Assumption (A2) represents the usual fact of many biological populations

in which the number of matings in certain generation depends on the number of pro-

genitor couples in the previous one in such a way that the mating is promoted if such

a number grows. Some sequences {Lk}k≥0 verifying (A1) and (A2) are, for instance:

(a) Lk(x, y) = xmin{k, y}; (b) Lk(x, y) = min{x, ky}; or (c) Lk(x, y) = min{x, y} if

k ≤ k0 or xmin{k, y} if k > k0 (restricted to non-negative integers) where k0 ∈ Z+
0

is fixed.

3. Probabilistic properties

Let us denote by f(s, t) = E[sf0,1tm0,1 ], hn(s, t) = E[sFntMn ] and g∗n(s) = E[sZ∗n ],

s, t ∈ [0, 1], n ∈ Z+
0 . Clearly g∗0(s) = sN∗

.

Proposition 3.1 For s, t ∈ [0, 1] and n ∈ Z+, hn+1(s, t) = g∗n (f(s, t)) .
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Proof. It is clear that h1(s, t) = g∗0(f(s, t)), s, t ∈ [0, 1]. For n ∈ Z+
0

hn+1(s, t) = E
[
E[sFn+1tMn+1 | Zn]

]
=

∞∑

k=0

E
[
s
Pφ(k)

i=1 fn,it
Pφ(k)

i=1 mn,i

]
P (Zn = k)

=
∞∑

k=0

(f(s, t))φ(k)
P (Zn = k)g∗n (f(s, t)) , s, t ∈ [0, 1].

Let us write µ = E[(f0,1,m0,1)], Σ = Cov[(f0,1,m0,1)], µn = E[(Fn,Mn)] and

Σn = Cov[(Fn,Mn)], n ∈ Z+
0 . As a consequence of Proposition 3.1, µn+1 = E[Z∗n]µ

and Σn+1 = E[Z∗n]Σ + V ar[Z∗n]µ′µ, n ∈ Z+, where µ′ denotes the transpose of µ.

Let Yk = Lk(f0,1, m0,1) and Y ∗
k = φ(Yk), k ∈ Z+ and let us denote by πk(s) =

E[sYk ], π∗k(s) = E[sY ∗k ], and gn+1(s) = E[sZn+1 ], s ∈ [0, 1], k, n ∈ Z+. Clearly

Y0 = Y ∗
0 = 0 hence π0(s) = π∗0(s) = 1.

Proposition 3.2 Assume (A1). For s ∈ [0, 1] and n ∈ Z+

(i) gn+1(s) ≤ E
[(

πZ∗n(s)
)Z∗n

]
.

(ii) If φ is non-increasing on (0,∞) then g∗n+1(s) ≥ E
[
(π∗Z∗n(s))Z∗n

]
.

(iii) If φ is superadditive then g∗n+1(s) ≤ E
[
(π∗Z∗n(s))Z∗n

]
.

Proof. (i) Using (A1) one has that g1(s) ≤ E[(πZ∗0 (s))Z∗0 ], s ∈ [0, 1] and

E[sZn+1 | Zn = k] = E

[
s

Lφ(k)

�Pφ(k)
i=1 fn,i,

Pφ(k)
i=1 mn,i

�]
≤ E

[
s
Pφ(k)

i=1 Lφ(k)(fn,i,mn,i)
]

= E
[
sYφ(k)

]φ(k)
=

(
πφ(k)(s)

)φ(k)
, k ∈ Z+, n ∈ Z+

0 .

(ii) Let φ(Z+) = {φ(k), k ∈ Z+}. By (A1) and the fact that φ is non-increasing on

(0,∞), one obtains for s ∈ [0, 1] and n ∈ Z+
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g∗n+1(s) =
∑

j∈φ(Z+)

E
[
sφ(Lj(

Pj
i=1 fn,i,

Pj
i=1 mn,i))

]
P (Z∗n = j)

≥
∑

j∈φ(Z+)

E
[
s
Pj

i=1 φ(Lj(fn,i,mn,i))
]
P (Z∗n = j)

=
∑

j∈φ(Z+)

(
π∗j (s)

)j
P (Z∗n = j) = E

[
(π∗Z∗n(s))Z∗n

]
.

(iii) It is proved in a similar way that (ii) using the fact that φ is non-decreasing.

By Proposition 3.2, E[Zn+1] ≥ E[Z∗nE[YZ∗n ]] and E[Z∗n+1] ≤ (or ≥)E[Z∗nE[Y ∗
Z∗n

]],

n ∈ Z+ if φ is non-increasing (or superadditive). Also, assuming that Yj ≥ Y1,

j ∈ Z+
0 , one deduces that πj(s) ≤ π1(s), s ∈ [0, 1], j ∈ Z+

0 and, again from Proposition

3.2, gn+1(s) ≤ g∗n(π1(s)) and g∗n+1(s) ≥ (or ≤)g∗n(π∗1(s)) if φ is non-increasing (or

superadditive), s ∈ [0, 1], n ∈ Z+. Thus, for n ∈ Z+, E[Zn+1] ≥ E[Z∗n]E[Y1] and

E[Z∗n+1] ≤ (or ≥)N∗(E[Y ∗
1 ])n+1ifφis non-increasing (or superadditive) (2)

Let Tn =
∑n

i=1 Zi, n ∈ Z+
0 and T ∗n =

∑n
i=0 Z∗i , n ∈ Z+ and let us denote by Gn(s, t) =

E[sTntZn ], G∗n(s, t) = E[sT∗n tZ
∗
n ] and Hn(s, t) = E[sTntZ

∗
n ] , s, t ∈ [0, 1], n ∈ Z+

0 .

Clearly G1(s, t) = g1(st) and G∗0(s, t) = (st)N∗
, s, t ∈ [0, 1].

Proposition 3.3 Assume (A1) and Yj ≥ Y1, j ∈ Z+
0 . For s, t ∈ [0, 1]

(i) Gn+1(s, t) ≤ Hn(s, π1(st)), n ∈ Z+
0 .

(ii) If φ is non-increasing on (0,∞) then G∗n+1(s, t) ≥ G∗n(s, π∗1(st)), n ∈ Z+.

(iii) If φ is superadditive then G∗n+1(s, t) ≤ G∗n(s, π∗1(st)), n ∈ Z+.

Proof. (i) First note that, from (A1) and the fact that Yj ≥ Y1, j ∈ Z+
0 , one

deduces that E[sZn+1 | Fn] ≤ (π1(s))Z∗n almost surely, where Fn = σ(Z1, . . . , Zn),

n ∈ Z+
0 , hence Gn+1(s, t) = E

[
sTnE[(st)Zn+1 | Fn]

] ≤ E
[
sTn(π1(st))Z∗n

]
.
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(ii) Again by (A1) and taking into account that φ is non-increasing, one derives

that E[sZ∗n+1 | F∗n] ≥ (π∗1(s))Z∗n almost surely, where F∗n = σ(Z∗0 , . . . , Z∗n), n ∈ Z+,

hence G∗n+1(s, t) = E
[
sT∗n E[(st)Z∗n+1 | F∗n]

]
≥ E

[
sT∗n π∗1(st)Z∗n

]
.

(iii) It is proved in a similar manner that (ii) by using that φ is superadditive.

By Proposition 3.3(i), E[Tn+1] ≥ E[Y1]
n∑

i=1

E[Z∗i ] + E[Z1], n ∈ Z+
0 and, using

Proposition 3.3(ii) and (2), assuming φ non-increasing, one deduces that

E[T ∗n+1] ≤ N∗(n + 2)ifα = 1or ≤ N∗(1− αn+2)(1− α)−1ifα 6= 1 (3)

where α = E[Y ∗
1 ]. The reverse is obtained in (3) when φ is superadditive. Notice that,

if N∗ = 1, then one has that Y1 = Z1 hence that π1(s) = g1(s), π∗1(s) = g∗1(s), s ∈

[0, 1], and α = E[φ(L1(f0,1,m0,1))].

We now study some stochastic monotony properties about {Zn}n≥1, {Z∗n}n≥0,

{Fn}n≥1 and {Mn}n≥1.

Proposition 3.4 Assume (A2) and φ non-increasing on (0,∞). Then for ki ∈

Z+, ji ∈ φ(Z+), i = 1, 2, with k1 < k2, j1 < j2, y ∈ R, and n ∈ Z+
0 , P (Zn+1 ≤ y |

Zn = k2) ≥ P (Zn+1 ≤ y | Zn = k1) and P (Z∗n+1 ≤ y | Z∗n = j2) ≥ P (Z∗n+1 ≤ y |

Z∗n = j1).

Proof. Using (A2), the fact that φ(k2) ≤ φ(k1), and that Lφ(k1) is monotonic non-

decreasing in each argument, one derives for y ∈ R and n ∈ Z+

P (Zn+1 > y | Zn = k2) ≤ P


Lφ(k1)




φ(k2)∑

i=1

fn,i,

φ(k2)∑

i=1

mn,i


 > y




≤ P


Lφ(k1)




φ(k1)∑

i=1

fn,i,

φ(k1)∑

i=1

mn,i


 > y


 = P (Zn+1 > y | Zn = k1).
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On the other hand, for y ∈ R and n ∈ Z+

P (Z∗n+1 > y | Z∗n = j2) ≤ P

(
φ

(
Lj1

(
j2∑

i=1

fn,i,

j2∑

i=1

mn,i

))
> y

)

≤ P

(
φ

(
Lj1

(
j1∑

i=1

fn,i,

j1∑

i=1

mn,i

))
> y

)
= P (Z∗n+1 > y | Z∗n = j1).

It is easy to verify that similar results with the reverse can be established, along

the line of Proposition 3.4, if φ is non-decreasing. Let {(F (i)
n ,M

(i)
n )}n≥1, i ∈ Z+

0 be

independent versions of {(Fn,Mn)}n≥1 and let us denote by {Z(i)
n }n≥1 and {Z∗(i)n }n≥0

their associated sequences of originated and progenitor couples, respectively, with

Z
∗(i)
0 = 1, i ∈ Z+

0 .

Proposition 3.5 Assume (A1), (A2), and φ superadditive. Then, for k ∈ Z+

and y ∈ R, P (Z∗n+k ≤ y) ≤ P (
∑Z∗k

i=1 Z
∗(i)
n ≤ y), n ∈ Z+ and P (Fn+k ≤ y) ≤

P (
∑Z∗k

i=1 F
(i)
n ≤ y) ( similarly P (Mn+k ≤ y) ≤ P (

∑Z∗k
i=1 M

(i)
n ≤ y) ), n ∈ Z+

0 .

Proof. First, we shall prove that for n, k, j ∈ Z+ and y ∈ R,

P (Z∗k+n+1 ≤ y | Z∗n+k = j) ≤ P




Z∗k∑

i=1

Z
∗(i)
n+1 ≤ y

∣∣∣∣∣∣

Z∗k∑

i=1

Z∗(i)n = j


 (4)

In fact, using (A2), the superadditivity of φ and (A1), one obtains

P




Z∗k∑

i=1

Z
∗(i)
n+1 ≤ y

∣∣∣∣∣∣

Z∗k∑

i=1

Z∗(i)n = j


 ≥

P


φ


LPZ∗

k
i=1 Z

∗(i)
n




Z∗k∑

i=1

Z∗(i)
n∑

l=1

f
(i)
n,l,

Z∗k∑

i=1

Z∗(i)
n∑

l=1

m
(i)
n,l





 ≤ y

∣∣∣∣∣∣

Z∗k∑

i=1

Z∗(i)n = j


 =

P

(
φ

(
Lj

(
j∑

l=1

fk+n,l,

j∑

l=1

mk+n,l

))
≤ y

)
= P (Z∗k+n+1 ≤ y | Z∗n+k = j).

Note that for n = 0, using that Z
∗(i)
0 = 1, it is clear that P (Z∗k ≤ y) = P (

∑Z∗k
i=1 Z

∗(i)
0 ≤

y). Assume that P (Z∗k+n ≤ y) ≤ P (
∑Z∗k

i=1 Z
∗(i)
n ≤ y). Then, considering that φ is
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non-decreasing, that for n, k ∈ Z+, y ∈ R fixed, {P (Z∗k+n+1 ≤ y | Z∗n+k = j)}j≥0 is a

non-increasing sequence, the induction hypothesis, Lemma 1 (see Appendix) and (4),

one deduces that

P (Z∗k+n+1 ≤ y) ≤
∞∑

j=0

P (Z∗n+k+1 ≤ y | Z∗n+k = j)P




Z∗k∑

i=1

Z∗(i)n = j




≤
∞∑

j=0

P




Z∗k∑

i=1

Z
∗(i)
n+1 ≤ y |

Z∗k∑

i=1

Z∗(i)n = j


 P




Z∗k∑

i=1

Z∗(i)n = j


 = P




Z∗k∑

i=1

Z
∗(i)
n+1 ≤ y


 .

Using a similar reasoning are proved the other inequalities.

Remark 3.1 Under assumptions in Proposition 3.5, it can be also proved that:

(i) If φ(Zn) ≤ Zn, n ∈ Z+
0 , i.e. emigration of couples is produced in each genera-

tion, then P (Zn+k ≤ y) ≤ P (
∑Z∗k

i=1 Z
∗(i)
n ≤ y), y ∈ R+, n ∈ Z+.

(ii) If φ(Zn) ≥ Zn, n ∈ Z+
0 , i.e. immigration of couples is produced in each gener-

ation, then P (Z∗n+k ≤ y) ≤ P (
∑Zk

i=1 Z
(i)
n ≤ y), P (Fn+k ≤ y) ≤ P (

∑Zk

i=1 F
(i)
n ≤

y) and P (Mn+k ≤ y) ≤ P (
∑Zk

i=1 M
(i)
n ≤ y), y ∈ R+, n ∈ Z+.

4. Extinction probability

It is clear that the process (1) will become extinct if, in some generation, there are

not any progenitor couples. Let us write by qN∗ = P (Z∗n → 0 | Z∗0 = N∗) the extinc-

tion probability when the process is initiated with N∗ couples. Let us introduce the

sequences {Z̃n}n≥0, {Zn}n≥0 and {Ẑn}n≥0 where Z̃n+1 =
eZn∑

i=1

L1(fn,i,mn,i), Zn+1 =

Zn∑
i=1

φ(L1(fn,i,mn,i)) and Ẑn+1 =
φ(bZn)∑
i=1

L1(fn,i, mn,i), n ∈ Z+, with Z̃0 = Z0 = N∗,

and Ẑ0 = N0 ≥ 1. We assume that N0 is such that φ(N0) ≤ N∗. Note that {Z̃n}n≥0

and {Zn}n≥0 are asexual Galton-Watson processes with offspring distributions as

the laws of Y1 = L1(f0,1,m0,1) and Y ∗
1 = φ(Y1), respectively. On the other hand,
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{Ẑn}n≥0 is an asexual controlled Galton-Watson process with offspring distribution

as the law associated to Y1.

Proposition 4.1 Assume (A1) and (A2). If any of the following conditions holds:

(a) φ is non-decreasing, φ(k) ≥ k, k ∈ Z+
0 and E[Y1] > 1.

(b) φ is superadditive and E[Y ∗
1 ] > 1.

(c) φ is superadditive and supk>0 k−1φ(k) > E[Y1]−1.

Then qN∗ < 1, N∗ ∈ Z+
0 .

Proof. Suppose that condition (a) is satisfied. We shall prove, by induction on n,

that Z∗n ≥ Z̃n, n ∈ Z+. In fact, for n = 0, Z∗0 = Z̃0 = N∗ ≥ 1. Assume that Z∗n ≥ Z̃n,

then, by (A1) and (A2),

Z∗n+1 ≥ φ




Z∗n∑

i=1

L1(fn,i,mn,i)


 ≥ φ



eZn∑

i=1

L1(fn,i, mn,i)


 ≥ Z̃n+1.

Thus qN∗ ≤ q̃N∗ = P (Z̃n → 0|Z̃0 = N∗) and, from Galton-Watson process theory,

using the fact that E[Y1] > 1, one deduces that q̃N∗ < 1 and therefore qN∗ < 1. We

now assume condition (b) holds. It is sufficient to verify that Z∗n ≥ Zn, n ∈ Z+.

Again by induction, it is clear that Z∗0 = Z0 = N∗. Suppose that Z∗n ≥ Zn, then

from (A1) and (A2),

Z∗n+1 ≥
Z∗n∑

i=1

φ (L1(fn,i,mn,i)) ≥
Zn∑

i=1

φ (L1(fn,i,mn,i)) Zn+1.

Thus qN∗ ≤ qN∗ = P (Zn → 0 | Z0 = N∗) and, taking into account that E[Y ∗
1 ] > 1,

the result is derived. Finally, if (c) is satisfied then, considering that φ(0) = 0 and

φ(k) ∈ Z+
0 , k ∈ Z+

0 , one obtains that qN∗ = P (Zn → 0 | Z∗0 = N∗). To complete the
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proof it is sufficient to verify that Zn ≥ Ẑn, n ∈ Z+
0 . Now, by induction on n, if n = 1,

using (A1), (A2) and the fact that φ(N0) ≤ N∗, Z1 = LN∗
(∑N∗

i=1 f0,i,
∑N∗

i=1 m0,i

)
≥

∑φ(N0)
i=1 L1(f0,i,m0,i) = Ẑ1. Assume that Zn ≥ Ẑn. Taking into account that φ is

superadditive and therefore non-decreasing, one has that Z∗n ≥ φ(Ẑn) hence

Zn+1 ≥
Z∗n∑

i=1

LZ∗n(fn,i,mn,i) ≥
Z∗n∑

i=1

L1(fn,i,mn,i) ≥
φ(bZn)∑

i=1

L1(fn,i,mn,i) = Ẑn+1.

Therefore qN∗ ≤ q̂N∗ = P (Ẑn → 0 | Ẑ0 = N∗). Now, using that φ is superadditive

and supk>0 k−1φ(k) > E[Y1]−1, one deduces that q̂N∗ < 1 and consequently qN∗ < 1.

Remark 4.1 The concept of the mean growth rate per couple introduced in Bruss

(1984) can be extended in a natural form to the class of processes (1). In fact, for

each j ∈ φ(Z+
0 ) = φ(Z+) − {0}, we define the mean growth rate per progenitor

couple as the expected value Rj = E[Z∗−1
n Z∗n+1 | Z∗n = j]. Note that, assuming

(A1), (A2) and φ superadditive, using a similar reasoning to that one used in Molina

et al. (2002), Theorem 3.2, one obtains that, if the offspring mean vector µ is a

positive interior point of R+ ×R+ such that limj↗∞,j∈φ(Z+
0 ) j−1φ(Lj(jµ)) < ∞ then

qN∗ = 1, N∗ ∈ Z+
0 if and only if R ≤ 1 where R = supj∈φ(Z+

0 ) Rj .

Appendix

Lemma 1. Let (x1, . . . , xn), (y1, . . . , yn), (u1, . . . , un) ∈ Rn such that
k∑

i=1

xi ≤
k∑

i=1

yi,

k = 1, . . . , n and u1 ≥ . . . ≥ un ≥ 0. Then
n∑

i=1

uixi ≤
n∑

i=1

uiyi.

Proof. Let ti =
i∑

j=1

xj , si =
i∑

j=1

yj , i = 1, . . . , n. Clearly ti ≤ si, i = 1, . . . , n, hence it

is sufficient to verify that
n−1∑
i=1

(ui − ui+1)ti + untn ≤
n−1∑
i=1

(ui − ui+1)si + unsn. Now,

this inequality holds because ui − ui+1 ≥ 0, i = 1, . . . , n and un ≥ 0.
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