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Central Limit Theorem by Moments

René BLACHER

January 21, 2007

René BLACHER
Laboratoire LMC, BP 53 38.041 Grenoble Cedex 9 FRANCE

Summary : In a previous central limit theorem by moments, it has been proved
that the moments converge to those of the normal distribution if the moments of sums
are asymptotically independent (cf Theoreme de la limite centrale par les moments,
Blacher R. Cpte rendus Acad. Sci Paris. t-311- I, 465-468). . In this paper we
generalize this result by adding a negligible sequence to these sums. So, we can prove
that the moments of some functionals of strong mixing sequences converge.

KeyWords : Central Limit Theorem, moments, strongly mixing sequence, higher
order correlation coefficients.

1 Introduction

Let {Xn} be a sequence of random variables defined on a probability space
(Ω, A, P ) such that, for all n ∈ N , E{Xn} = 0 and 0 < E{|Xn|k} < ∞ for all
k ∈ N .

On decompose X1+X2+ .........+Xn en X1+X2+ .........+Xu(n) , Xu(n)+1+
Xu(n)+2 + ............ + Xu(n)+t(n) and Xu(n)+t(n)+1 + Xu(n)+t(n)+2 + ......... +
Xu(n)+t(n)+u(n) , where u(n) + t(n) + u(n) = n.

Notations 1.1 : We denote by κ(n) ∈ N , an increasing sequence such that
κ(1) = 0, κ(n) ≤ n and κ(n)/n → 0 as n → ∞ . We define the sequences u(n)
and t(n) by : u(1)=1, u(n) = max

{
m ∈ N∗∣∣2m+ κ(m) ≤ n

}
and t(1)=0, t(n)

= n-2u(n) if n ≥ 2. Moreover, we simplify u(n) and t(n) as u and t.

Let σ(u)2 be the variance of X1+X2+...+Xu . One sets Su = X1+X2+.........+Xu

σ(u)

, ξu = Xu+1+Xu+2+.........+Xu+t

σ(u) and S′
u = Xu+t+1+Xu+t+2+.........+Xu+t+u

σ(u) . If
t(n)=0, we set ξu = 0. Moreover, one tolerates the notation Sn = X1+X2+.........+Xn

σ(n)
.

We denote also by σo(t)2 the variance of Xu+1 +Xu+2 + .........+Xu+t .
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In [?] , one has proved that u→ ∞, n/u→ 2 and t/u→ 0 as n→ ∞.
Moreover, if κ(n) → ∞, t → ∞ as n → ∞. Finally, ξu is negligible if

σo(t)/σ(u) → 0 : E{(ξu)2} → 0 .

Notations 1.2 : We define conditions HmS and HmI by the following way.
HmS : ∀p ∈ N , E

{
(Su + vu)p

} − E
{
(Su + vu)p

} → 0 as n→ ∞ .
HmI : ∀(p, q) ∈ N2 , E

{
(Su + vu)p(S′

u + v′u)q
} − E

{
(Su + vu)p

}
E

{
(S′

u +
v′u)q

} → 0 as n→ ∞ ,
where {vu} and {v′u} are two sequences of random variables such that E{(vu)2k}+

E{(v′u)2k} → 0 as n→ ∞ for all k ∈ N .

Now, we want to study the MCLT (Moment Central Limit theorem) for
{Xn}. Generally, one assumes that {Xn} is a martingale or is strong mix-
ing. Then, one proves that under some assumptions, moments converge or are
bounded : cf Bernstein, [?] , Brown [?] , Eissein-Janson [?], Hernndorf [?], Birkel
[?], Krugov [?], Mairoboda [?], Yokohama ( [?],[?]), Cox-Kim [?], Ibragimov-
Lifshits [?], Soulier [?], Rozovsky [?].

So one can deduce that HmI holds. For example, if {Xn} is ϕ-mixing, HmI

holds if t(n) → ∞ as n→ ∞ enough slowly (cf [?],[?]). If {Xn} is strong mixing,
HmI holds if E{|Sn|p} is bounded for all p ∈ N . Of course, if {Xn} is strictly
stationary, HmS holds.

Now, the martingale condition is a strong condition. It is the same for strong
mixing conditions : even they does not hold for some AR(1) processes. Then,
some authors have introduce weaker hypotheses : Versik Ornstein ([?], [?]),
Withers [?], Cogburn [?] Rosenblatt [?], Pinskers [?]. But they did not studied
the moments’s convergence. Now another look is possible : one can define
asymptotical independence conditions by using moments. In this way, one can
use higher order correlation coefficients (cf Lancaster [?], Blacher [?]). Then, in
[?] we have turned the convergence of moments into an equivalent condition on
these coefficients. These results have led to the introduction of the condition
HmI : that is, rather than to assume that {Xn} is strong mixing, we choose
HmI as asymptotical independence assumptions. Then, under this assumption,
Sn →M N(0, 1) , that is, for all p ∈ N , E{(Sn)p} → µp as n→ ∞ , the moment
of order p of N(0,1).

Théorème 1 : Assume that E{|ξu|k} → 0 as n → ∞ for all k ∈ N . Assume
that HmS and HmI hold. Then, Sn →M N(0, 1).

In [?], we have proved this theorem when vu = v′u = 0. In section III, we
prove theorem ?? for any sequences vu and v′u . In II-a, we explain why we
need this generalization. In II-b, we apply these results to functionals of IID
sequences. In II-C we prove the MCLT for some functionals of strong mixing
sequences or more general sequences.
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2 Moments Central Limit Theorems for func-
tionals of some strictly stationary sequences

2.1 Discussion

Notations 2.1 : Let Ψt be a strictly stationary process. Assume that Xt =∑∞
i=0 ki+1(Ψt+i) , where the ki’s are measurable functions such that E{ki(Ψ1)} =

0 and 0 < E{ki(Ψ1)2p} <∞ for all i ∈ N and all p ∈ N .

We setMn = 1
σ(n)

∑n
r=1

∑r
s=1 ks(Ψr) and rn = 1

σ(n)

∑∞
r=1

∑r+n
s=r+1 ks(Ψn+r).

Then, one can write Sn = Mn + rn with E{Mn} = E{rn} = 0 .
Of course, Su(n) = Mu(n) + ru(n) . Moreover, one can write S′

u(n) = M ′
u(n) +

r′u(n) withM ′
u = 1

σ(u)

∑u
r=1

∑r
s=1 ks(Ψr+u+t) and r′u = 1

σ(u)

∑∞
r=1

∑r+u
s=r+1 ks(Ψu+r+u+t)

.

Now one wants to know if the MCLT hold. For example let {Θt} be an IID
sequence of random variables. Assume that Ψt = Θt and that, for all p ∈ N ,
E{|rn|p} → 0 as n→ ∞ .

In order to prove the MCLT, one can try to apply the results of [21], i.e.
theorem ?? with vu = v′u = 0 : we write

E{(Su)p(S′
u)q} = E{(Mu)p}E{(M ′

u)q}+
∑

s �=q,r �=p

Ar,sE
{
(Mu)r(ru)p−r(M ′

u)s(r′u)q−s
}
.

By Holder Inequality, E
{
(Mu)r(ru)p−r(M ′

u)s(r′u)q−s
}

converges to 0 if E{(Mu)r}
is bounded. Then, in order to use the theorem ?? with vu = v′u = 0, we have
to prove that E{(Mu)r} is bounded. It is also difficult as well to prove that
E{(Sn)r} is bounded. But, if one uses theorem ?? with vu = −ru and v′u = −r′u,
HmI holds obviously : E

{
(Su+vu)p(S′

u+v′u)q
}

= E
{
(Su+vu)p

}
E

{
(S′

u+v′u)q
}
.

For this reason we generalize theorem ?? to the case where vu and v′u are not
equal to 0.

2.2 II-b) Functional of some IID sequences.

Proposition 2.1 : Assume that Ψt = Θt and that
∣∣∣ ∑∞

s=0

∑∞
i=s ki+1(Ψ1)

∣∣ <
C <∞ . Then, Sn →M N(0, 1).

Proof : First, we need the following lemma.

Lemma 2.2 : Assume that E
{
ki(Ψr)kj(Ψs)

}
= 0 for all (i, j, r, s) ∈ N4, r �=

s. Assume
∑∞

s=0

∣∣∣ ∑∞
i=s ki+1(Ψ1)

∣∣ < C <∞ and that, in L2(Ω) ,
∑r

i=1 ki(Ψ1) →
K as r → ∞ where

∫
K2.dP > 0. Then, σ(n) → ∞ and sup|rn| → 0 .

Proof : There existsN0 such thatE
{(∑n

r=1

∑r
s=1 ks(Ψr)

)2}
=

∑n
r=1E

{(∑r
s=1 ks(Ψr)

)2}
≥

(n/2)
∫
K2.dP if n ≥ N0. Moreover, σ(n)|rn| ≤ 2C. �
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We choose κ(n) = 0. Because σ(n) → ∞ , E{|ξu|p} → 0 as n → ∞
for all p ∈ N . Moreover, E{(Mu)p} = E{(M ′

u)p} and E{(Mu)p(M ′
u)q} =

E{(Mu)p}E{(M ′
u)q}. Then we apply theorem ?? with vu = −ru and v′u = −r′u.

�
Example 2.3 : Assume that Θ1 has the standard normal distribution and that
ki(Ψ1) = i−3sin(2πΘ1). Then, Sn →M N(0, 1).

One can also prove the asymptotic normality in some cases where rn is not
bounded .

Example 2.4 : AR(1)Process. Assume Xt =
∑∞

i=0 aiΘt+i where 0 < a <

1 . Then, Mn = 1
σ(n)

∑n
j=1

1−aj

1−a Θj and rn = 1
σ(n)

∑∞
j=n+1

aj−n(1−an)
1−a Θj .

Therefore, for all r ∈ N , κur(ru) = κur(Θ1)
σ(u)r

∑∞
j=u+1

(
aj−u(1−au)

1−a

)r

→ 0 ,
where κur is the r-th cumulant. Therefore, E{|ru|p} → 0 for all p ∈ N∗.

Then, the condition HmI is satisfied for any sequence {u(n)} defined in
notation ??. Then, Sn →M N(0, 1) .

Recall, there exists AR(1) processes which are not strongly mixing : e.g.
a=1/2, P{Θt = 1/2} = P{Θt = −1/2} = 1/2(cf [?] p 360-362). Then, these
processes satisfy HmI but are not strongly mixing. Moreover, Sn →M N(0, 1).

2.3 Functional of some strong mixing sequences

Strong mixing sequences can often be approached by functional of IID sequences.
For example, let τt =

∑∞
i=0 b

i+1hi(Θt+i), where |hi(Θ1)| ≤ 1 , |b| ≤ 1/2 and
where Θt is an IID sequence independent of Θt.

For example, if hi(Θ1) = aiΘ1 , τt can be strong mixing or not. Then, one
can prove MCLT even for functionals of some non strong mixing sequence.

Example 2.5 : Assume that ki(Ψt) = i−5/2gi(Θt).sin(e(i)τt) where E{gi(Θ1)} =
0 and |e(i)| ≤ 2π for all i ∈ N . Assume that

∑∞
s=0

∣∣∣ ∑∞
i=s ki+1(ψ1)| < C <∞.

Then, by lemma ??, σ(n) → ∞ and sup|rn| → 0 as n → ∞ . Moreover,
|τt| ≤ 1 and τt = τt,u−t+bu−t+1ρ where |ρ| ≤ 1 and τt,u−t =

∑u−t
i=0 b

i+1hi(Θt+i).
Therefore, sin(e(s)τr) = sin(e(s)τr,u−r) + 2πbu−r+1ρ∗ where |ρ∗| ≤ 1.

Then, Mu = σ(u)−1
∑u

r=1

∑r
s=1 s

−5/2gs(Θr)sin(e(s)τr,u−r) + r∗u , where
Sup|r∗u| → 0 as n → ∞. Then, one applies theorem ?? with vu = −ru − r∗u
and a similar decomposition for M ′

u : E
{
(Su + vu)p(S′

u + v′u)q
}

= E
{
(Su +

vu)p
}
E

{
(S′

u + v′u)q
}

. One deduces that Sn → N(0, 1) .

By using theorem ??, the MCLT can be proved for many other functionals,
in particular , if {Ψt} is a q-dependent sequence.
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3 Proof of theorem ??

At first, for example, by Schwarz inequality, E{Suξu}2 ≤ E{S2
u}E{ξ2u} ≤

E{ξ2u} = o(1) where ”o” is the classical ”o” : o(1) → 0 as n→ ∞ .
We deduce that σ(n)2 = σ(u)2E{(Su + vu + S′

u + v′u + ξu − vu − v′u)2} =
σ(u)2[2E{(Su)2} + o(1)]. Then, for all h ∈ N , σ(u)h/σ(n)h = 2−h/2 + o(1).

For all p ∈ N , we set Mp
n = E{(Sn)p}.Clearly, M0

n = 1 ,M1
n = 0 and M2

n = 1.
Let h ∈ N , 2 ≤ h ≤ 2k. Assume that, for all p ∈ N , p ≤ 2h− 2, Mp

n → µp ,
the moment or order p of N(0,1) .

By Holder inequality, |E{(Su)r(vu)p−r}| ≤ E{|Su|p}r/pE{|vu|p}(p−r)/p if
r < p. Therefore, if r < p ≤ 2h − 2,

∣∣E{(Su)r(vu)p−r}∣∣ = o(1) . If r < 2h,∣∣E{(Su)r(vu)2h−r}∣∣ = M2h
s o(1), where M2h

s (n) = sup
{
M2h

u(n), 1
}

.

Then, by using HmI and HmS ,

E
{
(Su + vu + S′

u + v′u)2h
}

= E{(Su+vu)2h}+E{(S′
u+v′u)2h}+

2h−1∑
m=1

2h!
m!(2h−m)!

E{(Su+vu)2h−m}E{(S′
u+v′u)m}+o(1)

= 2E{(Su + vu)2h}+
2h−2∑
m=2

2h!
m!(2h−m)!

E{(Su + vu)2h−m}E{(Su + vu)m}+ o(1)

= 2E{S2h
u }+2

2h−1∑
r=0

2h!
r!(2h− r)!

E{Sr
u}E{v2h−r

u }+
2h−2∑
m=2

2h!
m!(2h−m)!

E{S2h−m
u }E{Sm

u }+o(1)

= 2M2h
u +M2h

s o(1) +
2h−2∑
m=2

2h!
m!(2h−m)!

µ2h−mµm + o(1)

≤ 2M2h
u +M2h

s |o(1)| + 2(2h−1 − 1)µ2h + |o(1)|.

Moreover, if m ≥ 1,

|E{(Su + vu + S′
u + v′u)2h−m(ξu − vu − v′u)m}|

≤ |E{(Su + vu + S′
u + v′u)2h}|(2h−m)/(2h)|E{(ξu − vu − v′u)2h}|m/(2h)

≤ |o(1)|∣∣2M2h
s +M2h

s |o(1)| + 2(2h−1 − 1)µ2h + |o(1)|∣∣(2h−m)/(2h)

≤ |o(1)|M2h
s + |o(1)|.
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Therefore,

M2h
n =

σ(u)2h

σ(n)2h
E{(Su + vu + S′

u + v′u + ξu − vu − v′u)2h}

= (2−h + o(1))
2h∑

m=0

2h!
m!(2h−m)!

E{(Su + vu + S′
u + v′u)2h−m(ξu − vu − v′u)m}

≤ 21−h
∣∣M2h

s +M2h
s |o(1)| + (2h−1 − 1)µ2h + |o(1)|∣∣ + |o(1)|M2h

s + |o(1)|
≤ 21−h

∣∣M2h
s + (2h−1 − 1)µ2h

∣∣[1 + ε(n)],

where ε(n) → 0 as n→ ∞.

The same equality has been obtained in the proof of [?] when vu = v′u =
0. We deduce by the same way that M2h

n is bounded. Therefore, M2h
n =

21−h
[
M2h

u + (2h−1 − 1)µ2h

]
+ o(1) . We deduce the convergence of M2h−1

n and

M2h
n to µ2h−1 and µ2h. �
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