L J Rodr Íguez-Mu Ñiz 
  
M L Ópez-D Íaz 
  
On the exchange of iterated expectations of random upper semicontinuous functions

Keywords: Hukuhara differentiability, iterated expectation, Kudo-Aumann's integral, random upper semicontinuous function

Results about the exchange of iterated expectations of random upper semicontinuous functions, when measurability on product spaces is not necessarily assumed, are obtained.

Introduction

Reversing the order of iterated integrals has been an important topic in Probability and Measure Theories. The existence of a wide variety of situations to be discussed, depending on the considered mappings, especially on the space in which these mappings take on values, as well as on the considered concept of integral, has led to a great number of works on this topic. Most of these studies assume that the mapping to be integrated is measurable on the product space. However, there are situations in which this measurability is not satisfied, but iterated integrals are well-defined (see for instance [START_REF] Friedman | A consistent Fubini-Tonelli theorem for nonmeasurable functions[END_REF].

In this paper we obtain conditions which allows us to exchange iterated expectations of random upper semicontinuous functions without requiring the measurability of such random elements on the product space. The main mathematical complexities to obtain these results will be focused on the values these elements take on, the concept of integral for such mappings and the lack of measurability on product spaces.

A c c e p t e d m a n u s c r i p t

The structure of the paper is as follows: preliminary concepts are gathered in Section 2; the main results concerning the exchange of iterated expectations of random upper semicontinuous functions are given in Section 3; to conclude, Section 4 contains some illustrative examples.

Preliminaries

Let K c denote the class of nonempty compact convex subsets of R. This class can be endowed with a semilinear structure given by the Minkowski addition and the product by a scalar, that is,

M + N = {m + n | m ∈ M, n ∈ N } and λM = {λm | m ∈ M } with λ ∈ R, M, N ∈ K c .
The Hausdorff metric on K c is given by

d H (M, N ) = max { | inf M -inf N |, | sup M -sup N | }.
The space (K c , d H ) is complete and separable (see [START_REF] Debreu | Integration of correspondences[END_REF].

Given M ∈ K c , its magnitude, denoted by denoted by M , is defined as If S : Ω → K c is a random set, the mapping S : Ω → R, given by S (ω) = S(ω) for all ω ∈ Ω, is measurable (see [START_REF] Hiai | Integrals, conditional expectations and martingales of multivalued functions[END_REF].

d H (M, {0}) = sup x∈M |x|. If (Ω, A) is a measurable space, a mapping S : Ω → K c is said to be a random set if it is A|B d H -measurable,
If µ : A → R is a measure, a random set S is said to be integrably bounded with respect to µ, if S ∈ L 1 (Ω, A, µ).

The integral, or expected value in case of µ being a probability, of S, is given by the Kudo-Aumann integral (see for instance Hiai and Humegaki, 1977), that is,

Ω f (ω) dµ(ω) | f : Ω → R, f ∈ L 1 (Ω, A, µ), f ∈ S a.e. [µ] .
This set will be denoted by Ω S(ω) dµ(ω) or E(S|µ). It is easy to see that

E(S|µ) = Ω inf S(ω) dµ(ω), Ω sup S(ω) dµ(ω) .
Let F c denote the class of upper semicontinuous functions U : R →

[0, 1] such that U α ∈ K c for all α ∈ [0, 1], where U α = {x ∈ R : U (x) ≥ α} for
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α ∈ (0, 1], and U 0 = cl {x ∈ R : U (x) > 0}, cl denoting the topological closure. These mappings are also referred to as fuzzy sets of R, and the sets U α as the associated α-levels.

The class F c can be endowed with a semilinear structure, where addition and product by a scalar can be defined by means of Zadeh's extension principle (see [START_REF] Zadeh | The concept of a linguistic variable and its application to approximate reasoning[END_REF], or equivalently (see [START_REF] Puri | Différentielle d'une fonction floue[END_REF] these operations can be levelwise calculated as

(U + V ) α = U α + V α and (λU ) α = λU α for all U, V ∈ F c , λ ∈ R and α ∈ [0, 1].
On F c we consider the d ∞ metric (see [START_REF] Puri | Différentielle d'une fonction floue[END_REF] given by

d ∞ (U, V ) = sup α∈[0,1] d H (U α , V α ), with U, V ∈ F c . The magnitude of U ∈ F c is given by U = d ∞ (U, 1 {0} ) = d H (U 0 , {0}).
Given a measurable space (Ω, A), a mapping X : Ω → F c is said to be a random upper semicontinuous function (r.u.s.f. for short) if X α : Ω → K c with X α (ω) = (X(ω)) α for all ω ∈ Ω, is a random set for all α ∈ [0, 1] (see Puri and[START_REF] Puri | Fuzzy random variables[END_REF][START_REF] Colubi | A D E [0, 1] representation of random upper semicontinuous functions[END_REF].

An r.u.s.f. X is said to be integrably bounded with respect to a measure

µ : A → R, if the mapping X ∈ L 1 (Ω, A, µ), where X : Ω → R is given by X (ω) = X(ω) for all ω ∈ Ω.
For an integrably bounded r.u.s.f., [START_REF] Puri | Fuzzy random variables[END_REF] define its integral, denoted by Ω X(ω) dµ(ω) or E(X|µ), as the unique set in F c such that E(X|µ) α = E X α µ for every α ∈ [0, 1]. When Ω = [a, b], we will use also the notation b a X(ω) dµ(ω). If µ is a probability measure, an r.u.s.f. is also referred to as a fuzzy random variable and its integral as the fuzzy expected value of X.

It is possible to extend to upper semicontinuous functions the concept of Hukuhara difference or Minkowski difference for subsets (see [START_REF] Hukuhara | Intégration des applications mesurables dont la valeur est un compact convexe[END_REF], so given U, V ∈ F c , its Hukuhara difference, denoted by

U -h V , is the set W ∈ F c (if it exists) such that U = V + W . Let T be a nonempty open subset of R. A mapping G : T → F c is said to be Hukuhara differentiable at t 0 ∈ T if there exists G (t 0 ) ∈ F c , which is called the Hukuhara differential of G at t 0 , such that lim ∆t→0 + d ∞ G(t 0 + ∆t) -h G(t 0 ) ∆t , G (t 0 ) = lim ∆t→0 + d ∞ G(t 0 ) -h G(t 0 -∆t) ∆t , G (t 0 ) = 0.

A c c e p t e d m a n u s c r i p t

The above definition (see [START_REF] Puri | Differentials of fuzzy functions[END_REF]) is an extension of the Hukuhara's differentiability criterion for set-valued mappings [START_REF] Hukuhara | Intégration des applications mesurables dont la valeur est un compact convexe[END_REF].

If a mapping G depends on more than one argument, we will make use of the usual symbol of partial derivative to indicate with respect to which argument the Hukuhara differential is considered.

Exchange of iterated expectations of random upper semicontinuous functions

In this section, the main results on the exchange of iterated expectations of r.u.s.f. with respect to probability distributions depending on certain families of parameters are developed. Throughout the paper, for any set

Ω ⊂ R k with k ∈ N, B Ω will denote the Borel σ-field on Ω. Given (Ω, B Ω ) and m 1 , m 2 : Ω → R two σ-finite measures, m 1
m 2 will indicate that m 1 is absolutely continuous with respect to m 2 , and dm 1 dm 2 will denote a Radon-Nikodym derivative of m 1 with respect to m 2 . If it is supposed that there exists a continuous Radon-Nikodym derivative, then dm 1 dm 2 will denote this particular function. Firstly, we prove a result on Radon-Nikodym derivatives, which extends a classical result for real-valued functions to the case of r.u.s.f.

Proposition 3.1. Let Ω ⊂ R k and let m 1 , m 2 : B Ω → R be two σ-finite measures with m 1 m 2 . If F : Ω → F c is an integrably bounded r.u.s.f. with respect to m 1 , then Ω F (s) dm 1 (s) = Ω F (s) dm 1 dm 2 (s) dm 2 (s) .
Proof. Obviously, F dm 1 dm 2 is an r.u.s.f. since dm 1 dm 2 is a measurable mapping (see [START_REF] Puri | Fuzzy random variables[END_REF]. On the other hand

F (s) dm 1 dm 2 (s) = F (s) dm 1 dm 2 (s), whence Ω F (s) dm 1 dm 2 (s) dm 2 (s) = Ω F (s) dm 1 (s). Since F ∈ L 1 (Ω, B Ω , m 1 ) then F dm 1 dm 2 ∈ L 1 (Ω, B Ω , m 2 ), and so F dm 1 dm 2
is integrably bounded with respect to m 2 .
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Consider now for each α ∈ [0, 1] the random set F α , and the random variables inf F α and sup F α . Then, we have that

Ω F α (s) dm 1 (s) = Ω inf F α (s) dm 1 (s), Ω sup F α (s) dm 1 (s) = Ω inf F α (s) dm 1 dm 2 (s) dm 2 (s), Ω sup F α (s) dm 1 dm 2 (s) dm 2 (s) = Ω F α (s) dm 1 dm 2 (s) dm 2 (s) = Ω (F (s) dm 1 dm 2 (s)) α dm 2 (s),
which concludes the proof.

The following result generalizes the First Fundamental Theorem of Calculus for the case of r.u.s.f. and the Hukuhara differential.

Proposition 3.2. Let [a, b], B [a,b] , m 1 be a σ-finite measure space with m 1
m, where m stands for the Borel measure on the interval

[a, b]. Let F : [a, b] → F c be an integrably bounded r.u.s.f. with respect to m 1 , such that F dm 1 dm is continuous. We define G : [a, b] → F c with G(t) = t a F (s) dm 1 (s), then i) G is Hukuhara differentiable with G (t) = F (t) dm 1 dm (t) for all t ∈ (a, b), ii) G is an r.u.s.f. Proof. By Proposition 3.1, G(t) = t a F (s) dm 1 dm (s) dm(s) for all t ∈ [a, b]. Since F dm 1
dm is continuous, in accordance with Theorem 10.3.12 in [START_REF] Diamond | Metric Spaces of Fuzzy Sets: Theory and Applications[END_REF], G is Hukuhara differentiable and G (t) = F (t) dm 1 dm (t) for all t ∈ (a, b). The statement ii) is obvious by the Hukuhara differentiability of G.

The following technical result will be applied in subsequent propositions. 

f : Ω × [a, b] → R with Ω ⊂ R k , such that i) for every ω ∈ Ω, f ω : [a, b] → R, with f ω (t) = f (ω, t), is measurable, ii) for every t ∈ [a, b], the mapping f t : Ω → R, with f t (ω) = f (ω, t),
Let ∆ t : Ω → R with ∆ t (ω) = t a f (ω, s) dm(s) for all ω ∈ Ω. Then ∆ t ∈ L 1 (Ω, B Ω , P ) for every t ∈ [a, b].
Proof. The Dominated Convergence Theorem implies the continuity of ∆ t , and so its measurability. The integrability is trivially obtained from iii).

Regarding the Hukuhara differentiability of r.u.s.f. under the integral sign, we can state the following results. i) for every ω ∈ Ω, the mapping 

X ω : [a, b] → F c , with X ω (t) = X(ω,
∂ ∂t Ω t a X(ω, s) dP ω (s) dP (ω) = Ω ∂ ∂t t a X(ω, s) dP ω (s) dP (ω) and hence ∂ ∂t Ω t a X(ω, s) dP ω (s) dP (ω) = Ω X(ω, t) dP ω dm (t) dP (ω),
which concludes the proof.

The following result proves the continuity under the integral sign for a special class of mappings. Proposition 3.5. Let (Ω, B Ω , P ) be a probability space with Ω ⊂ R k , let T be a convex subset of R and t 0 ∈ T . For every t ∈ T , let P t be a probability measure on (Ω, B Ω ) such that P t P . If X : Ω × T → F c satisfies that i) for every t ∈ T , the projection X t is an integrably bounded r.u.s.f. with respect to P t , ii) the mapping t → X(ω, t) dPt dP (ω) is continuous at t 0 , a.s.

[P ],
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iii) there exists h ∈ L 1 (Ω, B Ω , P ) and N a neighborhood of t 0 , such that for

all t ∈ N ∩ T X(ω, t) dP t dP (ω) ≤ h(ω) a.s. [P ],
then, ∆ :

T → F c , with ∆(t) = Ω X(ω, t) dP t (ω), is continuous at t 0 . Proof. Let {t n } n∈N ⊂ T with lim n t n = t 0 , Proposition 3.1 implies that ∆(t n ) = Ω X(ω, t n ) dPt n dP (ω) dP (ω)
for all n ∈ N, so the Dominated Convergence Theorem for r.u.s.f. (see [START_REF] Puri | Fuzzy random variables[END_REF] proves the result.

The following theorem contains the key result in the paper.

Theorem 3.6. Let (Ω, B Ω , P ) be a probability space with Ω ⊂ R k and let m denote the Borel measure on the interval T = [a, b]. For every t ∈ T , let P t be a probability measure on (Ω, B Ω ) such that P t P and there exists a continuous Radon-Nikodym derivative. For every ω ∈ Ω, let P ω be a probability on (T, B T ) such that P ω m and there exists a continuous Radon-Nikodym derivative.

Let X : Ω × T → F c be a mapping satisfying that: i) for every t ∈ T , X t is an integrably bounded r.u.s.f. with respect to P t , ii) for every ω ∈ Ω, X ω is an integrably bounded r.u.s.f. with respect to P ω and it is continuous a.s.

[P ],

iii) there exists h 1 ∈ L 1 (Ω, B Ω , P ) such that X(ω, t) dPω dm (t) ≤ h 1 (ω) a.s. [P ] for every t ∈ T , and the mapping ω → X(ω, t) dPω dm (t) is continuous a.e. [m], iv) there exists a mapping g

∈ L 1 ([a, b], B [a,b] , m) such that for every ω ∈ Ω, X(ω, t) dPω dm (t) ≤ g(t) a.e. [m] for every ω ∈ Ω, v) the mapping t → X(ω, t) dPt dP (ω) is continuous on T a.s. [P ], vi) there exists h 2 ∈ L 1 (Ω, B Ω , P ) such that X(ω, t) dPt dP (ω) ≤ h 2 (ω) a.s. [P ] for every t ∈ T .
Let m be a probability measure on (T, B T ) such that m m and there exists a continuous Radon-Nikodym derivative. If for every t ∈ T , the equality

dPω dm (t) = dPt dP (ω) dm dm (t) a.s. [P ] holds, then Ω t a X(ω, s) dP ω (s) dP (ω) = t a Ω X(ω, s) dP s (ω) dm (s)
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for every t ∈ T .

Proof. The case t = a is trivial. Consider now t ∈ (a, b). On the basis of Proposition 3.2 we deduce that the mapping t → t a X(ω, s) dP ω (s) is Hukuhara differentiable a.s. [P ], with differential X(ω, t) dPω dm (t). In virtue of Proposition 3.4 the mapping t → Ω ( t a X(ω, s) dP ω (s))dP (ω) is Hukuhara differentiable with differential given by

∂ ∂t Ω t a X(ω, s) dP ω (s) dP (ω) = Ω X(ω, t) dP ω dm (t) dP (ω).
On the other hand, by means of Proposition 3.5, the mapping on [a, b] given by s → Ω X(ω, s)dP s (ω) is continuous, and applying Propositions 3.1 and 3.2 to this mapping, we obtain that Therefore, we have obtained that the Hukuhara differentials of the above mappings coincide for all t ∈ [a, b), that is,

∂ ∂t t a Ω X(ω, s)dP s (ω) dm (s) = Ω X(ω,
∂ ∂t Ω t a X(ω, s) dP ω (s) dP (ω) = ∂ ∂t t a Ω X(ω, s) dP s (ω) dm (s)
for every t ∈ [a, b). Since these mappings have the same Hukuhara differentials, they should be equal except for a constant, but when t = a the mappings are equal, so they must coincide for t ∈ [a, b).

When t = b, it is sufficient to consider a sequence {t n } n∈N with lim n t n = b, and applying the Dominated Convergence Theorem for r.u.s.f. Finally, the above theorem can be extended to unbounded intervals as follows,
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Theorem 3.7. Assume the conditions in Theorem 3.6 with the interval T being not necessarily bounded, and suppose that there exists g ∈ L 1 (Ω, B Ω , P ) such that T X(ω, s) dP ω (s) ≤ g (ω) a.s. [P ]. Then, the following equality holds,

Ω T X(ω, s) dP ω (s) dP (ω) =
T Ω X(ω, s) dP s (ω) dm (s) .

Proof. Consider two sequences {a n } n∈N , {b n } n∈N ⊂ T such that a n ≤ b n for all n ∈ N, lim n a n = inf T and lim n b n = sup T, where inf T and sup T can be either finite or infinite. On the basis of Theorem 3.6, we deduce that

Ω bn an X(ω, s) dP ω (s) dP (ω) = bn an Ω X(ω, s) dP s (ω) dm (s),
and so, the Dominated Convergence Theorem proves the result.

Remark 3.8. We should note that the measurability and continuity conditions assumed in the above results do not imply that X is an r.u.s.f. with respect to the product measurable space (Ω × T, B Ω ⊗ B T ). Thus, consider Ω = T = [0, 1] and C the Cantor set. It is well known that C ∈ B [0,1] and there exists N ∈ B [0,1] with C ⊂ N and m(N ) = 0. Consider the mapping f : R → R 2 with f (x) = (x, x) and 

A = f (C). Obviously, f is B [0,1] |B [0,1] ⊗ B [0,1] measurable since it is continuous. If we define g : [0, 1] × [0, 1] → R with g(ω, t) = 1 A (ω,
[0,1] ⊗ B [0,1] |B [0,1] measurable, then g • f | [0,1] would be measurable, but (g • f ) -1 ({1}) = C ∈ B [0,1] .
Thus, if we define X : [0, 1] × [0, 1] → F c with X(ω, t) = 1 {g(ω,t)} , then X satisfies all measurability and continuity conditions in the above theorems, but trivially it is not an r.u.s.f. on the product measurable space.

Illustrative examples

In this section we propose some illustrative examples in relation with the theoretical results developed in the above Section. ) absolutely continuous with respect to the Borel measure on [0, 1], with continuous density functions.

Let P t = P 1 for all t ∈ [0, 1], P = P 1 , P ω = P 2 for all ω ∈ [0, 1], and m = P 2 . It is obvious that P t P, the constant equals 1 being a continuous Radon-Nikodym derivative. By hypothesis P ω = P 2 m and there exists a continuous density (Radon-Nikodym derivative).

Let X : [0, 1] × [0, 1] → F c with X bounded, satisfying that X ω is an r.u.s.f., and continuous a.s. [P 1 ] while X t is an r.u.s.f., and continuous a.s.

[m] (note that the mapping in Remark 3.8 satisfies such conditions), then Theorem 3.6 implies that It is interesting to notice that the expression [0,1]×[0,1] X(ω, s) dP 1 (ω) ⊗ P 2 (s), P 1 ⊗P 2 being the product probability, has no sense since X is not measurable on the product space.

Concluding remarks

To conclude we should indicate that results which guarantee the exchange of iterated expectations of random upper semicontinuous functions when these are measurable on product spaces can be found in [START_REF] López-Díaz | Reversing the order of integration in iterated expectations of fuzzy random variables, and statistical applications[END_REF], where on the basis of such results, the authors develop some statistical applications. The results in this paper suggest the idea of analyzing analogous statistical applications for random upper semicontinuous functions when they are not measurable on the product space. Especial importance could have these results in the Bayesian analysis of the single stage decision problem when utilities are nonmeasurable function-valued mappings, since an exchange of integrals similar to the one given in Theorem 3.6 and 3.7 is necessary.

  where B d H denotes the Borel σ-field generated by the topology induced by d H on K c . It is known that S is a random set if and only if the mappings inf S, sup S : Ω → R are measurable when we consider on R the usual Borel σ-field.

Lemma 3. 3 .

 3 Let (Ω, B Ω , P ) be a probability space with Ω ⊂ R k and let m stand for the Borel measure on the interval [a, b]. Consider a mapping

  exists g ∈ L 1 ([a, b], B [a,b] , m) such that |f (ω, t)| ≤ g(t) a.e.[m] for every ω ∈ Ω.

Proposition 3. 4 .

 4 Let (Ω, A, P ) be a probability space with Ω ⊂ R k , and let m denote the Borel measure on the interval [a, b]. For every ω ∈ Ω, let P ω be a probability measure on ([a, b], B [a,b] ) with P ω m, such that there exists a continuous Radon-Nikodym derivative. If X : Ω × [a, b] → F c satisfies the following conditions:

  Example 4.2. Let us consider [a, b] = Ω = [0, 1]. Let P 1 and P 2 be probabilities on ([0, 1], B [0,1]

  , s) dP 1 (ω) dP 2 (s) = , s) dP 2 (s) dP 1 (ω).

  Let us see that the projection H t is an integrably bounded r.u.s.f. with respect to P for every t ∈ [a, b]. Let t ∈ [a, b] and let us consider the α-level sets of the mapping H t (ω), then H t (ω) α Muñiz and López-Díaz (2003) applied to H, and the condition ii) in the statement of this proposition, imply that

	It is easy to check that the mappings on Ω × [a, b] given by
	(ω, s) → inf X(ω, s)	dP ω dm	(s)	α	and			(ω, s) → sup X(ω, s)	dP ω dm	(s)	α
	fulfill conditions in Lemma 3.3 for every α ∈ [0, 1]. Therefore, the mappings
	H t (ω) α are integrably bounded random sets for every α ∈ [0, 1], and hence H t (ω) is an integrably bounded r.u.s.f. with respect to [P ] for all t ∈ [a, b].
	On the other hand, on the basis of Proposition 3.2, the continuity of
	∂ ∂t Ω Proof. The hypothesis i) implies that H(ω, t) = t a X(ω, s) dP ω (s) dP (ω) = Ω fined. By Proposition 3.1 we obtain that H(ω, t) = X(ω, t) t a X(ω, s) dP ω (s) is well de-dP ω dm (t) dP (ω). t a X(ω, s) dPω dm (s) dm(s). A c c e p t e d m dPω dm , and that of X ω a.s. [P ], we deduce that the projection H ω is Hukuhara differentiable for every t ∈ (a, b) a.s. [P ], with ∂ ∂t H(ω, t) = X(ω, t) dP ω dm (t) a.s. [P ] . a n u s c r i p t Theorem 4.4 in Rodríguez-
	=	a	t	inf(X(ω, s)	dP ω dm	(s)) α dm(s),	a	t	sup(X(ω, s)	dP ω dm	(s)) α dm(s) .

t), is an integrably bounded r.u.s.f. with respect to P ω , and X ω is continuous a.s. [P ],

ii) there exists h ∈ L 1 (Ω, A, P ), such that X(ω, t) dPω dm (t) ≤ h(ω) a.s. [P ] for every t ∈ [a, b], and the mapping ω → X(ω, t) dPω dm (t) is continuous a.e. [m], iii) there exists g ∈ L 1 ([a, b], B [a,b] , m) with X(ω, t) dPω dm (t) ≤ g(t) a.e. [m] for every ω ∈ Ω, then, the mapping t ∈ [a, b] → Ω t a X(ω, s) dP ω (s) dP (ω) is Hukuhara differentiable on (a, b), and for every t ∈ (a, b) it holds that

  t) (where 1 stands for the indicator function) then g t and g ω are measurable for all t, ω ∈ [0, 1]. Moreover, both are continuous for almost every t [m] and almost every ω [m] respectively. However, if g were B

For each ω ∈ (0, 1) take the probability P ω on ([0, 1], B [0,1] ) whose density function is given by h ω (t) = (-2t/ω + 2ω -1/2 )1 (0,ω 1/2 ) (t).

Given t ∈ [0, 1] we consider the probability P t on ((0, 1), B (0,1) ) with density function equal to h t (ω) = (2/(1-t 1/2 ) 2 ω-2t -1/2 /(1-t 1/2 ) 2 )1 (t 1/2 ,1) (ω) if t = 1, whereas if t = 1 we consider the uniform distribution on (0, 1).

Let X : (0, 1) × [0, 1] → F c given by the mapping in Remark 3.8. Let us see that all conditions in Propositions 3.4 and 3.5 are satisfied. In relation to the former, it is obvious that P ω m and there exists a continuous Radon-Nikodym derivative (note that h ω is continuous in [0, 1]) for all ω ∈ (0, 1).

On the other hand,

so X is an r.u.s.f. Since X ≤ 1, we obtain that X is integrably bounded with respect to any probability, and clearly X ω is continuous a.s. [P ].

Moreover, |h ω (t)| ≤ 2/ω 1/2 ∈ L 1 (0, 1), B (0,1) , P ), and the mapping ω → X(ω, t)h ω (t) is continuous a.s. [m].

With respect to the condition iii) in Proposition 3.4, it holds that

As a consequence, we conclude that the mapping

is Hukuhara differentiable on (a, b), and

In relation to Proposition 3.5, considering T = [0, 1], then P t m for all t ∈ [0, 1]. Observe that there exists a continuous Radon-Nikodym derivative given by h t .

It is trivial that the condition i) of Proposition 3.5 is held. On the other hand, the mapping t → X(ω, t)h t (ω) is continuous in any point t 0 ∈ [0, 1] a.s. [P ]. Moreover X(ω, t)h t (ω) ≤ 2ω for all ω ∈ (0, 1), this mapping belonging to L 1 (0, 1), B (0,1) , m .

Hence, the mapping : T → F c with (t) =