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We establish exact rates of strong uniform consistency for the multivariate Nadaraya-Watson kernel estimator of the regression function and its derivatives. As a special case, we treat the local linear estimator of the regression and the local polynomial smoothers of derivatives of the regression in the more convenient univariate setting. Our methods of proofs are based upon modern empirical process theory in the spirit of the results of Einmahl and Mason [4] and Deheuvels and Mason [2] relative to uniform deviations of nonparametric kernel estimators.

Introduction

Let (X, Y) = (X 1 , Y 1 ), (X 2 , Y 2 ), . . ., be independent and identically distributed random vectors in IR p ×IR d . In this paper, we are concerned with the estimation of the conditional expectation of a functional ψ of Y given X. The following notation and assumptions will be in force. Let x (respectively y) denote a vector in IR p (resp. IR d ). We assume that the distribution function of (X, Y) has a Lebesgue density f X,Y (x, y) = g(x, y) on IR p × IR d . We denote by f X (x) = f (x) the marginal density of X assumed to exist for each x ∈ IR p . Let ψ : IR d → IR q a Borel measurable function, bounded on each compact set of IR d . We consider the regression function of ψ(Y) given X = x, defined by

m ψ (x) = IE ψ(Y)|X = x = 1 f(x) IR d ψ(y)g(x, y)dy := r ψ (x) f(x) , (1.1) 
whenever this regression function is meaningful (see, e.g., (F.1-2) below). Throughout this paper, we will investigate the strong consistency of kernel-type estimators of the regression m ψ (x) and its derivatives. We will work in the multivariate framework, where p ≥ 1, q ≥ 1, d ≥ 1 are arbitrary integers, and impose the following set of assumptions upon the distribution of (X, Y).

(F.1) g(•, •) is continuous on J × IR d and f(•) is continuous and strictly positive on J;

(F.2) Y1I {X∈J} is bounded on IR d .

Here and elsewhere k ≥ 1 denotes a fixed order of differentiation in the following sense. Let ζ = (ζ 1 , . . . , ζ q ) be an arbitrary measurable function with ζ j : IR p → IR, j = 1, . . . , q. In this section, we consider estimation of functionals of ζ defined at x = (x 1 , . . . , x p ) ∈ J. For each p-uple of non-negative integers

k 1 ≥ 0, . . . , k p ≥ 0, k = (k 1 , . . . , k p ), we introduce the differential operator D (k) of order |k| = k = k 1 + . . . + k p , defined by D (k) ζ(x) = ζ (k) (x) = D (k) ζ 1 (x), . . . D (k) ζ q (x) ,
where

D (k) ζ j (x) = ∂ ∂x 1 k1 . . . ∂ ∂x p kp ζ j (x), j = 1, . . . , q.
At first, we treat the Nadaraya-Watson kernel estimator (see [START_REF] Nadaraya | On estimating regression[END_REF] and [START_REF] Watson | Smooth regression analysis[END_REF])) and its partial derivatives when the predictor variables are IR p -valued. For this purpose we need to introduce a general kernel function K : IR p → IR, fulfilling the conditions

(K.1) (i) K is bounded; (ii) K(x 1 , . . . , x p ) is a right-continuous function of x 1 , . . . , x p ;
(iii) K(u) = Φ(P (u)), where P is a polynomial, and Φ is a real valued function of bounded variation;

(K.2) K is compactly supported; (K.3) IR p K(u) du = 1;

(K.4) K is k-times differentiable, with partial derivatives satisfying (K.1).

Let h n , n = 1, 2 . . ., denotes a non-random (bandwidth) sequence of positive constants satisfying the following assumptions: as n → ∞,

(H.1) h n 0 and nh n ∞, (H.2) nh 2k+p n / log(h -p n ) → ∞, (H.3) log(h -p n )/ log log n → ∞.
We introduce the kernel estimators of f (x), r ψ (x) and m ψ (x), defined by

fn (x) = 1 nh p n n i=1 K x -X i h n , rψ;n (x) = 1 nh p n n i=1 ψ(Y i )K
x -X i h n and mψ;n (x) = rψ;n (x) fn (x) when fn (x) = 0.

Our estimators of the functional D (k) of f(x) and r ψ (x) are then defined as follows

f (k) n (x) = D (k) fn (x) = 1 nh k+p n n i=1 K (k) x -X i h n ,
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r(k) ψ;n (x) = D (k) rψ;n (x) = 1 nh k+p n n i=1 ψ(Y i )K (k) x -X i h n .
Unless otherwise specified, we will limit most of our exposition to the case where k = (k 1 , . . . , k p ) is such that k j = 1 and k l = 0 for l = j and denote by k j = (0, . . . , 1, . . . , 0) the corresponding p-uple. It will become obvious later on that our methods allow to treat likewise the case of an arbitrary k. Thus m(kj)

ψ;n (x) = D (kj ) mψ;n (x) = r(kj) ψ;n (x) fn (x) - rψ;n (x) f (kj ) n (x) f 2 n (x)
. We note that, when k j ≥ 2 for some j, m(k) ψ;n (x) = D (k) mψ;n (x) may be obtained likewise through the usual Leibniz expansion of derivatives of products. Moreover, one of the motivation to this study comes from the fact that the estimation of the proper partial derivatives of m ψ is needed to implement plug-in bandwidth selection strategies (which is the crucial part in constructing efficient kernel estimators).

It will be convenient to center mn (x) and m(kj) ψ;n (x), respectively, by

IE mψ;n (x) := IE r(k) ψ;n (x) IE f (k) n (x) =: r ψ;n (x) f n (x) , IE m(kj) ψ;n (x) := r (kj ) ψ;n (x) f n (x) - r ψ;n (x)f (kj ) n (x) f 2 n (x)
.

(1.2)

A similar setup applies for operators

D (k) with |k| = k ≥ 2.
The main purpose of the present paper is to give a description of the exact rate of strong convergence of the uniform deviation of m(k) ψ;n (x)-IE m(k) ψ;n (x) over x ∈ I. The convergence rate we shall obtain takes the form of uniform law of the logarithm and are stated in Section 2. The methods of proof that we will use to establish these results can be applied to treat a number of other kernel-type estimators, including local polynomial estimators (see, e.g., Fan and Gijbels [START_REF] Fan | Local Polynomial Modelling and Its Applications[END_REF] and Ruppert and Wand [START_REF] Wand | Kernel Smoothing[END_REF]). Section 3 contains the one-dimensional extension to the local linear least squares kernel estimator of m ψ , higher-order polynomial fits and derivative estimation. Section 4 is devoted to the proofs. The main idea underlying our arguments is that by using the techniques from abstract empirical process theory and probability on Banach spaces, one can prove almost sure limit laws for a large class of nonparametric estimators of regression functions.

Uniform laws of the logarithm for estimators of the regression derivatives

First, we treat the special case q = 1 (that is, when ψ(Y) ∈ IR).

Theorem 2.1 Under (F.1-2), (H.1-3), (K.1-4) we have, as n → ∞, nh 2k+p n 2 log(h -p n ) 1/2 sup x∈I ± m(k) ψ;n (x) -IE m(k) ψ;n (x) -σ ψ (I) = o(1), almost surely, (2.1) 
where

σ ψ (I) = sup x∈I Var ψ(Y) X = x f(x) IR p [K (k) (u)] 2 du 1/2 . (2.2)
For a related 'in probability' theorem, refer to Theorem 1.1 in [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF].

The strictly multivariate case:

ψ(Y) ∈ IR q , q > 1
The extension to several dimensions for ψ(Y) is somewhat straightforward. We just need a suitable preliminary normalization of the stochastic deviation m(k)

ψ;n (x) -IE m(k) ψ;n (x)
. This enables us to characterize precisely the corresponding limit set, by using a standard argument developped by Finkelstein

A c c e p t e d m

a n u s c r i p t [START_REF] Finkelstein | The law of the iterated logarithm for empirical distributions[END_REF]. Let Σ ψ (x) denotes the conditional variance-covariance matrix of ψ(Y) given that X = x, which is assumed definite positive without loss of generality. We will make use of the following asymptotic variance-covariance matrix

V x = V ψ (x) := 1 f (x) IR p [K (k) (t)] 2 dt × Σ ψ (x),
which is properly defined for x ∈ J and definite positive under (F.1-3). Below, suprema of q-vectors v = {v 1 , . . . , v q } T are meant with respect to the maximum norm | • | + on IR q , where |v| + = max

i≤q |v i |.
Theorem 2.2 If (F.1-2), (H.1-3) and (K.1-4) hold, then, the sequence of normalized q-vectors

nh 2k+p n 2 log(h -p n ) 1/2 sup x∈I ± V -1/2 x m(k) ψ;n (x) -IE m(k) ψ;n (x)
is almost surely relatively compact in IR q with limiting set

S q = v ∈ IR q : v T v = 1
, the q-dimensional unit sphere.

Notice that Theorem 2.2 is a simple consequence of Theorem 2.1, when combined with the proof of Lemma 2 of Finkelstein (1971) [START_REF] Finkelstein | The law of the iterated logarithm for empirical distributions[END_REF]. To see how Theorem 2.2 follows from Theorem 2.1, observe that the normalized deviation (properly rescaled)

V -1/2 x m(k) ψ;n (x) -IE m(k) ψ;n (x)
is asymptotically normally distributed with an identity covariance matrix.

Uniform law of the logarithm for local polynomial kernel estimators

In this paper, we are mainly focused on the stochastic part of the usual deviation. In the literature, it is a well-known fact that the asymptotic bias of the Nadaraya-Watson estimator has a bad form. To overcome this problem, it exists many alternative estimators. For example, if we assume some regularity conditions on the regression function, one can use the local polynomial regression techniques of Fan and Gijbels [START_REF] Fan | Local Polynomial Modelling and Its Applications[END_REF].

Our next task will be to extend the preceding results to the local polynomial least squares smoothers. For ease of presentation, we restrict ourselves first to the univariate case and to the local linear least squares estimator. At the end of this section, we present also some extensions to higher-order polynomial fits and derivative estimation.

Let (X, Y ), (X 1 , Y 1 ), (X 2 , Y 2 ), . . ., be independent and identically distributed random couples in IR × IR. (K.2) K is compactly supported and IR K(u) du = 1;

(H.1)

h n 0 and nh n ∞, (H.2) nh 2k+1 n / log(h -1 n ) → ∞, (H.3) log(h -1 n )/ log 2 n → ∞, as n → ∞.
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For a kernel K fulfilling (K.1-2), we set for any integer r ≥ 0,

µ r = µ r (K) = IR u r K(u)du.
It is common to work with a kernel function K(•) such that (K.3) µ 1 (K) = 0 and µ 2 (K) = 0.

Our first aim will be to establish the strong uniform consistency of the local linear estimator of the regression, defined by mLL ψ;n (x) := rψ;n (x) fn,2 (x) -rψ;n,1 (x) fn,1 (x) fn (x) fn,2 (x) -fn,1 (x) fn,1 (x) ,

where, for j = 1, 2, fn,j (x

) := 1 nh n n i=1 x -X i h n j K x -X i h n and rψ;n,1 (x) := 1 nh n n i=1 ψ(Y i ) x -X i h n K x -X i h n .
Notice that, in the multivariate setting, such simple explicit formula for the local linear estimator is not available. This estimator is better than the Nadaraya-Watson estimator when the design is random and has the favorable property to reproduce polynomial of degree one. In particular, Fan [START_REF] Fan | Design-adaptative nonparametric regression[END_REF] shows that the local linear estimator has an important asymptotic minimax property. Precisely, the local linear estimator has a high minimax efficiency among all possible estimators, including nonlinear smoothers such as median regression. For the centering terms, we proceed as in (1.2) and set

IE mLL ψ;n (x) := r ψ;n (x)f n,2 (x) -r ψ;n,1 (x)f n,1 (x) f n (x)f n,2 (x) -f n,1 (x)f n,1 (x) 
.

We obtain the following uniform law of the logarithm concerning the local linear smoother.

Theorem 3.1 Under (F.1-2), (H.1-3), (K.1-3) we have, as n → ∞, We investigate now general polynomial fits and derivative estimation. Let p be the degree of the local polynomial fit. Throughout the end of this section, we will therefore assume that m ψ (•) is p times differentiable over the compact interval J and (p + 1) times differentiable over the compact interval I.

nh n 2 log(h -1 n ) 1/2 sup x∈I ± mLL ψ;n (x) -IE mLL ψ;n (x) -σ ψ (I) = o(
Set

X x =      1 (X 1 -x) . . . (X 1 -x) p . . . . . . . . . 1 (X n -x) . . . (X n -x) p      , W x = diag K X i -x h n and Ψ(y) =      ψ(Y 1 ) . . . ψ(Y n )      .
According to the definition of Ruppert and Wand [START_REF] Ruppert | Multivariate weighted least squares regression[END_REF], for k ≤ p , the local polynomial kernel estimator of the k-th derivative of m ψ (x) is defined by,

m(k) ψ (x) = m(k) ψ;n (x; p) := k! e T k+1 (X T x W x X x ) -1 X T x W x Ψ(y),
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where e k+1 is the (p + 1) × 1 vector having 1 in the (k + 1)-th entry and zeros elsewhere. It is now convenient to set, for each j ∈ IN,

fj (x) = 1 nh n n i=1 X i -x h n j K X i -x h n and rj (x) = 1 nh n n i=1 ψ(Y i ) X i -x h n j K X i -x h n . Observe that m(k) ψ (x) = k! e T k+1 ×      f0 (x) f1 (x) . . . fp (x) . . . . . . . . . fp (x) fp+1 (x) . . . f2p (x)      -1 ×         r0 (x) r1 (x) . . . rp (x)         .
For example, if (k, p) = (0, 1), we get clearly the local linear estimator defined in (3.1), namely

m(0) ψ;n (x; 1) = (1, 0) ×   f0 (x) f1 (x) f1 (x) f2 (x)   -1 ×   r0 (x) r1 (x)   = r0 (x) f2 (x) -r1 (x) f1 (x) f0 (x) f2 (x) -f1 (x) f1 (x) .
Explicit formulae of local polynomial estimators became large as p grows due to matrix complexity. When (k, p) = (1, 2), we get that m(1)

ψ (x; 2) = r(x)( f2 (x) f3 (x) -f1 (x) f4 (x)) + r1 (x)( f (x) f4 (x) -f 2 2 (x)) + r2 (x)( f1 (x) f2 (x) -f (x) f3 (x)) f (x) f2 (x) f4 (x) + 2 f1 (x) f2 (x) f3 (x) -f 3 2 (x) -f (x) f 2 3 (x) -f 2 1 (x) f4 (x)
.

Let N p be the (p + 1) × (p + 1) matrix having (i, j)th entry equal to µ i+j-2 (K), 1 ≤ i, j ≤ p + 1 and let M k,p (u) be the same as N p , but with the (k+1)-th column replaced by (1, u, . . . , u p ) T . This notation allows us to introduce the kernel corresponding to the estimation of the kth derivative with local polynomial fitting of degree p (see, e.g., [START_REF] Fan | Local Polynomial Modelling and Its Applications[END_REF] or [START_REF] Wand | Kernel Smoothing[END_REF] pp. 135-137):

K (k,p) (u) := k! × |M k,p (u)| |N p | × K(u).
For (k, p) = (1, 2) and (k, p) = (2, 3), we obtain

|M 1,2 (u)| |N 3 | = u µ 2 (K) and |M 2,3 (u)| |N 3 | = u 2 -µ 2 (K) µ 4 (K) -µ 2 2 (K)
.

Thus, under (K.2-3),

K (1,2) (u) := uK(u) µ 2 (K) and K (2,3) (u) := 2 × u 2 -µ 2 (K) K(u) µ 4 (K) -µ 2 2 ( 
K) are kernels of order (1, 3) and (2, 4) respectively. More generally, it is easily established that K (k,p) satisfies

IR u j K (k,p) (u)du =      0, 0 ≤ j ≤ p, j = q k!, j = q β k,p = 0, j = p + 1.
Therefore (-1) k K (k,p) is an order (k, p + 1) kernel as defined by Gasser et al. [START_REF] Gasser | Kernels for nonparametric curve estimation[END_REF]. Such kernels are tailored for estimating derivatives of functions such as regression or density functions. Following Ruppert and Wand [START_REF] Ruppert | Multivariate weighted least squares regression[END_REF] or Wand and Jones [START_REF] Wand | Kernel Smoothing[END_REF], some routine analysis gives us the following important fact

Var m(k) ψ;n (x) = 1 nh 2k+1 n × Var ψ(Y ) X = x f (x) IR K (k,p) (u) 2 du (1 + o IP (1)).
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By repeating the same arguments as in the proof of Theorem 3.1, we can formulate a uniform limit law for each couple (k, p).

Theorem 3.2 Under (F.1-2), (H.1-3), (K.1-3) we have, as n → ∞,

nh 2k+1 n 2 log(h -1 n ) 1/2 sup x∈I ± m(k) ψ;n (x) -IE m(k) ψ;n (x) -σ (k,p) (I) = o(1), almost surely,
where

σ (k,p) (I) = sup x∈I Var ψ(Y ) X = x f (x) IR K (k,p) (u) 2 du 1/2 .

Proofs

The proofs of our theorems follow the same line and can be inferred with little effort from the proof of the Theorem 1 in Einmahl and Mason [START_REF] Einmahl | An empirical process approach to the uniform consistency of kernel-type function estimators[END_REF]. For ease of conciseness, we decide only to prove Theorem 3.1. In order to study the asymptotic behavior of the local linear estimator we introduce a general local empirical process. For any j ∈ IN and continuous real valued functions c(•) and d(•) on the compact interval J, set for x ∈ J,

W n,j (x, ψ) = n i=1 c(x)ψ(Y i ) + d(x) K j x -X i h n -nIE c(x)ψ(Y ) + d(x) K j x -X h n , (4.1) 
where

K j (u) = u j K(u), u ∈ IR. Notice that W n,j (x, ψ) = √ n α n (ϑ x ),
where α n denotes the bivariate empirical process based upon (X 1 , Y 1 ), . . . (X n , Y n ) and indexed by the class of functions

ϑ x (u, v) := c(x)ψ(v) + d(x) K j x -u h n , x ∈ I.
Theorem 4.1 Under (F.1-2), (H.1-3) and (K.1-2), as n → ∞, with probability one,

2nh n log(h -1 n ) -1/2 sup x∈I ± W n,j (x, ψ) -σ W (I) = o(1)
,

where σ 2 W (I) = sup x∈I IE c(x)ψ(Y ) + d(x) 2 X = x f (x) IR K j (u) 2 du.
Proof. The methodology of proof is exactly the same as in [START_REF] Einmahl | An empirical process approach to the uniform consistency of kernel-type function estimators[END_REF], Theorem 1, p .4.

To obtain the upper bound, the authors use a maximal form of the Bernstein's inequality to estimate the supremum of the deviation on the nodes of a discrete grid and then use the Talagrand's inequality combined with a moment bound to control the difference between the original empirical processes and its values over the nodes of the grid. The main argument of the proof is based on Talagrand's exponential equality [START_REF] Talagrand | Sharper bounds for Gaussian and emprical processes[END_REF] for general empirical processes combined with an useful moment inequality for empirical processes indexed by classes of functions of Vapnik-Cervonenkis type (see, e.g., [START_REF] Einmahl | An empirical process approach to the uniform consistency of kernel-type function estimators[END_REF], [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type functions estimators[END_REF], [START_REF] Giné | On consistency of kernel density estimators for randomly censored data: Rates holding uniformly over adaptative intervals[END_REF] and [START_REF] Giné | Rates on strong uniform consistency for multivariate kernel density estimators[END_REF]).

Regarding the inner bound part, they apply poissonization techniques in the border of the limiting set σ 2 W (I). In our case, we notice that the function K j (u) = u j [K(u)], j ≥ 0, is clearly a function with bounded variation on IR. Thus K j fulfills also (K. [START_REF] Collomb | Conditions nécessaires et suffisantes de convergence uniforme d'un estimateur de la régression, estimation des dérivées de la regression[END_REF][START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF]. By following the steps of their Theorem 1 and by replacing K by K j , we obtain easily Theorem 4.1. Details are omitted.
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The deviation mLL ψ;n (x) -IE mLL ψ;n (x) cannot be expressed as a linear functional of the bivariate empirical process. However we are going to show that the stochastic deviation behaves asymptotically like its linearized version which corresponds to a special case of the general process in (4.1). Set

n := sup x∈I mLL ψ;n (x) -IE mLL ψ;n (x) - 1 f (x) rψ;n (x) -r ψ;n (x) -m ψ (x) fn (x) -f n (x) .
Notice that the right-hand side above is exactly the process W n,j (x, ψ) defined in (4.1), where we have chosen c(x) = 1/f (x) and d(x) = -m ψ (x)/f (x) which are uniformly continuous on J via (F.1-2) in conjunction with Scheffé's lemma. The proof of Theorem 3.1 boils down to the following lemma:

Lemma 1 Under the assumptions of Theorem 3.1, we have, with probability one,

n = o nh n 2 log(h -1 n ) -1/2
.

Proof. Applying Theorem 4.1 with c(x) = 0, d(x) = 1, j = 0, 1, 2, and then with c(x) = 1, d(x) = 0 and j = 0, 1, we get that

nh n 2 log(h -1 n ) 1/2 sup x∈I ± fn (x) -f n (x)
a.s.

= O(1), (4.2)

nh n 2 log(h -1 n ) 1/2 sup x∈I ± fn,1 (x) -f n,1 (x) 
a.s.

= O(1), (4.3)

nh n 2 log(h -1 n ) 1/2 sup x∈I ± fn,2 (x) -f n,2 (x) a.s. 
= O(1), 

A c c e p t e d m a n u s c r i p t

  Denote by I= p i=1 [a i , b i ] and J = p i=1 [a i , b i ] ⊃ I two fixed closed hyper-rectangles of IR p such that -∞ < a i < a i < b i < b i < ∞, for i = 1, . . . , p.

  Now K denotes a real valued kernel function defined on IR, ψ is a Borel function bounded on each compact subinterval of IR and I = [a, b], J = [a , b ] ⊃ I are two fixed compact intervals in IR. In the univariate setting, assumptions (F.1-2), (K.1-3) and (H.1-3) reduce to the followings: (F.1) g(•, •) is continuous on J × IR and f(•) is continuous and strictly positive on J; (F.2) Y 1I {X∈J} is bounded on IR; (K.1) K is a right-continuous function with bounded variation on IR;

2 . 3 . 1

 231 Remark By setting ψ(y) = 1I {y≤t} in (3.1), we obtain a new estimator of the conditional distribution function which shares the same interesting bias properties as the local linear estimator.
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