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THE CAPACITY OF q-STATE POTTS NEURAL NETWORKS WITH

PARALLEL RETRIEVAL DYNAMICS

MATTHIAS LÖWE AND FRANCK VERMET

Abstract. We define a Potts version of neural networks with q states. We give upper
and lower bounds for the storage capacity of this model of associative memory in the sense
of exact retrieval of the stored information. The critical capacity is of the order c N

log N

where N is the number of neurons and the constant c increases quadratically with q.

1. Introduction

A Potts neural network is a variant of the well known Hopfield model [7], [1] to the case
of q ≥ 2 states. These can be thought of as colors, for instance. It was first introduced by
Kanter [9], and later studied by Ferrari and Picco [5], Gayrard [6]. Recently it has been
rediscovered in the context of inverse problems with bio-inspired models by Quenet et al.
[13]. The Potts neural network is related to the mean field Potts model described by Wu
[15] in the same way as the Hopfield model is related to the Curie-Weiss model (see e.g.
[4]). Formally, the q-states Potts neural network consists of a state space S with |S| = q
and synaptic efficacies (Wij)N

i,j=1, N being the size of the network. These efficacies induce
a dynamics T on SN by

Ti(σ) = π

(
N∑

j=1

Wijσj

)
, i = 1, . . . , N (1)

where π is a projection operator onto S. One step of the parallel dynamics T = (Ti)N
i=1 sends

σ ∈ SN to (Ti(σ))N
i=1. Suppose we want to store patterns ξ1, . . . , ξM ∈ SN in this network

in such a way that whenever we start not too far away from one of the ξµ the dynamics
will lead to the stored pattern. Then the following setup appears naturally. Choose

S = {vi := ei − 1/q1, i = 1, . . . q},

where ei is the i’th unit vector in R
q and 1 ∈ R

q is the vector with a 1 in each component.
(Other choices of S would lead to a more complicated definition of the synaptic efficacies,
see e.g. [5]). For a given set of vectors ξ1, . . . , ξM ∈ SN we define

Wij :=
M∑

µ=1

ξµ
i (ξµ

j )t

where the upper index t indicates transposition. Note that each Wij is itself a q × q matrix.
Also note that the Wij are a generalization of Hebb’s learning rule to our state space S.
With these definitions for each σ ∈ SN the dynamics T = (Ti)N

i=1 is given by (1) where
Wijσj is to be understood in the sense of matrix multiplication and π is the L2-projection
onto S. The choice q = 2 gives an equivalent formulation of the standard Hopfield model.
For the rest of this note we assume that the ξ1, . . . , ξM ∈ SN are taken i.i.d. with uni-
form probability from the set SN , i.e. all ξµ are independent and all its coordinates are
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2 MATTHIAS LÖWE AND FRANCK VERMET

selected independently with uniform probability 1/q from the set S. We study the following
questions:

(1) How large can we choose M to ensure that the ξµ are fixed points of the dynamic
T (with high probability)?

(2) How large can M be chosen to ensure that corrupted patterns are attracted to their
original versions (by one or several steps of the dynamics, with high probability)?

2. Results

The answers to the above questions are given in four theorems below. First we give a lower
bound on the storage capacity.

Theorem 2.1. Write M = c N
log N

. Then

(1) If c < q(q−1)
4 , then for every fixed µ = 1, . . . , M

P(T (ξµ) = ξµ) → 1 as N → ∞.

(2) If c < q(q−1)
8 , then it holds that

P(∀µ = 1, . . . M : T (ξµ) = ξµ) → 1 as N → ∞.

(3) If c < q(q−1)
12 , then

P(lim inf
N→∞

∩M
µ=1T (ξµ) = ξµ) = 1.

Remark 2.2. Note that for q = 2 we obtain the known bounds for the Hopfield model (see
[11],[14], [12]). Also note that the capacity increases with q as q(q − 1). This agrees with
the findings in [9] in a similar context.

The next theorem, that is a generalization of Theorems by Loukianova [10] and Bovier [2]
for the Hopfield model, shows that the bound in part (1) of Theorem 2.1 is optimal.

Theorem 2.3. Write M = c N
log N

. Then, if c > q(q−1)
4

P(T (ξµ) = ξµ) → 0 as N → ∞ for all µ = 1, . . . , M .

The next two theorems deal with the reconstruction of corrupted patterns.

Theorem 2.4. Let M = c N
log N

. Then if � < q−1
q

and c <
q2(1− 1

q
−�)2

4(1− 1
q
) , for any fixed µ and

any yµ taken at random from S�N(ξµ) := {x ∈ SN , d(x, ξµ) = �N} (where d(·, ·) denotes
the Hamming distance and we assume that �N is an integer) it holds that

P(T (yµ) = ξµ) → 1 as N → ∞.

Remark 2.5. Analogous results to parts (2) and (3) of Theorem 2.1 can also be proven.

The corresponding constants are c <
q2(1− 1

q
−�)2

8(1− 1
q
) and c <

q2(1− 1
q
−�)2

12(1− 1
q
) , respectively.

Theorem 2.4 immediately raises the questions, whether for larger M , maybe even for M =
c N

log N
with c < q(q − 1)/4, corrupted patterns can be reconstructed by several steps of the

dynamics. This is answered in the affirmative by the following theorem, which basically
completes the picture of exact retrieval in q-state Potts networks.

Theorem 2.6. Let M = c N
log N

. Then, if c < q(q − 1)/4 for any fixed µ = 1, . . . , M , any
0 ≤ � < q−1

q
, and any yµ taken at random from S�N(ξµ) there exists a k (depending on �)

such that
P(T k(yµ) = ξµ) → 1

as N → ∞. Here T k is defined as the k’th iterate of the map T .
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CAPACITY OF q-STATE POTTS NETWORKS 3

Remarks 2.7. (1) Analogous results for all patterns (as in part (2) of Theorem 2.1)
or for sequential dynamics (i.e. if we apply the Ti one after another instead of
simultaneously) can also be proven.

(2) Theorem 2.6 generalizes a result by Burshtein [3] to the case of q-state Potts net-
works. However, our proof is different.

3. Proofs

In this section we give the proofs of Theorems 2.1, 2.3, 2.4, and 2.6. The proofs of Theorems
2.1 and 2.4 are rather elementary and similar to the proofs of the corresponding results in
the Hopfield model. We will keep them rather short, sketch the proof of 2.1 and leave the
proof of Theorem 2.4 to the reader.

Proof of Theorem 2.1. Assume without loss of generality that µ = 1 and that ξ1 is the
vector consisting of N coordinates that are all equal to v1 = (1 − 1

q
, −1

q
, . . . ,−1

q
)t. Then,

e.g. T1(ξ1) �= ξ1
1 if and only if the projection of

∑M
µ=1

∑N
j=1 ξµ

1 (ξµ
j )tξ1

j is not v1 and this is
the case if and only if

< vk,

M∑
µ=1

N∑
j=1

ξµ
1 (ξµ

j )tξ1
j >≥< v1,

M∑
µ=1

N∑
j=1

ξµ
1 (ξµ

j )tξ1
j > (2)

for some k = 2, . . . , q (here <, ·, · > denotes the scalar product in R
q). For k = 2, formula

(2) is true if and only if
N∑

j=1

M∑
µ=2

xµ
1η

µ
j ≤ −N(1 − 1

q
). (3)

Here we have set xµ
i := ξµ

i,1 − ξµ
i,2, ηµ

j := (ξµ
j )tξ1

j and ξµ
i,1 and ξµ

i,2 are the first and second
coordinate of ξµ

i , respectively. The xµ
i as well as the ηµ

j are identically distributed with

P(xµ
i = x) =




1
q

x = 1
1
q

x = −1
1 − 2

q
x = 0

and P(ηµ
j = y) =

{ 1
q

y = 1 − 1
q

1 − 1
q

y = −1
q

The probability of (3) can be bounded by an exponential Chebyshev inequality: for t > 0,

P(
N∑

j=1

M∑
µ=2

xµ
1η

µ
j ≤ −N(1 − 1

q
)) ≤ e−tN(1− 1

q
)
E(exp −t

N∑
j=1

M∑
µ=2

xµ
1η

µ
j ).

Using the independence of xµ
1η

µ
j in µ and the pairwise independence of these variables in j

one computes that

E(exp −t

N∑
j=1

M∑
µ=2

xµ
1η

µ
j ) ≤ const. e

t2NM
1− 1

q

q2

The optimal choice of t = q2

2M
and the ansatz M = cN/(log N) give the result. �

Proof of Theorem 2.3. Now, for an upper bound of

P(∀i = 1, . . . , N,

N∑
j=1

M∑
µ=2

xµ
i η

µ
j ≥ −N(1 − 1

q
))

one cannot simply work with the union bound as in the previous proof. An extra argument
is provided by using negative association. The idea of negative association in this context
was introduced by Loukianova [10] and was later also used by Bovier [2] to obtain a result
similar to ours in the context of the Hopfield model.
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4 MATTHIAS LÖWE AND FRANCK VERMET

Assume that µ = 1 and ξ1 consists of N coordinates that are all equal to v1 = (1 −
1
q
, −1

q
, . . . ,−1

q
)t. Let y = (yµ, µ = 1, . . . , M), z = (zµ, µ = 1, . . . , M) and Py,z the probability

measure P conditioned on Y µ :
∑

j ηµ
j = yµ and Zµ :

∑
i δxµ

i =−1 = zµ for each µ. We write

P(∀i,
N∑

j=1

M∑
µ=2

xµ
i η

µ
j ≥ −N(1 − 1

q
)) =

∑
y,z Py,z(∀i,

∑M
µ=2 xµ

i y
µ ≥ −N(1 − 1

q
))

×P(∀µ,
∑

j ηµ
j = yµ,

∑
i δxµ

i =−1 = zµ).

From general results on negative association (see [10]), one derives that, conditionally on
Y µ = yµ and Zµ = zµ for each µ, the random variables (xµ

i )µ=1,...,M
i=1,...,N , are negatively associ-

ated. This implies that

Py,z(∀i,

M∑
µ=2

xµ
i y

µ ≥ −N(1 − 1
q
)) ≤

N∏
i=1

Py,z(
M∑

µ=2

xµ
i y

µ ≥ −N(1 − 1
q
)) (4)

All terms in the product on the right hand side in (4) are equal and can now be estimated
by using the technique of tilted measures which is known from large deviation theory : for
t ≤ 0, let P

t
y,z be the probability measure

P
t
y,z(.) :=

Ey,z[1{.} exp( t
N

∑
µ≥2 xµ

1y
µ)]

Ey,z[exp( t
N

∑
µ≥2 xµ

1y
µ)]

.

Now, Py,z(
∑M

µ=2 xµ
1y

µ ≥ −N(1− 1
q
)) = 1−Py,z(

∑M
µ=2 xµ

1y
µ < −N(1− 1

q
)) and for any δ > 0,

Py,z(
M∑

µ=2

xµ
1y

µ < −N(1 − 1
q
)) ≥ Py,z(−N(1 − 1

q
+ δ) <

M∑
µ=2

xµ
1y

µ < −N(1 − 1
q
))

≥ e−t(−1+ 1
q
−δ)

Ey,z[e
t
N

∑M
µ=2 xµ

1 yµ

]Pt
y,z(−N(1 − 1

q
+ δ) <

M∑
µ=2

xµ
1y

µ < −N(1 − 1
q
))

Under Py,z, the random variables (xµ
1) are still independent and their law is given by

Py,z(x
µ
1 = 1) = wµ

N
, Py,z(x

µ
1 = −1) = zµ

N
and Py,z(x

µ
1 = 0) = 1 − wµ

N
− zµ

N
, where we set

wµ := yµ + N
q
. Computing Ey,z[e

t
N

∑M
µ=2 xµ

1 yµ

] and Ey,z[x
µ
1e

t
N

∑M
µ=2 xµ

1 yµ

], we obtain

E
t
y,z[

1
N

M∑
µ=2

xµ
1y

µ] =
1
N

∑
µ

yµ wµ − zµ

N
+ (yµ)2(

wµ + zµ

N
− (

wµ − zµ

N
)2)

t

N
+ O((yµ)3 t2

N2 ).

This quantity can be evaluated for typical values of wµ, zµ and yµ. More precisely, let

h(Y µ, Zµ) := Y µ W µ − Zµ

N
+ (Y µ)2(

W µ + Zµ

N
− (

W µ − Zµ

N
)2)

t

N
,

where W µ := Y µ + N
q
. Then there exist constants c1, c2 > 0 such that the set

A(c1, c2) := {y, z : | 1
M

M∑
µ=2

h(yµ, zµ) − E(h(Y 1, Z1))| ≤ c1

√
log M

M
;

M
sup
µ=2

|yµ| ≤ c2

√
log M}

satisfies P((Y µ, Zµ)µ=1,...,M ∈ A(c1, c2)) → 1 as N → ∞. We can then restrict to y, z ∈
A(c1, c2), for which we have

E
t
y,z[

1
N

M∑
µ=2

xµ
1y

µ] 	 a(
1
q

+ t
2
q
(1 − 1

q
)),
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where a := M
N

, and the rest is negligible. Choosing t = t∗ := − 1
a
( q2

2 + εN) for some εN → 0
as N → ∞, we obtain

E
t∗
y,z[

1
N

M∑
µ=2

xµ
1y

µ] = −1 +
1
q

− δ

2
.

A similar computation shows that the variance satisfies

V
t∗
y,z[

1
N

M∑
µ=2

xµ
1y

µ] = E
t∗
y,z[(

1
N

M∑
µ=2

xµ
1y

µ − E
t∗
y,z[

1
N

M∑
µ=2

xµ
1y

µ])2] 	 c3 a(1 + εN),

for a constant c3 > 0 (depending only on q) and some εN → 0 as N → +∞. Employing
Chebychev’s inequality, we arrive at

P
t∗
y,z(−N(1 − 1

q
+ δ) <

M∑
µ=2

xµ
1y

µ < −N(1 − 1
q
)) ≥ 1 − 4

δ2 V
t∗
y,z[

1
N

M∑
µ=2

xµ
1y

µ] 	 1 − 4
δ2 c3a,

so that choosing δ := 4
√

c3a, we get P
t∗
y,z(−N(1 − 1

q
+ δ) <

∑M
µ=2 xµ

1y
µ < −N(1 − 1

q
)) ≥ 1

2
for N large enough. Similarly we obtain

e−t∗(−1+ 1
q
−δ)

Ey,z[e
t∗
N

∑M
µ=2 xµ

1 yµ

] ≥ e− q(q−1)
4a

(1+εN )

for some εN → 0 as N → +∞. We finally arrive at

Py,z(∀i,

M∑
µ=2

xµ
i y

µ ≥ −N(1 − 1
q
)) ≤ (1 − 1

2 exp(− q(q−1)
4a

(1 + εN))N

≤ exp(−N
2 exp(− q(q−1)

4a
(1 + εN))),

which goes to zero for a = c/ log N , if c > q(q−1)
4 . Since this is true for all y, z ∈ A(c1, c2),

this proves the theorem. �
Eventually the proof of Theorem 2.6 is split into different lemmas. We only need to consider
the case M = (1−1/q−κ)2 q2N

4(1−1/q) log N
for some positive κ ≤ �, since the case κ ∈]�, 1−1/q[

is identical to Theorem 2.4, with k = 1.

Lemma 3.1. Let c > 0, M = c N
log N

and yµ be randomly chosen from S�N(ξµ), 0 ≤ � <

(q − 1)/q. Then for α = 1 − (1−1/q−�)2q2

4(1− 1
q
)c + ε for some ε > 0 it holds that

P(d(T (yµ), ξµ) ≥ Nα) → 0 as N → ∞.

Proof. Assume that µ = 1 and that ξ1 consists of N coordinates that are all equal to v1 =
(1− 1

q
, −1

q
, . . . ,−1

q
)t. For y1 and α defined as in the theorem let A := {d(T (y1), ξ1) ≥ Nα}.

In other words

A = {∃I|I| = Nα, ∀i ∈ I ∃ki ∈ {2, . . . , q} : < vki
,

M∑
µ=1

N∑
j=1

ξµ
i (ξµ

j )ty1
j >≥< v1,

M∑
µ=1

N∑
j=1

ξµ
i (ξµ

j )ty1
j >}.

Therefore with C defined as

C := {∃I : |I| = Nα, ∀i ∈ I ∃ki ∈ {2, . . . , q} :
∑
i∈I

< v1 − vki
,

M∑
µ=1

N∑
j=1

ξµ
i (ξµ

j )ty1
j >≤ 0}

we have A ⊆ C. Now define xµ
i and ηµ

j by xµ
i := ξµ

i,1 − ξµ
i,2, and ηµ

j := (ξµ
j )ty1

j . Their laws
are given by

P[xµ
i = 1] = P[xµ

i = −1] =
1
q
, P[xµ

i = 0] = 1 − 2
q
; P[ηµ

j = 1 − 1
q
] =

1
q
, P[ηµ

j = −1
q
] = 1 − 1

q
.
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6 MATTHIAS LÖWE AND FRANCK VERMET

We can bound the probability of A by

P(A) ≤ P (C) ≤
(

N

Nα

)
(q − 1)Nα

P(
Nα∑
i=1

N∑
j=1

M∑
µ=1

xµ
i η

µ
j ≤ 0).

By Stirling’s formula
(

N
Nα

) ∼ e(1−α)Nα log N which also shows that (q − 1)Nα (even though
being huge) is negligible with respect to

(
N
Nα

)
. The probability is again estimated by an

exponential Chebyshev inequality. Observe that the summand for µ = 1 is a number:
Nα∑
i=1

N∑
j=1

x1
i η

1
j = N1+α((1 − 1

q
)(1 − �) − 1

q
�) = N1+α(1 − 1

q
− �).

Therefore

P(
Nα∑
i=1

N∑
j=1

M∑
µ=1

xµ
i η

µ
j ≤ 0) ≤ e−tN1+α(1− 1

q
−�)

E exp

(
−t
∑
µ≥2

Nα∑
i=1

N∑
j=1

xµ
i η

µ
j

)

≤ e−tN1+α(1− 1
q
−�)
(
Ee−2t

∑
µ≥2

∑Nα

i=1 xµ
i

∑N
j=Nα+1 ηµ

j

)1/2 (
Ee−2t

∑
µ≥2

∑Nα

i=1 xµ
i

∑Nα

j=1 ηµ
j

)1/2
.

To compute the expectation of the first term, we use the fact that
∑Nα

i=1 xµ
i and

∑N
j=Nα+1 ηµ

j

are independent, and the quantities are also independent for different µ, which implies

E exp

(
−2t

∑
µ≥2

Nα∑
i=1

xµ
i

N∑
j=Nα+1

ηµ
j

)
=

∏
µ≥2

E(ξµ
i )i≤Nα

∏
j>Nα

Eξµ
j
e−2tXµηµ

j , (5)

where Eξµ
j

denotes expectation with respect to the random variable ξµ
j and Xµ :=

∑Nα

i=1 xµ
i .

To compute the second factor on the right, observe that since the ηµ
j are centered∏

j>Nα

Eξµ
j
e−2tXµηµ

j = exp(
∑

j>Nα

log Eξµ
j
e−2tXµηµ

j ) ≤ exp(
∑

j>Nα

Eξµ
j
[e−2tXµηµ

j − 1])

= exp(
∑

j>Nα

Eξµ
j
[e−2tXµηµ

j + 2tXµηµ
j − 1]),

Now, −2Xµηµ
j ≤ K := 2(1 − 1

q
)Nα and x �→ x−2(ex − x − 1) is increasing, yielding that

Eξµ
j
[e−2tXµηµ

j − 2tXµηµ
j − 1]) ≤ 4(Xµ)2

Eξµ
j
[(ηµ

j )2]
etK − tK − 1

K2

≤ 4(Xµ)2
Eξµ

j
[(ηµ

j )2]
t2

2(1 − Kt/3)

Now Eξµ
j
[(ηµ

j )2] = 1
q
(1 − 1

q
). Moreover,∏

j>Nα

Eξµ
j
e−2tXµηµ

j ≤ e2(1− 1
q
) 1

q
t2(N−Nα)(Xµ)2(1+O(tNα)) = EU exp(γ tXµU),

for a standard normal random variable U and γ :=
√

2(1 − 1
q
)1

q
(N − Nα)(1 + O(tNα)).

Now, integrating with respect to ξµ
i , i ≤ Nα, and using cosh(x) ≤ exp(x2

2 ) for all x, we get

∏
j>Nα

Eξµ
j
e−2tXµηµ

j ≤ EU

(
2
q

cosh (γtU) + (1 − 2
q
)
)Nα

≤
Nα∑
k=0

(
Nα

k

)
(
2
q
)k (1 − γ2t2k)−1/2 (1 − 2

q
)Nα−k
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where we anticipated the choice t = O(1/M) and M = c N
log N

, hence γ2t2Nα < 1 and

(1 − γ2t2k)−1/2 = e− 1
2 log(1−γ2t2k) ≤ eγ2 t2

2 k+γ4 t2
2 N2α

.

This implies ∏
j>Nα

Eξµ
j
e−2tXµηµ

j ≤ eγ4 t2
2 N2α

(
2
q
eγ2 t2

2 + 1 − 2
q
)Nα

Hence(
E exp

(
−2t

∑
µ≥2

Nα∑
i=1

xµ
i

N∑
j=Nα+1

ηµ
j

))1/2

≤ exp(MN1+α(1 − 1
q
)

1
q2 t2(1 + εN)),

with εN → 0 as N → +∞. The first factor on the right in (5) is negligible. More precisely
we have

E exp

(
−2t

∑
µ≥2

Nα∑
i=1

xµ
i

Nα∑
j=1

ηµ
j

)
=

∏
µ≥2

E exp

(
−2t

Nα∑
i=1

xµ
i

Nα∑
j=1

ηµ
j

)
≤ exp(CMtNα),

for some C > 0 and N large enough. Indeed, let Xµ :=
∑

i≤Nα xµ
i and Y µ :=

∑
i≤Nα ηµ

i .
We use the trivial inequality −2XµY µ ≤ (Xµ)2 + (Y µ)2 to get

E exp

(
−2t

∑
µ≥2

Nα∑
i=1

xµ
i

Nα∑
j=1

ηµ
j

)
≤

∏
µ≥2

E exp(t(Xµ)2 + t(Y µ)2))

≤ (E exp 2t(Xµ)2)1/2 (E exp 2t(Y µ)2)1/2

≤ exp(CMtNα),

again by introducing a normal random variable to linearize the exponent in the expectation.

Keeping only the dominating term, choose t =
(1− 1

q
−�)q2

2(1− 1
q
)M . This yields

P(
Nα∑
i=1

N∑
j=1

M∑
µ=1

xµ
i η

µ
j ≤ 0) ≤ e

− N1+α

M

(1− 1
q −�)2q2

4(1− 1
q ) .

The choice M = c N
log N

together with our previous calculations implies

P (C) ≤
(

N

Nα

)
(q − 1)Nα

exp(−(1 − 1
q

− �)2q2

4(1 − 1
q
)c

Nα log N)

≈ (q − 1)Nα

exp ((−(1 − 1
q

− �)2q2

4(1 − 1
q
)c

+ (1 − α))Nα log N).

This term clearly converges to zero, if α = 1 − (1−1/q−�)2q2

4(1− 1
q
)c + ε for some ε > 0 . �

Lemma 3.2. Let c < q(q − 1)/4, M = c N
log N

and α ∈ [1/2, 1[. Then for every fixed µ,
BNα(ξµ) := {x : d(x, ξµ) ≤ Nα}, and β = 2α − 1 + ε for some ε > 0 it holds

P(∃x ∈ BNα(ξµ) : d(T (x), ξµ) ≥ Nβ) → 0 as N → ∞.

Proof. This again requires some exponential estimate. Let

A := {∃y ∈ BNα(ξµ) : d(T (y), ξµ) ≥ Nβ}.
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As before we may assume that µ = 1 and ξ1 is the vector consisting of N coordinates that
are all equal to v1. We have again that A ⊆ C, where C := ∪y∈BNα (ξ1)C(y), and

C(y) := {∃I : |I| = Nβ, ∀i ∈ I, ∃ki ∈ {2, . . . , q} :
∑
i∈I

< v1 − vki
,

M∑
µ=1

N∑
j=1

ξµ
i (ξµ

j )tyj >≤ 0}.

Following the lines of the proof of Lemma 3.1 one shows that the probability of the event

C(ξ1, δ) := {∃I : |I| = Nβ, ∀i ∈ I, ∃ki :
∑
i∈I

< v1−vki
,

M∑
µ=2

N∑
j=1

ξµ
i (ξµ

j )tξ1
j >≤ −N1+β(1−1

q
)(1−δ)}

converges to zero for δ ∈]0, 1[, β = 1 − (1−δ)2q2(1− 1
q
)

4c
+ ε and ε > 0. Write

P[A] ≤ P[C(ξ1, δ)] +
∑

y∈BNα (ξ1)

P[C(y) ∩ C(ξ1, δ)]

(where the bar denotes the complement of an event). The first term converges to 0 and the
second term satisfies

P[C(y) ∩ C(ξ1, δ)] ≤
∑

I:|I|=Nβ

P[
∑
i∈I

M∑
µ=2

∑
j∈J

xµ
i (ξµ

j )t(yj − ξ1
j ) ≤ −N1+β(1 − 1

q
)δ],

where yj are the coordinates of the vector y ∈ BNα(ξ1), J ⊆ {1, . . . , N} is the set of size
at most Nα such that y differs from ξ1 exactly in the coordinates J and we again write
xµ

i := ξµ
i,1 − ξµ

i,2. For every fixed y ∈ BNα(ξ1), µ ≥ 2 and j ∈ J , δµ
j (y) := (ξµ

j )t(yj − ξ1
j ) has

the same law as xµ
i , that is

P[δµ
j (y) = 1] = P[δµ

j (y) = −1] =
1
q
, P[δµ

j (y) = 0] = 1 − 2
q
.

Now the probability of this event doesn’t change much, if we just concentrate on sets J with
|J | = Nα. As in the proof of Lemma 3.1 one shows that for each fixed J with |J | = Nα

P[
∑
i∈I

M∑
µ=2

∑
j∈J

xµ
i (ξµ

j )t(yj − ξ1
j ) ≤ −N1+β(1 − 1

q
)δ] ≤ C1 exp

(−C2N
1+β−α log N

)
for some positive constants C1 and C2 depending only on q and δ. On the other hand, there
are

(
N
Nα

) ∼ e(1−α)Nα log N choices for J and
(

N
Nβ

) ∼ e(1−β)Nβ log N choices for I. Therefore,∑
y∈BNα (ξ1)

P[C(y) ∩ C(ξ1, δ)] ≤ C1e
(1−α)Nα log Ne(1−β)Nβ log N exp

(−C2N
1+β−α log N

)
(6)

with β = 1 − (1−δ)2

λ
+ ε, λ := 4c

q(q−1) ∈]0, 1[ and α ∈ [1/2, 1[. Now choose

δ = 1 −
√

2λ(1 − α) ∈]0, 1[

such that β = 2α − 1 + ε for ε > 0 small enough. In particular β < α and we obtain∑
y∈BNα (ξ1)

P[C(y) ∩ C(ξ1, δ)] ≤ C1e
(1−α)Nα log Ne(1−β)Nβ log N exp

(−C2N
α+ε log N

)
which goes to 0 as N → ∞. This proves the lemma. �
Lemma 3.3. Let c < q(q − 1)/4, M = c N

log N
and β ∈]0, 1/2[. Then for every fixed µ it

holds
P(∃x ∈ BNβ(ξµ) : T (x) �= ξµ} → 0

as N → ∞.
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Proof. As the proof of Lemma 3.3 is very similar to the proof of Lemma 3.2 we will refrain
from proving it here. �
These three lemmas now immediately imply Theorem 2.6.

Proof of Theorem 2.6. The proof of Theorem 2.6 consists of one application of Lemma 3.1
that states that T (yµ) is in distance Nα to ξµ for some α < 1, several applications of Lemma
3.2 to reduce the distance of T k−1(yµ) to Nβ for some β < 1/2, and a final application of
Lemma 3.3. �

References

[1] D.J. Amit, G. Gutfreund, H. Sompolinsky; Statistical mechanics of neural networks near
saturation; Ann. Phys. 173, 30-67 (1987)

[2] A. Bovier; Sharp upper bounds for perfect retrieval in the Hopfield model; J. Appl. Prob. 36
(1999), 941–950

[3] D. Burshtein; Nondirect convergence radius and number of iterations of the Hopfield associative
memory; IEEE Trans. Inf. Th. 40 (1994), 838-847

[4] R.S. Ellis; Entropy, large deviations and statistical mechanics; Grundlehren der Math. Wis-
senschaften 271, Springer, Berlin (1985)

[5] P. Ferrari, P. Picco; A lower bound on the memory capacity in the Potts-Hopfield model; J.
Stat. Phys. 66 (1992), 1643–1652

[6] V. Gayrard; Thermodynamic limit of the q-states Potts-Hopfield model with infinitely many
patterns; J. Stat. Phys. 68 (1992), 977-1011

[7] J.J. Hopfield; Neural networks and physical systems with emergent collective computational
abilities; Proc. nat. Acad. Sci. USA 79 (1982), 2554-2558

[8] Joag-Dev, K., Proschan, F.; Negative association of random variables, with applications. Ann.
Statist. 11 (1983), no. 1, 286–295.

[9] I. Kanter, Potts-glass models of neural networks; Phys. rev. A 37 (1988), 2739–2743
[10] D. Loukianova; Lower bounds on the restitution error in the Hopfield model; Probab. Theory

Relat. Fields 107 (1997), 161–176
[11] R. McEliece, E. Posner, E. Rodemich. S. Venkatesh; The capacity of the Hopfield associative

memory; IEEE Inf. Th. 33 (1987), 461-482
[12] D. Petritis; Thermodynamic formalism of neural computing; Nonlinear Phenomena of Complex

Systems 2 (1996), 86–146, Kluwer Acad. Publ., Dordrecht
[13] B. Quenet, G. Horcholle-Bossavit, A. Wohrer, G. Dreyfus; Formal modeling with multistate

neurons and multidimensional synapses; Biosystems 79, 21-32 (2005).
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