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We define a Potts version of neural networks with q states. We give upper and lower bounds for the storage capacity of this model of associative memory in the sense of exact retrieval of the stored information. The critical capacity is of the order c N log N

where N is the number of neurons and the constant c increases quadratically with q.

Introduction

A Potts neural network is a variant of the well known Hopfield model [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF], [START_REF] Amit | Statistical mechanics of neural networks near saturation[END_REF] to the case of q ≥ 2 states. These can be thought of as colors, for instance. It was first introduced by Kanter [START_REF] Kanter | Potts-glass models of neural networks[END_REF], and later studied by Ferrari and Picco [START_REF] Ferrari | A lower bound on the memory capacity in the Potts-Hopfield model[END_REF], Gayrard [START_REF] Gayrard | Thermodynamic limit of the q-states Potts-Hopfield model with infinitely many patterns[END_REF]. Recently it has been rediscovered in the context of inverse problems with bio-inspired models by Quenet et al. [START_REF] Quenet | Formal modeling with multistate neurons and multidimensional synapses[END_REF]. The Potts neural network is related to the mean field Potts model described by Wu [START_REF] Wu | The Potts model[END_REF] in the same way as the Hopfield model is related to the Curie-Weiss model (see e.g. [START_REF] Ellis | Entropy, large deviations and statistical mechanics[END_REF]). Formally, the q-states Potts neural network consists of a state space S with |S| = q and synaptic efficacies (W ij ) N i,j=1 , N being the size of the network. These efficacies induce a dynamics T on S N by

T i (σ) = π N j=1 W ij σ j , i = 1, . . . , N (1) 
where π is a projection operator onto S. One step of the parallel dynamics T = (T i ) N i=1 sends σ ∈ S N to (T i (σ)) N i=1 . Suppose we want to store patterns ξ 1 , . . . , ξ M ∈ S N in this network in such a way that whenever we start not too far away from one of the ξ µ the dynamics will lead to the stored pattern. Then the following setup appears naturally. Choose S = {v i := e i -1/q1, i = 1, . . . q}, where e i is the i'th unit vector in R q and 1 ∈ R q is the vector with a 1 in each component. (Other choices of S would lead to a more complicated definition of the synaptic efficacies, see e.g. [START_REF] Ferrari | A lower bound on the memory capacity in the Potts-Hopfield model[END_REF]). For a given set of vectors ξ 1 , . . . , ξ M ∈ S N we define

W ij := M µ=1 ξ µ i (ξ µ j ) t
where the upper index t indicates transposition. Note that each W ij is itself a q × q matrix. Also note that the W ij are a generalization of Hebb's learning rule to our state space S. With these definitions for each σ ∈ S N the dynamics T = (T i ) N i=1 is given by (1) where W ij σ j is to be understood in the sense of matrix multiplication and π is the L 2 -projection onto S. The choice q = 2 gives an equivalent formulation of the standard Hopfield model. For the rest of this note we assume that the ξ 1 , . . . , ξ M ∈ S N are taken i.i.d. with uniform probability from the set S N , i.e. all ξ µ are independent and all its coordinates are
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selected independently with uniform probability 1/q from the set S. We study the following questions:

(1) How large can we choose M to ensure that the ξ µ are fixed points of the dynamic T (with high probability)? (2) How large can M be chosen to ensure that corrupted patterns are attracted to their original versions (by one or several steps of the dynamics, with high probability)?

Results

The answers to the above questions are given in four theorems below. First we give a lower bound on the storage capacity.

Theorem 2.1. Write M = c N log N . Then (1) If c < q(q-1)
4 , then for every fixed µ = 1, . . . , M

P(T (ξ µ ) = ξ µ ) → 1 as N → ∞.
(2) If c < q(q-1) 8 , then it holds that

P(∀µ = 1, . . . M : T (ξ µ ) = ξ µ ) → 1 as N → ∞.
(3) If c < q(q-1) 12 , then P(lim inf

N →∞ ∩ M µ=1 T (ξ µ ) = ξ µ ) = 1.
Remark 2.2. Note that for q = 2 we obtain the known bounds for the Hopfield model (see [START_REF] Mceliece | The capacity of the Hopfield associative memory[END_REF], [START_REF] Vermet | Étude asymptotique d'un réseau neuronal : le modèle de mémoire associative de Hopfield[END_REF], [START_REF] Petritis | Thermodynamic formalism of neural computing[END_REF]). Also note that the capacity increases with q as q(q -1). This agrees with the findings in [START_REF] Kanter | Potts-glass models of neural networks[END_REF] in a similar context.

The next theorem, that is a generalization of Theorems by Loukianova [START_REF] Loukianova | Lower bounds on the restitution error in the Hopfield model[END_REF] and Bovier [START_REF] Bovier | Sharp upper bounds for perfect retrieval in the Hopfield model[END_REF] for the Hopfield model, shows that the bound in part (1) of Theorem 2.1 is optimal.

Theorem 2.3. Write M = c N log N . Then, if c > q(q-1)

4 P(T (ξ µ ) = ξ µ ) → 0 as N → ∞ for all µ = 1, . . . , M.
The next two theorems deal with the reconstruction of corrupted patterns.

Theorem 2.4. Let M = c N log N . Then if < q-1 q and c < q 2 (1-1 q -) 2 4(1-1 q ) , for any fixed µ and any y µ taken at random from S N (ξ µ ) := {x ∈ S N , d(x, ξ µ ) = N } (where d(•, •) denotes the Hamming distance and we assume that N is an integer) it holds that

P(T (y µ ) = ξ µ ) → 1 as N → ∞.
Remark 2.5. Analogous results to parts ( 2) and (3) of Theorem 2.1 can also be proven.

The corresponding constants are c <

q 2 (1-1 q -) 2 8(1-1 q )
and c <

q 2 (1-1 q -) 2 12(1-1 q ) ,
respectively. Theorem 2.4 immediately raises the questions, whether for larger M , maybe even for M = c N log N with c < q(q -1)/4, corrupted patterns can be reconstructed by several steps of the dynamics. This is answered in the affirmative by the following theorem, which basically completes the picture of exact retrieval in q-state Potts networks. Theorem 2.6. Let M = c N log N . Then, if c < q(q -1)/4 for any fixed µ = 1, . . . , M, any 0 ≤ < q-1 q , and any y µ taken at random from S N (ξ µ ) there exists a k (depending on ) such that

P(T k (y µ ) = ξ µ ) → 1 as N → ∞.
Here T k is defined as the k'th iterate of the map T .
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Remarks 2.7.

(1) Analogous results for all patterns (as in part ( 2) of Theorem 2.1) or for sequential dynamics (i.e. if we apply the T i one after another instead of simultaneously) can also be proven.

(2) Theorem 2.6 generalizes a result by Burshtein [3] to the case of q-state Potts networks. However, our proof is different.

Proofs

In this section we give the proofs of Theorems 2.1, 2.3, 2.4, and 2.6. The proofs of Theorems 2.1 and 2.4 are rather elementary and similar to the proofs of the corresponding results in the Hopfield model. We will keep them rather short, sketch the proof of 2.1 and leave the proof of Theorem 2.4 to the reader.

Proof of Theorem 2.1. Assume without loss of generality that µ = 1 and that ξ 1 is the vector consisting of N coordinates that are all equal to

v 1 = (1 -1 q , -1 q , . . . , -1 q ) t . Then, e.g. T 1 (ξ 1 ) = ξ 1 1 if and only if the projection of M µ=1 N j=1 ξ µ 1 (ξ µ j ) t ξ 1 j is not v 1 and this is the case if and only if < v k , M µ=1 N j=1 ξ µ 1 (ξ µ j ) t ξ 1 j > ≥ < v 1 , M µ=1 N j=1 ξ µ 1 (ξ µ j ) t ξ 1 j > (2)
for some k = 2, . . . , q (here <,

•, • > denotes the scalar product in R q ). For k = 2, formula (2) 
is true if and only if

N j=1 M µ=2 x µ 1 η µ j ≤ -N (1 - 1 q ). (3) 
Here we have set x µ i := ξ µ i,1ξ µ i,2 , η µ j := (ξ µ j ) t ξ 1 j and ξ µ i,1 and ξ µ i,2 are the first and second coordinate of ξ µ i , respectively. The x µ i as well as the η µ j are identically distributed with

P(x µ i = x) =    1 q x = 1 1 q x = -1 1 -2 q x = 0 and P(η µ j = y) = 1 q y = 1 -1 q 1 -1 q y = -1 q
The probability of (3) can be bounded by an exponential Chebyshev inequality: for t > 0,

P( N j=1 M µ=2 x µ 1 η µ j ≤ -N (1 - 1 q )) ≤ e -tN (1-1 q ) E(exp -t N j=1 M µ=2 x µ 1 η µ j ).
Using the independence of x µ 1 η µ j in µ and the pairwise independence of these variables in j one computes that

E(exp -t N j=1 M µ=2 x µ 1 η µ j ) ≤ const. e t 2 NM 1-1 q q 2
The optimal choice of t = q 2 2M and the ansatz M = cN/(log N ) give the result. Proof of Theorem 2.3. Now, for an upper bound of

P(∀i = 1, . . . , N, N j=1 M µ=2 x µ i η µ j ≥ -N (1 - 1 q ))
one cannot simply work with the union bound as in the previous proof. An extra argument is provided by using negative association. The idea of negative association in this context was introduced by Loukianova [START_REF] Loukianova | Lower bounds on the restitution error in the Hopfield model[END_REF] and was later also used by Bovier [START_REF] Bovier | Sharp upper bounds for perfect retrieval in the Hopfield model[END_REF] to obtain a result similar to ours in the context of the Hopfield model.
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Assume that µ = 1 and ξ 1 consists of N coordinates that are all equal to v 1 = (1 -1 q , -1 q , . . . , -1 q ) t . Let y = (y µ , µ = 1, . . . , M), z = (z µ , µ = 1, . . . , M) and P y,z the probability measure P conditioned on Y µ : j η µ j = y µ and Z µ : i δ x µ i =-1 = z µ for each µ. We write

P(∀i, N j=1 M µ=2 x µ i η µ j ≥ -N (1 - 1 q )) = y,z P y,z (∀i, M µ=2 x µ i y µ ≥ -N (1 -1 q )) ×P(∀µ, j η µ j = y µ , i δ x µ i =-1 = z µ ).
From general results on negative association (see [START_REF] Loukianova | Lower bounds on the restitution error in the Hopfield model[END_REF]), one derives that, conditionally on Y µ = y µ and Z µ = z µ for each µ, the random variables (x µ i ) µ=1,...,M i=1,...,N , are negatively associated. This implies that

P y,z (∀i, M µ=2 x µ i y µ ≥ -N (1 - 1 q )) ≤ N i=1 P y,z ( M µ=2 x µ i y µ ≥ -N (1 - 1 q )) (4) 
All terms in the product on the right hand side in (4) are equal and can now be estimated by using the technique of tilted measures which is known from large deviation theory : for t ≤ 0, let P t y,z be the probability measure

P t y,z (.) := E y,z [1 {.} exp( t N µ≥2 x µ 1 y µ )] E y,z [exp( t N µ≥2 x µ 1 y µ )]
.

Now, P y,z ( M µ=2 x µ 1 y µ ≥ -N (1 -1 q )) = 1-P y,z ( M µ=2 x µ 1 y µ < -N (1 -1 q )
) and for any δ > 0,

P y,z ( M µ=2 x µ 1 y µ < -N (1 - 1 q )) ≥ P y,z (-N (1 - 1 q + δ) < M µ=2 x µ 1 y µ < -N (1 - 1 q )) ≥ e -t(-1+ 1 q -δ) E y,z [e t N M µ=2 x µ 1 y µ ]P t y,z (-N (1 - 1 q + δ) < M µ=2 x µ 1 y µ < -N (1 - 1 q ))
Under P y,z , the random variables (x µ 1 ) are still independent and their law is given by P y,z (x µ 1 = 1) = w µ N , P y,z (x µ 1 = -1) = z µ N and P y,z (x µ 1 = 0) = 1 -w µ N -z µ N , where we set

w µ := y µ + N q . Computing E y,z [e t N M µ=2 x µ 1 y µ ] and E y,z [x µ 1 e t N M µ=2 x µ 1 y µ ],
we obtain

E t y,z [ 1 N M µ=2 x µ 1 y µ ] = 1 N µ y µ w µ -z µ N + (y µ ) 2 ( w µ + z µ N -( w µ -z µ N ) 2 ) t N + O((y µ ) 3 t 2 N 2 ).
This quantity can be evaluated for typical values of w µ , z µ and y µ . More precisely, let

h(Y µ , Z µ ) := Y µ W µ -Z µ N + (Y µ ) 2 ( W µ + Z µ N -( W µ -Z µ N ) 2 ) t N ,
where W µ := Y µ + N q . Then there exist constants c 1 , c 2 > 0 such that the set

A(c 1 , c 2 ) := {y, z : | 1 M M µ=2 h(y µ , z µ ) -E(h(Y 1 , Z 1 ))| ≤ c 1 log M M ; M sup µ=2 |y µ | ≤ c 2 log M } satisfies P((Y µ , Z µ ) µ=1,...,M ∈ A(c 1 , c 2 )) → 1 as N → ∞.
We can then restrict to y, z ∈ A(c 1 , c 2 ), for which we have

E t y,z [ 1 N M µ=2 x µ 1 y µ ] a( 1 q + t 2 q (1 - 1 q )),

A c c e p t e d m a n u s c r i p t

where a := M N , and the rest is negligible. Choosing t = t * := -1 a ( q 2 2 + ε N ) for some ε N → 0 as N → ∞, we obtain

E t * y,z [ 1 N M µ=2 x µ 1 y µ ] = -1 + 1 q - δ 2 .
A similar computation shows that the variance satisfies

V t * y,z [ 1 N M µ=2 x µ 1 y µ ] = E t * y,z [( 1 N M µ=2 x µ 1 y µ -E t * y,z [ 1 N M µ=2 x µ 1 y µ ]) 2 ] c 3 a(1 + ε N ),
for a constant c 3 > 0 (depending only on q) and some ε N → 0 as N → +∞. Employing Chebychev's inequality, we arrive at

P t * y,z (-N (1 - 1 q + δ) < M µ=2 x µ 1 y µ < -N (1 - 1 q )) ≥ 1 - 4 δ 2 V t * y,z [ 1 N M µ=2 x µ 1 y µ ] 1 - 4 δ 2 c 3 a, so that choosing δ := 4 √ c 3 a, we get P t * y,z (-N (1 -1 q + δ) < M µ=2 x µ 1 y µ < -N (1 -1 q )) ≥ 1 2
for N large enough. Similarly we obtain

e -t * (-1+ 1 q -δ) E y,z [e t * N M µ=2 x µ 1 y µ ] ≥ e -q(q-1) 4a (1+ε N )
for some ε N → 0 as N → +∞. We finally arrive at

P y,z (∀i, M µ=2 x µ y µ ≥ -N (1 - 1 q )) ≤ (1 -1 2 exp(-q(q-1) 4a (1 + ε N )) N ≤ exp(-N 2 exp(-q(q-1) 4a (1 + ε N ))
), which goes to zero for a = c/ log N , if c > q(q-1)

4 . Since this is true for all y, z ∈ A(c 1 , c 2 ), this proves the theorem.

Eventually the proof of Theorem 2.6 is split into different lemmas. We only need to consider the case M = (1-1/q -κ) 2 q 2 N 4(1-1/q) log N for some positive κ ≤ , since the case κ ∈] , 1-1/q[ is identical to Theorem 2.4, with k = 1. Lemma 3.1. Let c > 0, M = c N log N and y µ be randomly chosen from S N (ξ µ ), 0 ≤ < (q -1)/q. Then for α = 1

-(1-1/q-) 2 q 2 4(1-1 q )c
+ ε for some ε > 0 it holds that

P(d(T (y µ ), ξ µ ) ≥ N α ) → 0 as N → ∞.
Proof. Assume that µ = 1 and that ξ 1 consists of N coordinates that are all equal to v 1 = (1 -1 q , -1 q , . . . , -1 q ) t . For y 1 and α defined as in the theorem let A := {d(T (y 1 ), ξ 1 ) ≥ N α }. In other words

A = {∃I|I| = N α , ∀i ∈ I ∃k i ∈ {2, . . . , q} : < v k i , M µ=1 N j=1 ξ µ i (ξ µ j ) t y 1 j > ≥ < v 1 , M µ=1 N j=1 ξ µ i (ξ µ j ) t y 1 j >}.
Therefore with C defined as

C := {∃I : |I| = N α , ∀i ∈ I ∃k i ∈ {2, . . . , q} : i∈I < v 1 -v k i , M µ=1 N j=1 ξ µ i (ξ µ j ) t y 1 j > ≤ 0}
we have A ⊆ C. Now define x µ i and η µ j by x µ i := ξ µ i,1ξ µ i,2 , and η µ j := (ξ µ j ) t y 1 j . Their laws are given by

P[x µ i = 1] = P[x µ i = -1] = 1 q , P[x µ i = 0] = 1 - 2 q ; P[η µ j = 1 - 1 q ] = 1 q , P[η µ j = - 1 q ] = 1 - 1 q .
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We can bound the probability of A by

P(A) ≤ P (C) ≤ N N α (q -1) N α P( N α i=1 N j=1 M µ=1
x µ i η µ j ≤ 0). By Stirling's formula N N α ∼ e (1-α)N α log N which also shows that (q -1) N α (even though being huge) is negligible with respect to N N α . The probability is again estimated by an exponential Chebyshev inequality. Observe that the summand for µ = 1 is a number:

N α i=1 N j=1 x 1 i η 1 j = N 1+α ((1 - 1 q )(1 -) - 1 q ) = N 1+α (1 - 1 q -). Therefore P( N α i=1 N j=1 M µ=1 x µ i η µ j ≤ 0) ≤ e -tN 1+α (1-1 q -) E exp -t µ≥2 N α i=1 N j=1 x µ i η µ j ≤ e -tN 1+α (1-1 q -) Ee -2t µ≥2 N α i=1 x µ i N j=N α +1 η µ j 1/2 Ee -2t µ≥2 N α i=1 x i N α j=1 η µ j 1/2 .
To compute the expectation of the first term, we use the fact that N α i=1 x µ i and N j=N α +1 η µ j are independent, and the quantities are also independent for different µ, which implies

E exp -2t µ≥2 N α i=1 x µ i N j=N α +1 η µ j = µ≥2 E (ξ µ i ) i≤N α j>N α E ξ µ j e -2tX µ η µ j , (5) 
where E ξ µ j denotes expectation with respect to the random variable ξ µ j and X µ := N α i=1 x µ i . To compute the second factor on the right, observe that since the η µ j are centered

j>N α E ξ µ j e -2tX µ η µ j = exp( j>N α log E ξ µ j e -2tX µ η µ j ) ≤ exp( j>N α E ξ µ j [e -2tX µ η µ j -1]) = exp( j>N α E ξ µ j [e -2tX µ η µ j + 2tX µ η µ j -1]), Now, -2X µ η µ j ≤ K := 2(1 -1 q )N α and x → x -2 (e x -x -1) is increasing, yielding that E ξ µ j [e -2tX µ η µ j -2tX µ η µ j -1]) ≤ 4(X µ ) 2 E ξ µ j [(η µ j ) 2 ] e tK -tK -1 K 2 ≤ 4(X µ ) 2 E ξ µ j [(η µ j ) 2 ] t 2 2(1 -Kt/3) Now E ξ µ j [(η µ j ) 2 ] = 1 q (1 -1 q ). Moreover, j>N α E ξ µ j e -2tX µ η µ j ≤ e 2(1-1 q ) 1 q t 2 (N -N α )(X µ ) 2 (1+O(tN α )) = E U exp(γ tX µ U ),
for a standard normal random variable U and γ := 2(1 -1 q ) 1 q (N -N α )(1 + O(tN α )). Now, integrating with respect to ξ µ i , i ≤ N α , and using cosh(x) ≤ exp( x 2 2 ) for all x, we get 

j>N α E ξ µ j e -2tX µ η µ j ≤ E U 2 q cosh (γtU) + (1 - 2 q ) N α ≤ N α k=0 N α k ( 2 q ) k (1 -γ 2 t 2 k) -1/2 (1 - 2 q ) N α -k
= c N log N , hence γ 2 t 2 N α < 1 and (1 -γ 2 t 2 k) -1/2 = e -1 2 log(1-γ 2 t 2 k) ≤ e γ 2 t 2 2 k+γ 4 t 2 2 N 2α .
This implies

j>N α E ξ µ j e -2tX µ η µ j ≤ e γ 4 t 2 2 N 2α ( 2 q e γ 2 t 2 2 + 1 - 2 q ) N α Hence E exp -2t µ≥2 N α i=1 x µ i N j=N α +1 η µ j 1/2 ≤ exp(MN 1+α (1 - 1 q ) 1 q 2 t 2 (1 + ε )),
with ε N → 0 as N → +∞. The first factor on the right in ( 5) is negligible. More precisely we have

E exp -2t µ≥2 N α i=1 x µ i N α j=1 η µ j = µ≥2 E exp -2t N α i=1 x µ i N α j=1 η µ j ≤ exp(CMtN α ),
for some C > 0 and N large enough. Indeed, let

X µ := i≤N α x µ i and Y µ := i≤N α η µ i . We use the trivial inequality -2X µ Y µ ≤ (X µ ) 2 + (Y µ ) 2 to get E exp -2t µ≥2 N α i=1 x µ i N α j=1 η µ j ≤ µ≥2 E exp(t(X µ ) 2 + t(Y µ ) 2 )) ≤ (E exp 2t(X µ ) 2 ) 1/2 (E exp 2t(Y µ ) 2 ) 1/2 ≤ exp(CMtN α ),
again by introducing a normal random variable to linearize the exponent in the expectation.

Keeping only the dominating term, choose t = (1-1 q -)q 2 2(1-1 q )M . This yields P(

N α i=1 N j=1 M µ=1 x µ i η µ j ≤ 0) ≤ e -N 1+α M (1-1 q -) 2 q 2 4(1-1 q )
.

The choice M = c N log N together with our previous calculations implies

P (C) ≤ N N α (q -1) N α exp(- (1 -1 q -) 2 q 2 4(1 -1 q )c N α log N ) ≈ (q -1) N α exp ((- (1 -1 q -) 2 q 2 4(1 -1 q )c + (1 -α))N α log N ).
This term clearly converges to zero, if α = 1 -(1-1/q-) 2 q 2 4(1-1 q )c + ε for some ε > 0 . 
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Proof. As the proof of Lemma 3.3 is very similar to the proof of Lemma 3.2 we will refrain from proving it here.

These three lemmas now immediately imply Theorem 2.6.

Proof of Theorem 2.6. The proof of Theorem 2.6 consists of one application of Lemma 3.1 that states that T (y µ ) is in distance N α to ξ µ for some α < 1, several applications of Lemma 3.2 to reduce the distance of T k-1 (y µ ) to N β for some β < 1/2, and a final application of Lemma 3.3.
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  where we anticipated the choice t = O(1/M ) and M

Lemma 3 . 2 .

 32 Let c < q(q -1)/4, M = c N log N and α ∈ [1/2, 1[. Then for every fixed µ, B N α (ξ µ ) := {x : d(x, ξ µ ) ≤ N α }, and β = 2α -1 + ε for some ε > 0 it holdsP(∃x ∈ B N α (ξ µ ) : d(T (x), ξ µ ) ≥ N β ) → 0 as N → ∞.Proof. This again requires some exponential estimate. LetA := {∃y ∈ B N α (ξ µ ) : d(T (y), ξ µ ) ≥ N β }.

As before we may assume that µ = 1 and ξ 1 is the vector consisting of N coordinates that are all equal to v 1 . We have again that A ⊆ C, where C := ∪ y∈B N α (ξ 1 ) C(y), and

Following the lines of the proof of Lemma 3.1 one shows that the probability of the event

(where the bar denotes the complement of an event). The first term converges to 0 and the second term satisfies

where y j are the coordinates of the vector y ∈ B N α (ξ 1 ), J ⊆ {1, . . . , N} is the set of size at most N α such that y differs from ξ 1 exactly in the coordinates J and we again write

For every fixed y ∈ B N α (ξ 1 ), µ ≥ 2 and j ∈ J, δ µ j (y) := (ξ µ j ) t (y jξ 1 j ) has the same law as x µ i , that is

Now the probability of this event doesn't change much, if we just concentrate on sets J with |J| = N α . As in the proof of Lemma 3.1 one shows that for each fixed J with

for some positive constants C 1 and C 2 depending only on q and δ. On the other hand, there are N N α ∼ e (1-α)N α log N choices for J and N N β ∼ e (1-β)N β log N choices for I. Therefore,

such that β = 2α -1 + ε for ε > 0 small enough. In particular β < α and we obtain

which goes to 0 as N → ∞. This proves the lemma.