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Abstract

McKay’s chi-square approximation for the coefficient of variation is

type II noncentral beta distributed and asymptotically normal with

mean n − 1 and variance smaller than 2(n − 1).

Key words: Coefficient of variation, McKay’s approximation, Noncentral beta distri-

bution.
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1 Introduction

The coefficient of variation is defined as the standard deviation divided by the mean.

This measure, which is commonly expressed as a percentage, is widely used since it is

often necessary to relate the size of the variation to the level of the observations. McKay

(1932) introduced a χ2 approximation for the coefficient of variation calculated on normally

distributed observations. It can be defined in the following way.

Definition 1. Let yj, j = 1, ..., n, be n independent observations from a normal distri-

bution with expected value µ and variance σ2. Let γ denote the population coefficient of

variation, i.e. γ = σ/µ, and let c denote the sample coefficient of variation, i.e.

c =
1
m

√√√√ 1
n − 1

n∑
j=1

(yj − m)2, m =
1
n

n∑
j=1

yj .

McKay’s approximation Kn is defined as

Kn =
(

1 +
1
γ2

)
(n − 1) c2

1 + (n−1)c2

n

. (1)

As pointed out by Umphrey (1983) formula (1) appears slightly different in the original

paper by McKay (1932) since McKay used the maximum likelihood estimator of σ2, with

denominator n, instead of the unbiased estimator with denominator n − 1.

McKay (1932) claimed that Kn is approximately central χ2 distributed with n −
1 degrees of freedom provided that γ is small (γ < 1/3). This result was established

by expressing the probability density function of c as a contour integral and making an

approximation in the complex plane. McKay did not theoretically express the size of the

error of the approximation. For this reason Fieller (1932), in immediate connection to

McKay’s paper, investigated McKay’s approximation Kn numerically and concluded that

it is “quite adequate for any practical purpose.” Also Pearson (1932) examined the new

approximation and found it “very satisfactory.” Later Iglewicz & Myers (1970) studied

the usefulness of McKay’s approximation for calculating quantiles of the distribution of

the sample coefficient of variation c when the underlying distribution is normal. They
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compared results according to the approximation with exact results and found that the

approximation is accurate. Umphrey (1983) corrected a similar study made by Warren

(1982) and concluded that McKay’s approximation is adequate. Vangel (1996) analytically

compared the cumulative density function of McKay’s approximation with the cumulative

density function of the “näıve” χ2 approximation

Nn =
(n − 1) c2

γ2

and showed that McKay’s approximation is substantially more accurate. Vangel also pro-

posed a small modification of McKay’s approximation useful for calculating approximate

confidence intervals for the coefficient of variation. Forkman (2006) suggested McKay’s

approximation for testing the hypothesis that two coefficients of variation are equal. An-

other test for the hypothesis of equal coefficients of variation, also based on McKay’s

approximation, was proposed by Bennett (1976).

It is thus well documented that McKay’s approximation is approximately central χ2

distributed with n−1 degrees of freedom, and useful applications have been suggested. In

this paper it is shown that McKay’s approximation is type II noncentral beta distributed,

and its asymptotic behavior is investigated.

2 The distribution of McKay’s approxima-

tion

If U and V are independent central χ2 distributed random variables with u and v de-

grees of freedom respectively, the ratio R = V/ (U + V ) is beta distributed with v/2 and

u/2 degrees of freedom respectively. If V is instead a noncentral χ2 distributed random

variable the ratio R is noncentral beta distributed (Johnson & Kotz, 1970). In this case

Chattamvelli (1995) calls the distribution of R the type I noncentral beta distribution and

the distribution of 1 − R the type II noncentral beta distribution. We shall in agreement

with Chattamvelli (1995) use the following definition.
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Definition 2. Let U be a central χ2 distributed random variable with u degrees of freedom,

and let V be a noncentral χ2 distributed random variable, independent of U , with v degrees

of freedom and noncentrality parameter λ. The type II noncentral beta distribution with

parameters u/2, v/2 and λ, denoted Beta II (u/2, v/2, λ) is defined as the distribution of

U/ (U + V ).

The following theorem states that the random variable Kn, claimed by McKay (1932)

to be approximately χ2 distributed, is type II noncentral beta distributed.

Theorem 3. The distribution of McKay’s approximation Kn, as defined in Definition 1,

is

n

(
1 +

1
γ2

)
Beta II

(
n − 1

2
,

1
2
,

n

γ2

)
. (2)

Proof. Let s denote the standard deviation, i.e. s = cm. Then the second factor in (1)

can be written
(n − 1) c2

1 + (n−1)c2

n

=

∑n
j=1 (yj − m)2

m2 + 1
n

∑n
j=1 (yj − m)2

=
n

∑n
j=1 (yj − m)2∑n

j=1 (yj − m)2 +
∑n

j=1 m2
=

nU

U + V
,

where U =
∑n

j=1 (yj − m)2 /σ2 and V =
∑n

j=1 m2/σ2. Here U is central χ2 distributed

with n−1 degrees of freedom. The average m is normally distributed with expected value µ

and variance σ2/n. Consequently nm2/σ2, i.e. V , is χ2 distributed with 1 degree of freedom

and noncentrality parameter nµ2/σ2 = n/γ2. Since the sums of squares
∑n

j=1 (yj − m)2

and
∑n

j=1 m2 are independent the theorem follows.

It is well known that
√

n/c is noncentral t distributed with n − 1 degrees of freedom

and noncentrality parameter
√

n/γ (e.g. Owen, 1968). Theorem 3 is easily proven from

this starting point as well.

We also note that the factor n(1 + 1/γ2) in (2) is the expected value of U + V as

defined in the proof of Theorem 3. This observation suggests application of the law of

large numbers when investigating the convergence of McKay’s approximation.
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Theorem 4. The distribution of McKay’s approximation Kn as defined in Definition 1,

equals the distribution of UnWn, where Un is a central χ2 distributed random variable with

n − 1 degrees of freedom and Wn is a random variable that converges in probability to 1.

Proof. Let Zk, k = 1, 2, . . . , n− 1, be independent standardized normal random variables.

Then
Un

n − 1
d=

1
n − 1

n−1∑
k=1

Z2
k ,

which converges almost surely to 1. Let also Z denote a standardized normal random

variable, and let
Vn

n
=

1
n

(
Z +

√
n

γ

)2

=
Z2

n
+

2Z

γ
√

n
+

1
γ2

.

Vn/n converges in probability to 1/γ2. Thus
(

Un + Vn

n

)
p→ 1 +

1
γ2

. (3)

By Theorem 3

Kn
d= n

(
1 +

1
γ2

)
Un

Un + Vn
= WnUn,

where Wn = n(1 + 1/γ2)/ (Un + Vn), by (3), converges in probability to 1.

Given Theorem 4 one might assume that McKay’s approximation Kn is asymptotically

normal with mean n − 1 and variance 2(n − 1). Instead the following result holds.

Theorem 5. Let Kn be McKay’s approximation and γ the coefficient of variation as

defined in Definition 1. Then

Kn − (n − 1)√
2(n − 1)

d→ N
(

0,
1 + 2γ2

1 + 2γ2 + γ4

)
. (4)

Proof. Let Z denote a standardized normal random variable, and let Vn = (Z +
√

n/γ)2.

Let Un be a central χ2 distributed random variable with n − 1 degrees of freedom, inde-

pendent of Vn. Then, by Theorem 3,

Kn − (n − 1)√
2(n − 1)

d=
1√

2(n − 1)

(
n(1 + 1/γ2)Un

Un + Vn
− (n − 1)

)
= AnBn, (5)
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where, by (3),

An =
n

Un + Vn

p→ γ2

1 + γ2
(6)

and

Bn =
1√

2(n − 1)

(
Un(γ2 + 1)

γ2
− (n − 1)(Un + Vn)

n

)
.

We obtain

Bn = Cn + Dn + En + Fn (7)

where

Cn =
Un − (n − 1)
γ2

√
2(n − 1)

d→ N
(

0,
1
γ4

)
, (8)

Dn =
−√

2(n − 1)Z
γ
√

n(n − 1)
d→ N

(
0,

2
γ2

)
, (9)

En =
Un

n
√

2(n − 1)
p→ 0, (10)

Fn =
−(n − 1)Z2

n
√

2(n − 1)
p→ 0. (11)

Since Cn is independent of Dn, results (7) – (11) imply that

Bn
d→ N

(
0,

1
γ4

+
2
γ2

)
. (12)

Results (5), (6) and (12) yield the theorem.

3 Discussion

We have seen that McKay’s χ2 approximation for the coefficient of variation is exactly

type II noncentral beta distributed. This observation provides insight into the approxima-

tion, originally derived by complex analysis. We showed that McKay’s χ2 approximation

in distribution equals the product of a χ2 distributed random variable and a variable that

converges in probability to 1. Nevertheless, according to Theorem 5, McKay’s χ2 approxi-

mation is asymptotically normal with mean n−1 and variance 2(n−1)(1+2γ2)/(1+γ2)2,
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where γ is the coefficient of variation. Since it has previously been assumed that McKay’s

approximation is “asymptotically exact” (Vangel, 1996) it is surprising that the variance

does not equal 2(n − 1). It should be noted, however, that McKay’s χ2 approximation

is intended for the cases in which the coefficient of variation γ is smaller than 1/3. This

requirement should be fulfilled when analyzing observations from a positive variable that

is approximately normally distributed, since otherwise σ > µ/3 and the probability of neg-

ative observations is not negligable. Provided that γ < 1/3 the standardized McKay’s χ2

approximation (4) converges in distribution to a normal distribution with expected value

0 and variance larger than 0.99 but smaller than 1. McKay’s χ2 approximation should

consequently asymptotically be sufficiently accurate for most applications.

Though the inverse of the coefficient of variation is noncentral t distributed and algo-

rithms for calculating the cumulative density function of this distribution nowadays exist

(Lenth, 1989), McKay’s approximation is still adequate and may be useful for various

composite inferential problems on the coefficient of variation in normally distributed data.

Algorithms for computing the cumulative distribution function of the noncentral beta dis-

tribution were reviewed by Chattamvelli (1995). The open source software R makes use

of algorithms given by Lenth (1987) and Frick (1990).
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