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Abstract

A definition of the ordering of a multivariate sample - based on the

isobar surfaces - is used in order to obtain limit laws for the extreme

values of a multidimensional sample.
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1 Introduction

Today many papers on extreme values deal with multivariate extreme values,

see [Nadarajah, Anderson, Tawn 98], [Schlatler, Tawn 03], [Fougères 04],

[Heffernan, Tawn 04], [Falk, Reiss 05]; see also for recent developments about

max-stable processes and multivariate extremal index, [Smith, Weissman 96],

[Zhang, Smith 04]. Unfortunately, ordering multivariate data can be done

in various ways and many definitions have been proposed e.g. [Barnett 76],

[Maller 90]. Some papers of [Abdous, Theodorescu 92], [Einmahl, Mason 92],

[Massé, Theodorescu 94], [ De Haan, Huang 95], and more recently, of

[Berlinet, Gannoun, Matzner-Lober 01], [Serfling 02] develop the notion of

multivariate quantiles. In the classical scheme (cartesian coordinates) the

multivariate variables are ordered coordinate by coordinate - see for example

[Galambos 87] and the references therein. And in this way the maximum

value thus obtained is not a sample point.

In this paper we will use the definition of the maximum value of a mul-

tidimensional sample, given in [Delcroix, Jacob 91]. This definition is based

on surfaces we have called isobars. Our approach is more geometric and as

recalled just below, we use the level-surfaces of the conditional distribution

function of the radius R given the angle Θ. So the maximum value is a sample

point. The first motivation, [Barme 93], was to find the asymptotic location

of a multidimensional sample without using the convex hull of the sample

as it is done classically in [Geffroy 61], [Geffroy 58]. By a unidimensional

approach, stability, strong behaviour and outlier-proneness properties have

been explored for this new notion of extreme value in [Barme, Brito 01] and

[Barme, Gather 02]. In this paper, the goal is to find limit laws for such mul-
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tidimensional extremes. Through the use of the isobar surfaces we will see

that the classical results -[Gnedenko 43] - about limit laws for unidimensional

extremes are still efficient in this multidimensional context.

2 Preliminaries

We consider random variables defined on a probability space (Ω,A,P) and

with values in the Euclidean space Rk.

For every x in Rk \ {0} we define a pair (‖x‖, x
‖x‖) = (r, θ) in R+∗×Sk−1,

where ‖ · ‖ is the Euclidean norm and R+∗ is the set of the positive real

numbers. The unit sphere Sk−1 in Rk is endowed with the induced topology

of Rk.

For each random variable X = (R, Θ) = (‖X‖, X
‖X‖) ∈ Rk, we assume

that the distribution of Θ, and for all θ, the distribution of R given Θ = θ,

have a continuous density. Fθ denotes the continuous conditional distribution

function of R, given Θ = θ and F−1
θ the generalized inverse of Fθ.

For each 0 < u < 1, we call the mapping θ � F−1
θ (u) a u-level isobar

from the distribution of R given Θ = θ . We suppose that this mapping

is continuous and strictly positive; the surface given by ρ = F−1
θ (u) is also

called an isobar, see Figure 1.

Let En = (X1, . . . , Xn) be a sample of independent random variables in

Rk each with the same distribution as X. Clearly for each 1 ≤ k ≤ n there

is almost surely a unique uk-level isobar from the distribution of R given

Θ = θ which contains (Rk, Θk) = (‖Xk‖, Xk

‖Xk‖). We define the maximum

value in En as the point of the sample X∗
n = (R∗

n, Θ∗
n) which belongs to the

upper level isobar, i.e. the isobar with level max
1≤k≤n

uk. See Figure 2. The
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X

ρu(θ)

u 1 − u0

Figure 1: u-level isobar

multivariate sample is then ordered according to the increasing levels of the

corresponding isobar surfaces, and the order statistics of the n-sample are

denoted by

Xn,1, · · · , Xn,i, · · · , Xn,n−1, Xn,n = X∗
n

... ...X0

X∗
n = Xn,n

Xn,i

Xn,n−1

x

x

x

Figure 2: isobar-maximum

Remark 1 We could imagine a more general way to order the sample. For

example, by considering an increasing sequence of borelians, according to a

criterion to define, and not necessarily related to the Euclidean norm. But it

is not the purpose of this paper.
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It has been shown in [Delcroix, Jacob 91] that the conditional distribution

of R∗
n given Θ∗

n is F n
θ . More exactly we have the following theorem.

Theorem 1 a)The variables Θ∗
n and Θ have the same distribution.

b)The conditional distribution function of R∗
n given Θ∗

n = θ is given by

P (R∗
n ≤ r/Θ∗

n = θ) = (Fθ(r))
n.

Proof : see [Delcroix, Jacob 91].

The second assertion of the previous theorem shows that this multidi-

mensional problem can be reduced to a unidimensional one . That will be

done in the next section to find limit laws for the pair (R∗
n, Θ∗

n). In a third

section, we will focus on limit laws for the variables R∗
n.

From the previous theorem, we know that the distributions of (R∗
n, Θ∗

n)

and (R, Θ) possess the same set of isobars. So it has been possible in

[Delcroix, Jacob 91] to give the following definition.

Definition 1 (X∗
n)n is called stable in probability (resp. a.s.) if and only if

there is a sequence (gn)n of isobars satisfying

(1) R∗
n − gn(Θ∗

n)
P−−−→

(a.s.)
0 .

We are well aware that the above definition of multivariate maxima de-

pends on the underlying distribution. This may be crucial in practical sit-

uations when given data are to be ordered1. To find out more about the

limit distribution of this maximum however it is not a severe additional ob-

stacle. Note, that even to check the type of extreme value distribution in

one dimension affords at least the knowledge of the tail of the underlying

distribution.
1Another work is in progress on the estimation of isobars.
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3 Limit laws for some functionals of (R∗
n, Θ

∗
n)

We know the three classical types of limit distributions for unidimensional ex-

treme values and their domains of attraction, [Gnedenko 43], [Leadbetter 83],

[Galambos 87]. Recall the three corresponding distribution functions with

the Galambos notations :

i)G3,0(x) = exp(−e−x) for all x.

ii)G1,α(x) = exp(−x−α) for x > 0, with α > 0.

iii)G2,α(x) = exp(−(−x)α)1(x≤0) + 1(x>0), with α > 0.

Similarly, in this section, the goal is to find a nondegenerate distribution

function H̃ and sequences an(.) > 0 and bn(.) such that for all x

P{an(Θ∗
n)(R

∗
n − bn(Θ∗

n)) ≤ x} w→ H̃(x)

where
w→ denotes convergence at continuity points of H̃.

Let gn(θ) denote the (1− 1
n
)-level isobar; that is gn(θ) = F−1

θ (1− 1
n
). Un-

der given conditions, [Delcroix, Jacob 91], we have proved that these isobars

stabilize the sequence (R∗
n, Θ∗

n), according to the definition given in the first

section.

Theorem 2 Suppose that for all θ, sup
x
{Fθ(x) < 1} = +∞. If for all θ the

distribution function Fθ satisfies

lim
t→∞

1 − Fθ(tx)

1 − Fθ(t)
= x−α(θ) for all x > 0,

where α is a strictly positive function, then for all x > 0

P{R∗
n ≤ x gn(Θ

∗
n)} →

∫
Sk−1

exp(−x−α(θ))PΘ(dθ).
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Proof : From Theorem 1.6.2 of [Leadbetter 83], for all θ there exist

sequences an and bn depending on θ such that

Fθ
n

(
x

an(θ)
+ bn(θ)

)
→ exp(−x−α(θ)).

Then from the Dominated Convergence Theorem we have∫
Sk−1

Fθ
n

(
x

an(θ)
+ bn(θ)

)
PΘ(dθ) →

∫
Sk−1

exp(−x−α(θ))PΘ(dθ).

But, we know that F n
θ is the conditional distribution function of R∗

n given

Θ∗
n = θ, so∫
Sk−1

P (R∗
n ≤ x

an(θ)
+ bn(θ)/Θ∗

n = θ)PΘ(dθ) →
∫

Sk−1

exp(−x−α(θ))PΘ(dθ).

And since Θ∗
n and Θ have the same distribution,

P (R∗
n ≤ x

an(Θ∗
n)

+ bn(Θ∗
n)) →

∫
Sk−1

exp(−x−α(θ))PΘ(dθ).

Hence

P (an(Θ∗
n)(R∗

n − bn(Θ∗
n)) ≤ x) →

∫
Sk−1

exp(−x−α(θ))PΘ(dθ).

Moreover from Corollary 1.6.3. of [Leadbetter 83] we know that for all θ

bn = 0 and (an(θ))−1 = F−1
θ (1 − 1

n
) = gn(θ).

Example 1 If Fθ(x) = (1 − K(θ)x−α(θ))1„
x>(K(θ))

1
α(θ)

« where α and K are

strictly and continuous functions, then for all x > 0

P{R∗
n ≤ x(nK(Θn,n))1/α(Θ∗

n)} →
∫

Sk−1

exp(−x−α(θ))PΘ(dθ).

For the two others domains of attraction it is possible to give similar limit

laws according to the results of [Leadbetter 83]. For all θ we use the notation

xFθ
= sup(x : Fθ(x) < 1).
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Theorem 3 If for all θ xFθ
< +∞ and if for all x > 0 and for all θ there

exists a strictly positive function α such that

lim
h→0

1 − Fθ(xFθ
− xh)

1 − Fθ(xFθ
− h)

= xα(θ)

then

P{
(
xFΘ∗

n
− gn(Θ∗

n)
)−1

(R∗
n−xFΘ

∗
n
) ≤ x} w→

∫
Sk−1

(
exp(−(−x)α(θ))1(x≤0) + 1(x>0)

)
PΘ(dθ).

Theorem 4 If for all θ there exists a strictly positive function lθ such that

for all θ and for all x

lim
t→xFθ

1 − Fθ(t + xlθ(t))

1 − Fθ(t)
= e−x

then for all x

P{(lΘ∗
n
(gn(Θ

∗
n))
)−1

(R∗
n−gn(Θ∗

n)) ≤ x} →
∫

Sk−1

exp(−e−x)PΘ(dθ) = exp(−e−x).

Example 2 If Fθ(x) = (1− e−α(θ)x)1(x>0) where α is a strictly positive con-

tinuous function, then for all x

P

{
α(Θ∗

n)

(
R∗

n − Log(n)

α(Θ∗
n)

)
≤ x

}
→ exp(−e−x).

Example 3 For a bivariate Gaussian sample with covariance matrix

⎛
⎝ σ2 0

0 τ 2

⎞
⎠,

the density over R2 is f(x, y) = 1
2πστ

e−
x2

2σ2 − y2

2τ2 ; the conditional distribu-

tion of R given Θ = θ is then given by Fθ(x) = (1 − e−x2Φ(θ))1(x>0), where

Φ(θ) = cos2(θ)
2σ2 + sin2(θ)

2τ2 . Note that in this case, the isobars are also the level

curves of the bivariate density. The condition of the previous theorem is

satisfied and for all x,

P

{
2
√

Φ(Θ∗
n)Log(n)

(
R∗

n −
√

Log(n)

Φ(Θ∗
n)

)
≤ x

}
→ exp(−e−x).
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4 Limit law of R∗
n

Now, we consider the pairs (Rk, Uk). In this part we use the following remark.

By definition, R∗
n is the concomitant of Un,n = Max(U1, . . . , Un) where for

all 1 ≤ k ≤ n, Uk = FΘk
(Rk); see e.g. [Galambos 87], [David 81]. The two

properties of the next theorem will be used in this section.

Theorem 5 a) (U1 = FΘ1(R1), . . . , Un = FΘn(Rn)) is a sample from the uni-

form distribution on [0, 1].

b) Uk is independant of Θk for all 1 ≤ k ≤ n.

Proof : see [Delcroix, Jacob 91].

Note that the uniform distribution belongs to the type III -according

to the notation of [Leadbetter 83]- of extreme values with α = 1. It will

be useful for the following. From Galambos results on concomitants it is

possible to state this limit law for R∗
n.

Theorem 6 If there exist An, Bn > 0 such that lim
n→∞

P{R ≤ An +Bnu/U =

1 + z/n} = T (u, z) (for −n ≤ z ≤ 0 and u > 0) is a non degenerate

distribution function, then lim
n→∞

P{R∗
n < An + Bnu} = T (u) where

T (u) =

∫ 0

−∞
T (u, z)ezdz.

Proof : We have

P (R∗
n ≤ r) =

∫
[0,1]

P (R∗
n ≤ r/Un,n = u)PUn,n(du).

But (R∗
n, Un,n) is a point of the sample ((R1, U1), · · · , (Rn, Un)) and the (Rk, Uk)

are independent, so

P (R∗
n ≤ r) =

∫
[0,1]

P (R ≤ r/U = u)nF1
n−1(u)f1(u)du

9
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where F1 and f1 denote the uniform distribution function over [0, 1] and the

uniform density function respectively.

Now, put u = 1 + z
n
. We obtain

P (R∗
n ≤ r) =

∫
[−n,0]

P
(
R ≤ r/U = 1 +

z

n

)(
1 +

z

n

)n−1

dz.

And finally put r = An + Bnu, hence

P (R∗
n ≤ r) =

∫
[−n,0]

P
(
R ≤ An + Bnu/U = 1 +

z

n

)(
1 +

z

n

)n−1

dz.

We conclude with the Dominated Convergence Theorem.

Remark 2 The condition of the previous theorem may be written more easily

with the conditional law of R given U = u if we suppose Fθ one-to-one . Since

U = FΘ(R), we have

P (R ≤ r/U = u) = P (U ≤ FΘ(r)/U = u).

And since the variables U and Θ are independent, we obtain

P (R ≤ r/U = u) = P (u ≤ FΘ(r)).

So the condition of the theorem is

P
(
1 +

z

n
≤ FΘ(An + Bnu)

)
→ T (u, z).

Of course this condition depends heavily on the form of the conditional dis-

tribution of R given Θ = θ.

Example 4 If Fθ(x) = (1 − eα(θ)x)1(x>0) and α(Θ) is uniformly distributed

over [0, 1] then the previous theorem is true with An = Log n, Bn = Log n,

the limit law is Pareto.

10
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5 Concluding remarks

It would be possible to consider the pairs (Uk, Θk) as done in the last section

for the variables U and R, but we obtain only the asymptotic independence

between Θ and U and the fact that asymptotically the variables Θ∗
n and

Θ have the same distribution, which is weaker than the results stated in

Theorems 1 and 5.

References

[Abdous, Theodorescu 92] ABDOUS B. and THEODORESCU R.

(1992) - Note on the spatial quantile of

a random vector. Statistics and Probability

letters 13, 333–336.

[Barme 93] BARME-DELCROIX M.F. (1993) - Lo-

calisation asymptotique des échantillons
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[Massé, Theodorescu 94] Massé J-C. and Theodorescu R. (1994) -

Halfplane Trimming for bivariate distribu-

tions. Journal of Multivariate Analysis 48,

188–202.

[Nadarajah, Anderson, Tawn 98] NADARAJAH S., ANDERSON C.W.,

TAWN J.A. (1998) - Ordered multivariate

extremes. J. R. Statist. Soc B, 60, Part 2,

473–496.

[Falk, Reiss 05] FALK M. and REISS R.D. (2005) - On

Pickands coordinates in arbitrary dimen-

sions. Journal of Multivariate Analysis, 92,

426–453.

14



Acc
ep

te
d m

an
usc

rip
t 

[Schlatler, Tawn 03] Schlatler M. and TAWN J.A. (2003) -A de-

pendance measure for multivariate and spa-

tial extreme values : properties and infer-

ence. Biometrika, 90, 139–156.

[Serfling 02] SERFLING R. (2002) - Quantile functions

for multivariate analysis : approaches and

applications. Statistica Neerlandica, 56, nr

2, 214–232.

[Smith, Weissman 96] SMITH R.L. and WEISSMAN I. (1996)

-Characterization and Estimation of the

Multivariate Extremal Index. Tech. Rep.,

University of North Carolina.

[Zhang, Smith 04] ZHANG Z. and SMITH R.L. (2004) - The

behavior of multivariate maxima of mov-

ing maxima processes. J. Appl. Probab. 41,

1113–1123.

15


