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A definition of the ordering of a multivariate sample -based on the isobar surfaces -is used in order to obtain limit laws for the extreme values of a multidimensional sample.

A c c e p t e d m a n u s c r i p t 1 Introduction

Today many papers on extreme values deal with multivariate extreme values, see [Nadarajah,Anderson,Tawn 98], [Schlatler, Tawn 03], [Fougères 04], [Heffernan,Tawn 04], [Falk,Reiss 05]; see also for recent developments about max-stable processes and multivariate extremal index, [Smith, Weissman 96],

[Zhang, Smith 04]. Unfortunately, ordering multivariate data can be done in various ways and many definitions have been proposed e.g. [Barnett 76], [Maller 90]. Some papers of [Abdous,Theodorescu 92], [Einmahl,Mason 92], [Massé,Theodorescu 94] 

Preliminaries

We consider random variables defined on a probability space (Ω, A, P) and with values in the Euclidean space R k .

For every

x in R k \ {0} we define a pair ( x , x x ) = (r, θ) in R + * × S k-1
, where • is the Euclidean norm and R + * is the set of the positive real numbers. The unit sphere S k-1 in R k is endowed with the induced topology of R k .

For each random variable X = (R, Θ) = ( X , X X ) ∈ R k , we assume that the distribution of Θ, and for all θ, the distribution of R given Θ = θ, have a continuous density. F θ denotes the continuous conditional distribution function of R, given Θ = θ and F -1 θ the generalized inverse of F θ .

For each 0 < u < 1, we call the mapping θ F -1 θ (u) a u-level isobar from the distribution of R given Θ = θ . We suppose that this mapping is continuous and strictly positive; the surface given by ρ = F -1 θ (u) is also called an isobar, see Figure 1.

Let E n = (X 1 , . . . , X n ) be a sample of independent random variables in R k each with the same distribution as X. Clearly for each 1 ≤ k ≤ n there is almost surely a unique u k -level isobar from the distribution of R given 

Θ = θ which contains (R k , Θ k ) = ( X k , X k X k ).
X n,1 , • • • , X n,i , • • • , X n,n-1 , X n,n = X * n ... ... X 0 X * n = X n,n X n,i X n,n-1 x x x
P (R * n ≤ r/Θ * n = θ) = (F θ (r)) n . Proof : see [Delcroix, Jacob 91].
The second assertion of the previous theorem shows that this multidimensional problem can be reduced to a unidimensional one . That will be done in the next section to find limit laws for the pair (R * n , Θ * n ). In a third section, we will focus on limit laws for the variables R * n . From the previous theorem, we know that the distributions of (R * n , Θ * n ) and (R, Θ) possess the same set of isobars. So it has been possible in [Delcroix,Jacob 91] to give the following definition.

Definition 1 (X * n ) n is called stable in probability (resp. a.s.) if and only if there is a sequence (g n ) n of isobars satisfying

(1) R * n -g n (Θ * n ) P ---→ (a.s.) 0 .
We are well aware that the above definition of multivariate maxima depends on the underlying distribution. This may be crucial in practical situations when given data are to be ordered 1 . To find out more about the limit distribution of this maximum however it is not a severe additional obstacle. Note, that even to check the type of extreme value distribution in one dimension affords at least the knowledge of the tail of the underlying distribution.

1 Another work is in progress on the estimation of isobars.
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3 Limit laws for some functionals of (R * n , Θ * n )

We know the three classical types of limit distributions for unidimensional extreme values and their domains of attraction, [Gnedenko 43], [Leadbetter 83],

[Galambos 87]. Recall the three corresponding distribution functions with the Galambos notations :

i)G 3,0 (x) = exp(-e -x ) for all x. ii)G 1,α (x) = exp(-x -α ) for x > 0, with α > 0. iii)G 2,α (x) = exp(-(-x) α )1 (x≤0) + 1 (x>0) , with α > 0.
Similarly, in this section, the goal is to find a nondegenerate distribution function H and sequences a n (.) > 0 and b n (.) such that for all x

P {a n (Θ * n )(R * n -b n (Θ * n )) ≤ x} w → H(x)
where w → denotes convergence at continuity points of H.

Let g n (θ) denote the (1

-1 n )-level isobar; that is g n (θ) = F -1 θ (1 -1 n ).
Under given conditions, [Delcroix, Jacob 91], we have proved that these isobars stabilize the sequence (R * n , Θ * n ), according to the definition given in the first section.

Theorem 2 Suppose that for all θ, sup

x {F θ (x) < 1} = +∞. If for all θ the distribution function F θ satisfies lim t→∞ 1 -F θ (tx) 1 -F θ (t) = x -α(θ) f or all x > 0,
where α is a strictly positive function, then for all x > 0

P {R * n ≤ x g n (Θ * n )} → S k-1 exp(-x -α(θ) )P Θ (dθ).
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Proof : From Theorem 1.6.2 of [Leadbetter 83], for all θ there exist sequences a n and b n depending on θ such that

F θ n x a n (θ) + b n (θ) → exp(-x -α(θ) ).
Then from the Dominated Convergence Theorem we have

S k-1 F θ n x a n (θ) + b n (θ) P Θ (dθ) → S k-1 exp(-x -α(θ) )P Θ (dθ).
But, we know that

F n θ is the conditional distribution function of R * n given Θ * n = θ, so S k-1 P (R * n ≤ x a n (θ) + b n (θ)/Θ * n = θ)P Θ (dθ) → S k-1 exp(-x -α(θ) )P Θ (dθ).
And since Θ * n and Θ have the same distribution,

P (R * n ≤ x a n (Θ * n ) + b n (Θ * n )) → S k-1 exp(-x -α(θ) )P Θ (dθ).
Hence

P (a n (Θ * n )(R * n -b n (Θ * n )) ≤ x) → S k-1
exp(-x -α(θ) )P Θ (dθ).

Moreover from Corollary 1.6.3. of [Leadbetter 83] we know that for all θ b n = 0 and (a n (θ)

) -1 = F -1 θ (1 -1 n ) = g n (θ). Example 1 If F θ (x) = (1 -K(θ)x -α(θ) )1 " x>(K(θ)) 1 α(θ)
« where α and K are strictly and continuous functions, then for all x > 0

P {R * n ≤ x(nK(Θ n,n )) 1/ α(Θ * n ) } → S k-1 exp(-x -α(θ) )P Θ (dθ).
For the two others domains of attraction it is possible to give similar limit laws according to the results of [Leadbetter 83]. For all θ we use the notation

x F θ = sup(x : F θ (x) < 1).
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Theorem 3 If for all θ x F θ < +∞ and if for all x > 0 and for all θ there exists a strictly positive function α such that

lim h→0 1 -F θ (x F θ -xh) 1 -F θ (x F θ -h) = x α(θ) then P { x F Θ * n -g n (Θ * n ) -1 (R * n -x F Θ * n ) ≤ x} w → S k-1 exp(-(-x) α(θ) )1 (x≤0) + 1 (x>0) P Θ (dθ).
Theorem 4 If for all θ there exists a strictly positive function l θ such that for all θ and for all x

lim t→x F θ 1 -F θ (t + xl θ (t)) 1 -F θ (t) = e -x
then for all x

P { l Θ * n (g n (Θ * n )) -1 (R * n -g n (Θ * n )) ≤ x} → S k-1 exp(-e -x )P Θ (dθ) = exp(-e -x ). Example 2 If F θ (x) = (1 -e -α(θ)x )1 (x>0)
where α is a strictly positive continuous function, then for all

x P α(Θ * n ) R * n - Log(n) α(Θ * n ) ≤ x → exp(-e -x ).
Example 3 For a bivariate Gaussian sample with covariance matrix

⎛ ⎝ σ 2 0 0 τ 2 ⎞ ⎠ , the density over R 2 is f (x, y) = 1 2πστ e -x 2 2σ 2 -y 2 2τ 2 ; the conditional distribu- tion of R given Θ = θ is then given by F θ (x) = (1 -e -x 2 Φ(θ) )1 (x>0)
, where

Φ(θ) = cos 2 (θ) 2σ 2 + sin 2 (θ) 2τ 2 .
Note that in this case, the isobars are also the level curves of the bivariate density. The condition of the previous theorem is satisfied and for all x, By definition, 

P 2 Φ(Θ * n )Log(n) R * n - Log(n) Φ(Θ * n ) ≤ x → exp(-e -x ).
R * n is the concomitant of U n,n = Max(U 1 , . . . , U n ) where for all 1 ≤ k ≤ n, U k = F Θ k (R k ); see e.
Theorem 5 a) (U 1 = F Θ 1 (R 1 ), . . . , U n = F Θn (R n )) is a sample from the uni- form distribution on [0, 1]. b) U k is independant of Θ k for all 1 ≤ k ≤ n. Proof : see [Delcroix, Jacob 91].
Note that the uniform distribution belongs to the type III -according to the notation of [Leadbetter 83]-of extreme values with α = 1. It will be useful for the following. From Galambos results on concomitants it is possible to state this limit law for R * n .

Theorem 6 If there exist A n , B n > 0 such that lim n→∞

P {R ≤ A n + B n u/U = 1 + z/n} = T (u, z) (for -n ≤ z ≤ 0 and u > 0) is a non degenerate distribution function, then lim n→∞ P {R * n < A n + B n u} = T (u)
where

T (u) = 0 -∞ T (u, z)e z dz.
Proof : We have

P (R * n ≤ r) = [0,1] P (R * n ≤ r/U n,n = u)P Un,n (du). But (R * n , U n,n ) is a point of the sample ((R 1 , U 1 ), • • • , (R n , U n )) and the (R k , U k ) are independent, so P (R * n ≤ r) = [0,1] P (R ≤ r/U = u)nF 1 n-1 (u)f 1 (u)du
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where F 1 and f 1 denote the uniform distribution function over [0, 1] and the uniform density function respectively. Now, put u = 1 + z n . We obtain

P (R * n ≤ r) = [-n,0] P R ≤ r/U = 1 + z n 1 + z n n-1 dz.
And finally put r = A n + B n u, hence

P (R * n ≤ r) = [-n,0] P R ≤ A n + B n u/U = 1 + z n 1 + z n n-1
dz.

We conclude with the Dominated Convergence Theorem.

Remark 2

The condition of the previous theorem may be written more easily with the conditional law of R given U = u if we suppose F θ one-to-one . Since U = F Θ (R), we have

P (R ≤ r/U = u) = P (U ≤ F Θ (r)/U = u).
And since the variables U and Θ are independent, we obtain

P (R ≤ r/U = u) = P (u ≤ F Θ (r)).
So the condition of the theorem is

P 1 + z n ≤ F Θ (A n + B n u) → T (u, z).
Of course this condition depends heavily on the form of the conditional dis- Math. 44, 

tribution of R given Θ = θ. Example 4 If F θ (x) = (1 -e α(θ)x )1 ( 

  , [ De Haan, Huang 95], and more recently, of [Berlinet, Gannoun, Matzner-Lober 01], [Serfling 02] develop the notion of multivariate quantiles. In the classical scheme (cartesian coordinates) the multivariate variables are ordered coordinate by coordinate -see for example [Galambos 87] and the references therein. And in this way the maximum value thus obtained is not a sample point.In this paper we will use the definition of the maximum value of a multidimensional sample, given in[Delcroix, Jacob 91]. This definition is based on surfaces we have called isobars. Our approach is more geometric and as recalled just below, we use the level-surfaces of the conditional distribution function of the radius R given the angle Θ. So the maximum value is a sample point. The first motivation, [Barme 93], was to find the asymptotic location of a multidimensional sample without using the convex hull of the sample as it is done classically in [Geffroy 61], [Geffroy 58]. By a unidimensional approach, stability, strong behaviour and outlier-proneness properties have been explored for this new notion of extreme value in[Barme, Brito 01] and[Barme, Gather 02]. In this paper, the goal is to find limit laws for such mul-Through the use of the isobar surfaces we will see that the classical results -[Gnedenko 43] -about limit laws for unidimensional extremes are still efficient in this multidimensional context.
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  Figure 2: isobar-maximum

  It has been shown in [Delcroix, Jacob 91] that the conditional distribution of R * n given Θ * n is F n θ . More exactly we have the following theorem. Theorem 1 a)The variables Θ * n and Θ have the same distribution. b)The conditional distribution function of R * n given Θ * n = θ is given by

  consider the pairs (R k , U k ). In this part we use the following remark.

  g. [Galambos 87], [David 81]. The two properties of the next theorem will be used in this section.

  x>0) and α(Θ) is uniformly distributed over [0, 1] then the previous theorem is true with A n = Log n, B n = Log n, the limit law is Pareto.

  It would be possible to consider the pairs (U k , Θ k ) as done in the last section for the variables U and R, but we obtain only the asymptotic independence between Θ and U and the fact that asymptotically the variables Θ * n and Θ have the same distribution, which is weaker than the results stated in Theorems 1 and 5.
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