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The aim of this work is to give a fully covariant treatment of the (l = 1, m = 0)-electromagnetic excitations into the linearly expanding (k = -1)-Universe. For the corresponding radiating dipole, the closed form solutions, in the axially symmetric Lorentz-Coulomb gauge, are derived in terms of the Legendre associated functions. In order to get completeness in the physical interpretation, we have turned to hypergeometric functions and compute, in the far-field region, the observables of the entirely radiating field and the effective power.

Introduction

Many years after E. A. Milne published his works, [1], the Universe bearing his name has become a target of investigations within modern cosmology, especially after it has been seen that its predictions are consistent with data on apparent distances and red shift relationship for supernovae, [2]. It seams that our observation platform, as we look out upon the galaxies, is the Minkowski spacetime, while the cosmological events kinematics in this frame are subjected to the rules that give rise to the equations of Milne Cosmology, [3]. The geometrodynamical analysis of the extremal spacetime structures derived as exact solutions of the Einstein's field equations, for a generic FRW background with a quartically self-interacting scalar field as matter-content, has revealed that, while the central system fixed point is gravitationally inconsistent only with the spatially-closed FRW geometries, each of the other two is consistent only with the (k = -1)-family of FRW manifolds. So, once the vacuum is set in one of these two ground states, the spontaneous Z 2 -symmetry breaking creates an anti-de Sitter Universe, which gets filled with massive particles representing the physical field excitations, when slightly perturbed around the settled ground state. Thus, setting k = -1 as compulsory, the central fixed point corresponds to a Milne phase, which, being unstable against the coherent field fluctuations, does primarily turn into an anti-de Sitter one of small curvature value, [4]. In the area of investigation on the transitions between a contracting and expanding phases of the Universe there have been used different theoretical models, as for example the 11-dimensional M-theory on the R 9 × M background, where M is the two dimensional Milne universe, [5], or the one bubble inflationary scenario in an open universe, as an alternative to the standard inflation, [6]. Since one can define a natural vacuum state in the Milne spacetime that corresponds to the usual Minkowski vacuum, it has been concluded that we can gain an insight into the quantum state of a field inside an expanding bubble in terms of the particle spectrum observed by the comoving observers in the Milne universe at late times.

The present paper is generalizing the SO(3, 1)-gauge invariant theory of the dipole radiation in Minkowski Universe [7], where, using the components of the vector potential, solutions to the Maxwell equations, we have written down, for the pure dipole-like radiation, the observables, the Umov-Poynting vector components and the well-known Larmor formula for the effective ra-diated power. The general results can be related to the ones from [8], where the authors are deriving a solution of Maxwell's equations in an anisotropic Universe, for which one direction is linearly expanding and the others are static, and a dilaton field is present. Our interest in considering a Milne Universe is sustained by somewhat recent papers of A. Dev where, based on a careful analysis of the latest gravity lensing and high-z supernova data, it has been concluded that the existence of a present (quasi)Milne stage has not been completely ruled out, [9]. Apart from the internal beauty of the subject, the general problematic has deep implications in explaining the origin of the cosmological dipole, generally interpreted as a Doppler effect arising from the motion of the Earth relative to the CMBR frame. Recently, the idea that it actually results from ultra-large scale isocurvature perturbations has been examined in the context of open cosmologies, leading to the conclusion that the open universe must be extremely close to a flat manifold [10].

The Axially Symmetric Lorentz-Coulomb

Gauge for the Milne Metric

The linearly expending, k = -1, hyperbolic image of the Minkowski spacetime does actually describe the so-called Milne Universe,

ds 2 = t 2 (dχ) 2 + sinh 2 χ dΩ 2 -(dt) 2 , dΩ 2 = (dθ) 2 + sin 2 θ(dϕ) 2 , ( 1 
)
where θ and ϕ stand for the usual angular spherical coordinates, and the local coordinates χ and t are properly related to the radial coordinate r and the Minkowski time τ by the Milne relations

r = t sinh χ , τ = t cosh χ , ( 2 
)
so that the initial Minkowski metric in spherical coordinates

ds 2 (0) = (t cosh χdχ + sinh χdt) 2 + t 2 sinh 2 χdΩ 2 -(cosh χdt + t sinh χdχ) 2
(3) does actually become the celebrated Milne-Universe spacetime interval.

As the title goes, in the followings, we would like to give a full treatment on the equivalent vertical dipole radiation as it is percieved by an observer from (within) the Milne world, i.e. the complete set of solutions to the Maxwell equations

F ab ; b = 0 , where F ab = A b;a -A a;b , ( 4 
)
in the axially symmetric Coulomb-Lorentz gauge-fixing condition,

A a ;a = 0 , with A 4 = 0 = A 3 and

∂A A ∂ϕ = 0 , ( 5 
)
where the index A = 1, 2. The semi-colons stand for the Levi-Civita covariant derivatives with respect to the metric (1) within the Milne orthogonal frame whose dual bases is

ω 1 = t dχ , ω 2 = t sinh χdθ , ω 3 = t sinh χ sin θdϕ , ω 4 = dt . ( 6 
)
One can straightly work out the Levi-Civita connection coefficients, Γ abc = η ad Γ d

• bc , employing the first Cartan structure equation

dω a = Γ a • [bc] ω b ∧ ω c , 1 ≤ b < c ≤ 4 , (7) 
where Γ (ab)c = 0 comes from the metricity condition g ab;c = 0, with g ab = η ab . It yields therefore the algebraic essential coefficients

Γ 212 = Γ 313 = coth χ t , Γ 323 = cot θ t sinh χ , Γ 141 = Γ 242 = Γ 343 = 1 t , ( 8 
)
all of them being anti-symmetric in the first two indices. Now, because of the primarly gauge-fixing conditions, A 3 = 0 = A 4 , the U (1)-connection reads A = A B ω B , with B = 1, 2, leading, within the light of the axial symmetry A B|3 = 0, to the U (1)-curvature

F = dA = A B|C ω C ∧ ω B -A B|4 ω B ∧ ω 4 + A B dω B , ( 9 
)
which actually states the essential components of the Maxwell tensor,

F 12 = A 2|1 -A 1|2 + coth χ t A 2 , F A4 = -A A|4 + 1 t A A , A = 1, 2 . ( 10 
)
As for the Lorentz condition,

A B|B + A B Γ a •Ba = 0 , ( 11 
)
this does concretely read, using (8),

1 sin θ ∂ ∂θ (sin θA 2 ) = -sinh χ ∂A 1 ∂χ + 2 coth χA 1 . ( 12 
)
Now, let us launch the quest for the dipole-like solutions of the Maxwell equations ( 4) in the Milne Universe, parametrized by the metric (1). As it can be easily checked, because of the chosen gauge, the third Maxwell equation, F 3b ; b = 0, goes straightly trivial, yielding zero everywhere. With respect to the fourth equation, things are a bit more involved, yet the final result is the same. In what it concerns the second Maxwell equation, F 2b ;b = 0, this is always fulfilled by the component

A 2 = - sinh χ sin θ ∂A 1 ∂χ + 2 coth χA 1 sin θdθ , ( 13 
)
gotten from [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF], once the component A 1 evolves as a solution to its own propagation equation, F 1b ; b = 0. Thence, this is the one we have to deal with for it contains, by its consequences, all the information we need about the structure of the radiating field. Evolving the covariant derivatives, plugging in the Maxwell tensor components, (10), and the connection coefficients (8), it can be written as

A 2|12 + cot θ t sinh χ A 2|1 + coth χ t A 2|2 + cot θ coth χ t 2 sinh χ A 2 = A 1|22 + cot θ t sinh χ A 1|2 -A 1|44 - 3 t A 1|4 - 1 t 2 A 1 , ( 14 
)
where the left-hand-side should be entirely converted to an expression in A 1 alone. This can be done applying a trick with respect the non-commuting derivatives A 2|12 and the gauge-fixing condition. It finally yields the equation

A 1|11 + 4 coth χ t A 1|1 + A 1|22 + cot θ t sinh χ A 1|2 -A 1|44 - 3 t A 1|4 + 2 t (coth χ) |1 + 4 t 2 coth 2 χ - 1 t 2 A 1 = 0 , ( 15 
)
which becomes, switching to the derivatives

{∂ A (•)} = ∂(•) ∂χ , ∂(•) ∂θ and ∂(•) ∂t , 1 t 2 ∂ 2 A 1 ∂χ 2 + 4 coth χ ∂A 1 ∂χ + 1 sinh 2 χ ∂ 2 A 1 ∂θ 2 + cot θ ∂A 1 ∂θ + 2A 1 - ∂ 2 A 1 ∂t 2 + 3 t ∂A 1 ∂t - 3 t 2 A 1 = 0 . ( 16 
)
In principle, once we have the components A 1 and A 2 , the structure of the electromagnetic field is characterized by the classical observables

E 1 = - ∂A 1 ∂t + 1 t A 1 , E 2 = - ∂A 2 ∂t + 1 t A 2 , B 3 = 1 t ∂A 2 ∂χ - 1 sinh χ ∂A 1 ∂θ + coth χ A 2 , ( 17 
)
standing for the components of the electric field intensity and the magnetic induction, respectively. In practice, however, things are not so simple because of the complexity induced by the special functions involved with the solutions.

Considering

A 1 = F (χ)Y (θ)T (t) , ( 18 
)
in the propagation equation, one can easily separate the function Y : [0, π] → C, as being the Legendre polynomial of degree , namely Y (θ) = P (cos θ).

Since the case of multiple excitations = 2, 3, . . . ∈ N is too much involved (mathematically) to make it readable in some simple terms, we shall stick with the pure dipole radiation case, = 1. Thus, for the F and T parts, we come to the two eigenvalue problems [START_REF] Williams | Topics in Quantum Mechanics[END_REF],

(a)

d 2 F dχ 2 + 4 coth χ dF dχ + µF = 0 (b) t 2 d 2 T dt 2 + 3t dT dt -ΩT = 0 . ( 19 
)
The algebraic constraint between the constant scalars, µ + Ω = 3 is coming effectively from the isotropic uniform expansion of the Milne Universe and has no obvious analogue into Minkowski spacetime.

Let us start with the equation (19.b) and solve the problem considering the eigenvalue equation on (t ∈ R + ),

Dψ λ = λ ψ λ , λ ∈ R (20)
for the Hermitian operator

D = t 2 d 2 dt 2 + 2t d dt . ( 21 
)
We notice that, performing the eigenfunction substitution

ψ λ (t) = t a 1/2 T λ (t) , a ∈ R + , ( 22 
)
we get precisely the (19.b) equation for T , with Ω = λ -3/4. Thence, both Ω and µ are not only real-valued constants, but we can also specify their structure with respect to a single essential wave-number-like, real-valued, parameter k, which turns the continuous spectrum of fundamental solutions to (20),

φ k (t) = (2πa) -1/2 ψ λ(k) (t) , (∀) k ∈ R , ( 23 
)
into a complete set of orthonormal eigenfunctions; both of these properties being expressed in terms of δ-functions. That is coming around as it follows. With (21), the eigenvalue equation (20) reads

t 2 d 2 ψ k dt 2 + 2t dψ λ dt = λψ λ , ( 24 
)
leading to the set of independent fundamental solutions. Choosing the sign for the so-called positive frequency solutions,

e -iωt ∼ exp -ik ln t a ,
and setting

λ = - 1 4 -k 2 , ( 25 
)
the corresponding generic solution is

ψ λ(k) (t) = t a -1/2 exp -ik ln t a ≡ ψ k (t) , ( 26 
)
filling the property

(ψ k , ψ k ) = 2πa δ(k -k) .
Thus, the whole set of eigenfunctions,

φ k (t) = (2πt) -1/2 exp -ik ln t a , ( 27 
)
is not only orthonormal but also complete. Thence, from Ω = λ -3/4 and µ = 3 -Ω, one gets, because of (25), the k-dependent structures

Ω = -(1 + k 2 ) , µ = 4 + k 2 , ( 28 
)
which have to be considered in working out the mode-solutions of the basic equations (19). Since (19.b) does already have the Euler canonical form of the second order differential equation, its integration is straightforward, leading to the positive-frequency-like solution

T k (t) = a t exp -ik ln t a ( 29 
)
which is perfectly consistent with what we have obtained from the two formulae (22, 26).

Concerning the amplitude function F (χ), solution of (19.a), we have to work on it a little bit more. First, the variable substitution z = cosh χ is needed in order to cast the equation into the more familiar form (z 2 -1)

d 2 F dz 2 + 5z dF dz + µF = 0 . ( 30 
)
Secondly, there is a catch suggested by its similarity to the canonical equation of the Legendre associated function,

(z 2 -1) d 2 S dz 2 + 2z dS dz -n(n + 1) + m 2 z 2 -1 S = 0 , ( 31 
)
where

S(z) = {P m n (z) , Q m n (z)}.
Once the following substitution is applied,

S = (z 2 -1) ν F , with ν ∈ R , ( 32 
)
(31) becomes, in terms of F , (z 2 -1)

d 2 F dz 2 + (4ν + 2) dF dz + (2ν) 2 + 2ν -n(n + 1) + (2ν) 2 -m 2 z 2 -1 F = 0,
(33) and turns into the form (30) for the completely determined parameters

ν = 3 4 , m = 3 2 , n = - 1 2 ± ik , ( 34 
)
where the latter comes from the second degree equation

n 2 + n + [µ -2ν(2ν + 1)] = 0.
Putting everything back, we have shown that the Milne radial functions F (χ) are given by the expressions

F k (χ) = sinh -3/2 χ P 3/2 -1 2 ±ik (cosh χ) , Q 3/2 -1 2 ±ik (cosh χ) , ( 35 
)
where the signs in front of ik do respectively account for the out-going and in-coming modes. Thence, for completeness reasons, by including a constant factor N , of physical dimension T esla • meter, the Milne radial component of the four potential A, does explicitly read

A 1 (χ, θ, t) = N cos θ sinh 3/2 χ P 3/2 -1 2 ±ik (cosh χ) , Q 3/2 -1 2 ±ik (cosh χ) × a t exp -ik ln t a . ( 36 
)
Concerning the declination component, A 2 , inserting into (13) the Laplace decomposition (18) and the expression Y = cos θ, it yields

A 2 (χ, θ, t) = G(χ)T (t) sin θ , ( 37 
)
where the corresponding radial function G is defined by

G(χ) = - sinh χ 2 dF dχ + 2 coth χ F . ( 38 
)
In terms of the variable z and using (32), namely

F = (z 2 -1) -3/4 S 3/2 -1 2 ±ik (z) , ( 39 
)
the G-function is given by the expression

= - 1 2 (z 2 -1) -3/4 (z 2 -1) d dz S 3/2 -1/2±ik (z) + z 2 S -1/2±ik (z) , ( 40 
)
which, by employing the properties of the Legendre associated functions [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF], turns into

G(z) = (z 2 -1) -3/4 4 (1 ± ik)S 3/2 -3/2±ik (z) + (1 ∓ ik)S 3/2 1/2±ik (z) , ( 41 
)
so that the Milne declination component does explicitly read

A 2 (χ, θ, t) = N sin θ 4 sinh 3/2 χ (1 ± ik) P 3/2 -3 2 ±ik (cosh χ) , Q 3/2 -3 2 ±ik (cosh χ) + (1 ∓ ik) P 3/2 1 2 ±ik (cosh χ) , Q 3/2 1 2 ±ik (cosh χ) a t exp -ik ln t a . ( 42 
)
3 The Observables

Although good looking as closed form solutions, the two expressions, (36, 42), are not physically transparent, particularly with respect to their longrange behavior, where exp(-2χ) 1. To get this matter clear, we have to come back to (30) and to work out directly its mode-solutions, in terms of easier handling special functions, such as the hypergeometric ones. In this respect, the following variable substitution is needed:

z = 1 -2x ⇔ x = - 1 2 (z -1) ⇔ x = -sinh 2 χ 2 .
It turns the amplitude function equation (30) into the form

x(1 -x) d 2 F dx 2 + 5 2 -5x dF dx -µF = 0 , where µ = 4 + k 2 , ( 43 
)
which is the same with the hypergeometric functions' equation

x(1 -x) d 2 F dx 2 + [γ -(α + β + 1) x] dF dx -αβF = 0 , ( 44 
)
possessing the two linearly independent solutions

F R (x) = F [α, β, γ; x] , F S (x) = x 1-γ F [β -γ 1, α -γ + 1, 2 -γ; x] . ( 45 
)
The notation F [a, b, c; x] stands for the corresponding hypergeometric func-2 F 1 [a, b, c; x] and the subscripts R, S indicate the respective behavior at the origin, x = 0. R stands for non-singular, i.e. regular, while S signals out the presence of a singularity at x = 0 and therefore, it stands for singular. Thence, by simply identifying the coefficients in the two equations ( 43) and (44), it yields

α = 2 -ik , β = 2 + ik , γ = 5 2 (46)
so that, according to (45), the generating solutions of the differential equation ( 43), for the Milne radial function F , are given by the expressions

F R (x) = F 2 -ik, 2 + ik, 5 2 ; x , F S (x) = x -3/2 F 1 2 -ik, 1 2 + ik, - 1 2 ; x . ( 47 
)
The only problem with them is that, because of x = -sinh 2 (χ/2) and χ ∈ [0, ∞), the variable x goes beyond the "traditional" domain of convergence, |x| ≤ 1, of the hypergeometric series 2 F 1 and therefore, we have to use in (47) the property

F [a, b, c; x] = (1 -x) -a F a, c -b, c ; x x -1 , ( 48 
)
to clear up this matter. Accordingly, taking the steps backward to the radial modes basic equation (19.a), its fundamental the solution(s) read

(a) F R (χ) = cosh 2ik (χ/2) cosh 4 (χ/2) F 2 -ik, 1 2 -ik, 5 2 ; tanh 2 χ 2 , (b) F S (χ) = i cosh 2ik (χ/2) sinh 3 (χ/2) cosh(χ/2) F 1 2 -ik, -(1 + ik), - 1 2 ; tanh 2 χ 2 . ( 49 
)
The first good thing about them regards the very short-range behavior of the respectively generated Maxwell field. Indeed, as χ → 0, the first amplitude function, given by (49.a), describes a vertically directed homogeneous electric field; extremely similar to the one inside a plane capacitor, while the Milne radial F S (χ) does actually account for the Maxwell field structure of an origin-centered, vertically directed, electric dipole of momentum p =

E (cl) 1 = -8 (kN ) a 2 r 3 cos θ , E (cl) 2 = -4 (kN ) a 2 r 3 sin θ , (50) 
and

E (dip) 1 = - ∂V ∂r = p 2πr 3 cos θ ≡ E (cl) 1 , E (dip) 2 = - 1 r ∂V ∂r = p 4πr 3 sin θ ≡ E (cl) 2 , ( 51 
)
where the constant amplitude factor N is defined by

kN = - p 16πa 2 . ( 52 
)
Thence, in the case = 1, the amplitude function (49.b) is the basic ingredient we need in order to describe the electric dipole radiation in the Milne Universe. Envisaging the relation (38), the two essential components of the 4-potential A do respectively read

(a) A 1 = N F S (χ)T k (t) cos θ , (b) A 2 = N G S (χ)T k (t) sin θ , (53) 
where the time-dependent part, for positive-frequency modes is given by (29). It yields therefore, from ( 17),

(a) E 1 = i N ka t 2 F S (χ) exp -ik ln t a cos θ , (b) E 2 = i N ka t 2 G S (χ) exp -ik ln t a sin θ , (c) B 3 = N a t 2 dG S dχ + coth χG S + 1 sinh χ F S exp -ik ln t a sin θ . ( 54 
)
Now, it comes the second good thing about the radial amplitude function given by (49.b). Since, at large positive values of χ, accounting for the radiation zone, it yields tanh(χ/2) → 1 and therefore, [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF],

F 2 -ik, -1 -ik, - 1 2 ; 1 = Γ -1 2 Γ(-1 + ik) Γ 1 2 + ik where Γ(2ik) = 2 2ik 2 √ π Γ(ik) Γ 1 2 + ik , Γ(ik) = (-1 + ik) Γ(-1 + ik) , one gets F 1 2 -ik, -1 -ik, - 1 2 ; 1 = 
(1 -ik) 2 2ik ,
so that, in the far-field region, where

i sinh 3 χ 2 • cosh 2ik χ 2 cosh χ 2 ≈ 16i • 2 -2ik • e -2χ • e ikχ ,
the F -radial function reads

F S (χ) = 16(k + i) e -2χ e ikχ . ( 55 
)
In light of (38), -within the same approximation -the G-radial function becomes

G S (χ) = -4ik(k + i)e -χ e ikχ , (56) 
casting the 4-potential essential components (53), into the form

(a) A 1 = 16 N a t (k + i) e -2χ exp ik χ -ln t a cos θ , (b) A 2 = -4i N ka t (k + i) e -χ exp ik χ -ln t a sin θ , (57) 
so that, the entirely radiating Maxwell field of an electric dipole in the Milne Universe, turns out to be described by the classical observables

(a) E 1 = 16i N ka t 2 (k + i) e -2χ exp ik -ln t a cos θ , (b) E 2 = 4 N k a t 2 (k + i) e -χ exp ik χ -ln t a sin θ , (c) B 3 = 4 N k 2 a t 2 (k + i) e -χ exp ik χ -ln t a sin θ , ( 58 
)
where, in the far-field region, exp(-2χ) 1, it survive only

E 2 = 4 N a ka t 2 k + i e χ exp ik χ -ln t a sin θ = B 3 , ( 59 
)
expressed in Heaviside units. The imaginary unit, i, accompanying the dimensionless wave-number parameter, k, has no obvious analogue in the plane Minkowski spacetime. Nevertheless, the structure (59) of the radiating field should not take us by surprise if we have in mind the cosmological principle related to the linear expansion (of the considered Universe). The combination χ -ln(t/a), appearing in the phase is nothing else but "minus" the retarded null-coordinate, u = ln(t/a) -χ, for out-going wave fronts, exactly similar to the retarded null-coordinate

U = τ -r = t cosh χ -t sinh χ = te -χ ⇒ U = ae u
in Minkowski spacetime. In addition, from the red-shift formula,

- ∂Φ ∂t = ω(t) = a t ω 0 , (60) 
where φ = k (χ -ln(t/a)), it yields the physical meaning of the wave parameter, k = aω 0 .

The Effective Radiated Power

Globally, we have come to the problem of the effective radiated power, at the Milne cosmic time, t, defined as

P(t) = (4π) Π 1 (χ, θ, t)ω 2 ∧ ω 3 , ( 61 
)
where, in the far field region,

ω 2 = 1 2 te χ dθ , ω 3 = 1 2 te χ sin θdϕ , ( 62 
)
and Π 1 (χ, θ, t) stands for the essential radial component of the Poynting vector

Π 1 = 2 |E 2 | 2 = 8 |N 2 a 2 t 4 e 2χ k 4 (k 2 + 1) sin 2 θ . ( 63 
)
Thence, the expression (61) gets explicitly

P(t) = 16π 3 |N | 2 a t 2 k 4 (k 2 + 1) (64) 
and the effective radial component of the Poynting vector can be written as,

Π = p 2 0 ω 4 0 128π 2 k 2 + 1 k 2 a t 2 sin 2 θ r 2 , ( 65 
)
where we have inserted the heuristic norm factor

N = - p 0 16πa 2 k , ( 66 
)
ω 0 = k/a and p 0 stands for the Minkowskian dipole p 0 = q 0 d, d = 2h.

In the radiation zone, these results can be expressed in terms of a better parameter than the maximum charge q 0 , namely the excitation current amplitude, I 0 , that feeds-in the radiating system. It comes from the definition law

I(t) = d dt q(t) ,
where I(t) is the instantaneous feeding current and q(t) is the "accumulated" charge at one of the electric dipole, given by the Milne time-variation law

q(t) = q 0 exp -ik ln t a . ( 67 
)
Thence, it yields

I(t) = -i kq 0 a a t exp -ik ln t a = I 0 a t exp -ik ln t a ( 68 
)
and therefore the excitation current amplitude reads

I 0 = -i kq 0 a , (69) 
which also implies q 0 = i(a/k)I 0 . It is precisely the latter relation one needs in order to get the concrete meaning of the heuristic factor

N = - 2q 0 h 16πka 2 , N = - i 8π I 0 h k 2 a . ( 70 
)
Thus, whole structure of the pure dipole radiation, in the Milne Universe, turns out to be described by the relations

(a) E 2 ( r, t) = -i I 0 h 4πa (k + i) a t exp ik χ -ln t a sin θ r = B 3 ( r, t) , (b) Π( r, t) = I 2 0 h 2 32π 2 k 2 + 1 a 2 a t 2 sin 2 θ r 2 , (c) P(t) = I 2 0 h 2 12π k 2 + 1 a 2 a t 2 , (71) 
with the physically important meaning of the wave number-like parameter, k = aω 0 and the physical radius given by r = t sinh χ ⇒ te χ ≈ 2r, at large (positive) values of χ.

Conclusions

The present paper deals with the SO(3, 1)-gauge invariant treatment of the (l = 1, m = 0)-electromagnetic excitations in the Milne Universe. Using the complete set of solutions to the Maxwell equations in the axially symmetric Lorentz-Coulomb gauge, we get the radial and the declination components of the four potential, in terms of the Legendre associated functions. In order to put the results in a more physically transparent form, we turn to hypergeometric functions and compute, in the radiation zone, the classical observables. In the far-field region, the structure of the phase appearing in the explicit expressions of the surviving electromagnetic components, E 2 = B 3 , allows us to give a natural explanation to the red-shift formula. In what it concerns the effective radial component of the Poynting vector given by (65), one can make the following comment: since a is the cosmological length scale, being at least few billion (light) years, the values of k = ω 0 a are extremely high, even in the ULF-portion of the electromagnetic spectrum, so that (k 2 + 1)/k 2 ≈ 1 and therefore in the (local) Minkowskian limit, where t = a + τ and |τ | the expression (65) turns into the form

Π p 2 0 ω 4 0 128π 2 sin 2 θ r 2 , ( 72 
)
which leads to the effectively radiated power (in Heaviside units)

P = p 2 0 ω 4 0 48π . ( 73 
)
Seemingly, there is a difference with respect to the usual Larmour law, given by a steady (1/4)-factor which affects both the well-known results for the Minkowski spacetime:

Π 0 = p 2 0 ω 4 0 32π 2
sin 2 θ r 2 ; P 0 =

p 2 0 ω 4 0 12π . ( 74 
)
Actually, that does only come from the naive identification of the effective electric dipole p from the Milne Universe with the one, p 0 , from Minkowski.

In fact, because of the Milne horizon at t = 0 (in a manner of speaking) just one of the charges of the initial Minkowski dipole makes it into the Milne patch (χ, t) > 0, which we have considered, while the other one gets trapped, behind the horizon, into the lower patch. Thence, for all the observers living within the upper Milne Universe, the concretely oscillating dipole has the momentum p = q 0 h = p 0 /2 ⇔ p 0 = 2p. Once the heuristic norm factor is rescaled according to the above relation, i.e. being entirely expressed in terms of p, the Umov-Poynting vector and the radiated power get 4-times bigger and the complete agreement with Larmour's expressions (74) is restored. Also, one may notice the clear derivation of the 1/(distance) 2 -law of the radiating field intensity with respect to the physical (cosmological) distance d ph (t) = a(t) • r = t • r. Last but not least, it can be proven, from (71.c), that the radiation resistance of the dipole (antenna), namely

R = 80π 2 h λ 2 ,
where λ = 2πc/ω 0 , is Milne cosmologically invariant.
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