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Introduction

In recent years, a lot of attention has been drawn towards the problem of constructing surfaces with prescribed mean curvature. More precisely, given an assigned function g : R d → R, the problem is finding a hypersurface having mean curvature κ satisfying κ = g.

(1)

To our knowledge, this problem was first posed by S.T. Yau in [START_REF] Yau | Problem section. Seminar on Differential Geometry[END_REF], under the additional constraint of the hypersurface being diffeomorphic to a sphere, and a solution was provided in [START_REF] Treibergs | Embedded hyperspheres with prescribed mean curvature[END_REF][START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF] when the function g satisfies suitable decay conditions at infinity, namely that it decays faster than the mean curvature of concentric spheres. Another approach was presented in [START_REF] Bethuel | Parametric Surfaces with Prescribed Mean Curvature[END_REF][START_REF] Guida | Symmetric κ-loops[END_REF], by means of conformal parametrizations and a clever use of the mountain pass lemma. A serious limitation of this method is the impossibility to extend it to dimension higher than three, due to the lack of a good equivalent of a conformal parametrization. Motivated by some homogenization problems in front propagation [START_REF] Novaga | Bump solutions for the mesoscopic Allen-Cahn equation in periodic media[END_REF], in this paper we look for solutions to [START_REF] Almgren | Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals[END_REF] without any topological constraint but with a periodic function g, so that in particular, it does not decay to zero at infinity. A natural idea is to look for critical points of the prescribed curvature functional

F (E) = P (E) - E g dx,
as it is well-known that such critical points solve [START_REF] Almgren | Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals[END_REF], whenever they are smooth [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF]. Observe that, in general, it is not possible to construct solutions of (1) by a direct minimization of the functional F , because such minimizers may not exist or be empty.

The first result in this setting was obtained by Caffarelli and de la Llave in [START_REF] Caffarelli | Planelike Minimizers in Periodic Media[END_REF] (see also [START_REF] Chambolle | Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem[END_REF]) where the authors construct planelike solutions of (1) under the assumption that g is small and has zero average, by minimizing F among sets with boundary contained in a given strip, and then show that the constraint does not affect the curvature of the solution.

Here we are interested instead in compact solutions of [START_REF] Almgren | Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals[END_REF]. This problem seems difficult in this generality and only some preliminary results, in the two-dimensional case, are presently available [17]. However, the following perturbative result has been proved in [START_REF] Novaga | Bump solutions for the mesoscopic Allen-Cahn equation in periodic media[END_REF]: given a periodic function g with zero average and small L ∞ -norm and ε arbitrarily small, there exists a compact solution of κ = g ε where g εg L 1 ≤ ε. Since the L 1 -norm does not seem very well suited for this problem, a natural question raised in [START_REF] Novaga | Bump solutions for the mesoscopic Allen-Cahn equation in periodic media[END_REF] was whether the same result holds when the L 1 -norm is replaced by the L ∞ -norm.

In this paper we answer this question. More precisely, we prove the following result (see Theorem 4.4): let g be a periodic Hölder continuous function with zero average on the unit cell Q = [0, 1] d and such that

E g dx ≤ (1 -Λ)P (E, Q) ∀E ⊂ Q (2)
for some Λ > 0, where P (E, Q) is the relative perimeter of E in Q. Then for every ε > 0 there exist 0 < ε ′ < ε and a compact solution of

κ = g + ε ′ . (3) 
We observe that (2) is the same assumption made in [START_REF] Chambolle | Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem[END_REF] in order to prove existence of planelike minimizers. This condition is for instance verified if ||g|| L d (Q) is smaller than the isoperimetric constant of Q, and allows g to take large negative values. We construct approximate solutions of (3) as volume constrained minimizers of F for big volumes. This motivates the study of the isovolumetric function f : [0, +∞) → R defined as

f (v) = min |E|=v F (E). ( 4 
)
As a by-product of our analysis, we are able to characterize the asymptotic shape of minimizers as the volume tends to infinity, showing that they converge after appropriate rescaling to the Wulff Shape (i.e. the solution of the isoperimetric problem) relative to an anisotropy φ g depending on g. We mention that, in the small volume regime, the contribution of g becomes irrelevant and the minimizers converge to standard spheres (see [START_REF] Figalli | On The Equilibrium Shapes Of Liquid Drops And Crystals[END_REF] and references therein). The plan of the paper is the following: in Section 2 we show existence of compact minimizers of (4). In Section 3 we prove that the function f is locally Lipschitz continuous and link its derivative to the curvature of the minimizers. We also provide an example of a function f which is not differentiable everywhere. Let us notice that in these first two parts no assumption is made on the average of g or on its size. In Section 4 we use the isovolumetric function to find solutions of (3). Eventually, in Section 4.1 we investigate the behavior of the constrained minimizers of (4) as the volume goes to infinity.

Notation and general assumptions. We shall assume that g is a C 0,α periodic function, with periodicity cell Q = [0, 1] d . We shall also suppose that the dimension of the ambient space is smaller or equal to 7, so that quasi-minimizers of the perimeter have boundary of class C 2,α [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF]. We believe that this restriction is not relevant for the results of this work, but we were not able to remove it. For a set of finite perimeter we denote by P (E) its perimeter and by ∂ * E its reduced boundary (see [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF] for precise definitions). Given an open set Ω, we denote by P (E, Ω) the relative perimeter of E in Ω. We take as a convention that the mean curvature (which we define as the sum of all principal curvatures) of a convex set is positive. If ν is the outward normal to a set with smooth boundary, this amounts to say that the mean curvature κ is equal to div(ν).
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Existence of minimizers

In this section we prove existence of compact volume-constrained minimizers of F , by showing that for every volume v, the problem is equivalent to the unconstrained problem min

E⊂R d F µ (E) = min E⊂R d P (E) - E g dx + µ |E| -v , (5) 
for µ > 0 large enough. We start by studying [START_REF] Bethuel | Parametric Surfaces with Prescribed Mean Curvature[END_REF], showing existence of smooth compact minimizers. We then show that there exists µ 0 such that, for µ ≥ µ 0 , every compact minimizer of F µ has volume v. In particular, this will provide existence of minimizers of (4), since f (v) ≤ min E F µ (E) for every µ ≥ 0.

Denoting by Q R the cube [-R/2, R/2] d of sidelength R, we consider the spatially constrained problem min

E⊂Q R F µ (E). (6) 
Having restrained our problem to a bounded domain, we gain compactness of minimizing sequences and thus existence of minimizers for (6) by the direct method [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF]. We want to show that these minimizers do not depend on R for R big enough. In order to do so, we need density estimates as [START_REF] Caffarelli | Planelike Minimizers in Periodic Media[END_REF].

Proposition 2.1. There exist two constants C(d) and γ depending only on the dimension

d such that, if we set r 0 (µ) = C(d) µ + g ∞
, then for every minimizer E of (6) and every

x ∈ R d , • |E ∩ B r (x)| ≥ γr d for every r ≤ r 0 if |B r (x) ∩ E| > 0 for any r > 0,
• |B r (x)\E| ≥ γr d for every r ≤ r 0 if |B r (x)\E| > 0 for any r > 0.

Proof. Let x ∈ ∂ * E then by minimality of E we have

P (E) - E g dx + µ |E| -v ≤ P (E\B r (x)) - E\Br(x) g dx + µ |E\B r (x)| -v , hence P (E) ≤ E∩Br g dx + P (E\B r ) + µ |E| -|E\B r | = E∩Br g dx + P (E\B r ) + µ|E ∩ B r | ≤ |E ∩ B r |( g ∞ + µ) + P (E\B r ).
On the other hand we have

P (E) = H d-1 (∂ * E ∩ B r ) + H d-1 (∂ * E ∩ B c r )
and

P (E\B r ) = H d-1 (E ∩ ∂B r ) + H d-1 (∂ * E ∩ B c r )
. From these inequalities we get

H d-1 (∂ * E ∩ B r ) ≤ H d-1 (E ∩ ∂B r ) + ( g ∞ + µ)|E ∩ B r |.
Letting U (r) = |E ∩ B r | and using the isoperimetric inequality [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF], we have

c(d)U (r) d-1 d ≤ P (E ∩ B r ) = H d-1 (∂ * E ∩ B r ) + H d-1 (∂B r ∩ E) ≤ 2H d-1 (∂B r ∩ E) + ( g ∞ + µ)U (r).
Recalling that H d-1 (∂B r ∩ E) = U ′ (r) for a.e. r > 0, we find

c(d)U (r) d-1 d ≤ 2U ′ (r) + ( g ∞ + µ)U (r). ( 7 
)
The idea is that, when U is small, the term

U d-1 d
dominates the term which is linear in U so that we can get rid of it. Letting ω d be the volume of the unit ball and r ≤ ω

-1 d d c(d) 2(µ + g ∞ )
, we then have

U (r) ≤ |B r | = ω d r d ≤ c(d) 2(µ + g ∞ ) d .
Raising each side of the inequality to the power -1 d and multiplying by U we get

U (r) d-1 d ≥ 2(µ + g ∞ ) c(d) U and from this c(d) 2 U (r) d-1 d -(µ + g ∞ )U ≥ 0 thus finally c(d)U (r) d-1 d -(µ + g ∞ )U ≥ c(d) 2 U (r) d-1 d .
Putting this back in [START_REF] Caffarelli | Planelike Minimizers in Periodic Media[END_REF] and letting

C(d) = c(d)ω -1 d d /2 we have c(d) 4 U (r) d-1 d ≤ U ′ (r) ∀r ≤ C(d) (µ + g ∞ )
.

If we set V (r) = U 1 d (r) we have

V ′ (r) = 1 d U ′ (r)U 1-d d (r) ≥ c(d) 4d .
Integrating we get

V (r) ≥ c(d) 4d r hence U (r) ≥ c(d) 4d d r d .
The second inequality is obtained by repeating the argument with E ∪ B r (x) instead of E\B r (x).

We now estimate the error made by relaxing the constraint on the volume. Lemma 2.2. For every set of finite perimeter E and every µ > g ∞ we have

|E| -v ≤ F µ (E) + v g ∞ µ -g ∞ . Proof. If |E| > v we have F µ (E) = P (E) - E g + µ(|E| -v) thus µ(|E| -v) ≤ F µ (E) + g ∞ |E|
and from this we find

(µ -g ∞ )(|E| -v) ≤ F µ (E) + v g ∞ .
Dividing by µg ∞ we get

|E| -v ≤ F µ (E) + v g ∞ µ -g ∞ .
If |E| ≤ v we similarly get

(µ + g ∞ )(|E| -v) ≤ F µ (E) + v g ∞ hence |E| -v ≤ F µ (E) + v g ∞ µ + g ∞ ≤ F µ (E) + v g ∞ µ -g ∞ .
We now prove that the minimizers do not depend on R, for R big enough. Here the periodicity of g is crucial.

Proposition 2.3. For every µ > g ∞ , there exists R 0 (µ) such that for every R ≥ R 0 , there exists a minimizer E R of (6) verifying diam(E R ) ≤ R 0 . Equivalently we have

min E⊂Q R F µ (E) = min E⊂Q R 0 F µ (E) for all R ≥ R 0 .
Proof. Let E R be a minimizer of [START_REF] Bourgain | On the Equation div Y = f and Application to Control of Phases[END_REF]. Let Q be the unit square and

N = ♯{z ∈ Z d / |{z + Q} ∩ E R | = 0}.
We want to bound N from above by a constant independent of R.

Let

r 0 = C(d) µ+ g ∞ as in Proposition 2.1. For all x ∈ E R we have |E R ∩ B r (x)| ≥ γr d ∀r ≤ r 0 .
Letting

r 1 = min(r 0 , 1 2 ), for all x ∈ R d we have ♯{z ∈ Z d / {z + Q} ∩ B r 1 (x) = ∅} ≤ 2 d .
Therefore, we can find at least

N/2 d points x i in E R such that B r 1 (x i ) ∩ B r 1 (x j ) = ∅ for every i = j and such that x i ∈ Q + z i with |{z i + Q} ∩ E R | = 0 for some z i ∈ Z. We thus have |E R | ≥ i |B r 1 (x i ) ∩ E R | ≥ N 2 d γr d 1 .
This gives us

N ≤ 2 d |E R | γr d 1 .
Letting B v be a ball of volume v, by Lemma 2.2 and

F µ (E R ) ≤ F µ (B v ), we have |E R | -v ≤ F µ (B v ) + v g ∞ µ -g ∞ ≤ c(d)v d-1 d + 2v g ∞ µ -g ∞ .
This shows that

|E R | ≤ v + c(d)v d-1 d + 2v g ∞ µ -g ∞ so that N is bounded by a constant independent of R. We now prove that diam(E R ) ≤ C(d)N . Indeed let x ∈ E R and let P 0 = [0, 1] × [-R/2, R/2] d-1 be a slice of Q R orthogonal to the direction e 1 .
For i ∈ Z we also set

P i = P 0 + ie 1 . Our aim is showing that E R is contained in a box of size N in the direction e 1 .
Up to translation we can suppose that E R ∩ P i = ∅ for all i < 0. We want to show that we can choose E R ⊂ 0≤i≤N P i .

Let I ≤ R be the least integer such that E R ⊂ 0≤i≤I P i and suppose I ≥ N . Because of the definition of N , there is at most N slices P i such that P i ∩ E R = ∅. Hence there exists i between 0 and N such that

E - i e 1 E + i E + i -e 1 P i
P i ∩ E R = ∅. Let E + i = j>i E R ∩ P j and E - i = j<i E R ∩ P j then if we set E R = E - i ∪ {E + i -e 1 } we have F µ ( E R ) = F µ (E R
) and E R ⊂ 0≤i≤I-1 P i giving the claim by iterating the procedure (see Figure 1).

The same argument applies to any orthonormal direction e k , hence

E R ⊂ Q 2N .
We now prove existence of minimizers for F µ .

Proposition 2.4. For µ > g ∞ , there exists a bounded minimizer of F µ . Moreover such minimizer has boundary of class C 2,α , where α is the Hölder exponent of the function g.

Proof. By Proposition 2.3 there exists R 0 such that E R ⊂ B R 0 for every R > 0. Suppose now that there exists E with F µ (E) < F µ (E R 0 ). Then there exists ε > 0 such that

F µ (E) + ε ≤ F µ (E R 0 ).
Let us show that there exists R > R 0 such that

F µ (E ∩ B R ) + ε 2 ≤ F µ (E R 0 ).
We start by noticing that

|E ∩ B R | tends to |E| and that E∩B R g dx tends to E g dx
when R → +∞. On the other hand,

P (E ∩ B R ) = H d-1 (E ∩ ∂B R ) + H d-1 (∂ * E ∩ B R )
and we have lim

R→+∞ H d-1 (∂ * E ∩ B R ) = P (E) and lim R→+∞ R 0 H d-1 (E ∩ ∂B s )ds = lim R→+∞ |E ∩ B R | = |E|.
The last equality shows that

H d-1 (E ∩ ∂B R ) is integrable so that, for every R > 0, there exists R ′ > R such that H d-1 (E ∩ ∂B R ′
) is arbitrarily small. This implies that we can find a R large enough so that

F µ (E ∩ B R ) + ε 2 ≤ F µ (E R 0 ).
The minimality of E R 0 yields to a contradiction.

We now focus on the regularity. Let E be a minimizer of F µ then for every G,

P (E) - E g dx + µ |E| -v ≤ P (G) - G g dx + µ |G| -v . Hence P (E) ≤ P (G) + g ∞ |E∆G| + µ |E| -|G| ≤ P (G) + ( g ∞ + µ)|E∆G|.
E is thus a quasi-minimizer of the perimeter so that, by classical regularity theory [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF] (see also [START_REF] Morgan | Regularity of isoperimetric hypersurfaces in Riemannian manifolds[END_REF]), we get that ∂E is of class C 2,α .

In order to prove the equivalence between the constrained and unconstrained problems, we will need the following geometric inequality. In the case of convex sets, it directly follows from the Alexandrov-Fenchel inequality (see Schneider [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications[END_REF]). For general smooth compact sets with positive mean curvature, it follows from [START_REF] Psaradakis | L 1 Hardy inequalities with weights[END_REF]Cor. 4.6]. We include a short proof for the reader's convenience. Lemma 2.5. Let E be a compact set with C 2 boundary and assume that κ > 0 on ∂E, where κ denotes the mean curvature of ∂E. Then

(d -1)P (E) ≥ |E| min ∂E κ . ( 8 
)
Proof. Let Λ = min ∂E κ then no point of E is at distance of ∂E greater than d-1 Λ . Indeed, if x ∈ E, considering the ball B(x, R) centered in x and of radius R, with R the smallest radius such that ∂E ∩ B(x, R) = ∅ then R ≤ d-1 Λ since the points of ∂E ∩ B(x, R) have curvature less than d-1 R . Let now b(x) = dist(x, R d \E)
be the distance function to the complementary of E. By the Coarea Formula [3], we have

|E| = d-1 Λ 0 P ({b > t}) dt
from which we deduce (8) provided that

P ({b > t}) ≤ P ({b > 0}) = P (E)
for a.e. t > 0. We now prove this inequality.

As b is locally semi-concave in E (see [START_REF] Mantegazza | Hamilton-Jacobi equations and distance functions on Riemannian manifolds[END_REF]), that is D 2 b ≤ C Id in the sense of measures, the singular part of D 2 b is a negative measure. Moreover, letting Sing be the set where b is not differentiable and letting S = Sing, we have that Sing corresponds to the set of points having more than one projection on ∂E, b is C 2 out of S, and S is of zero Lebesgue measure [START_REF] Crasta | The distance function from the boundary in a Minkowski space[END_REF] (and even (d -1)-rectifiable if ∂E is C 3 [START_REF] Mantegazza | Hamilton-Jacobi equations and distance functions on Riemannian manifolds[END_REF]). The hypothesis that ∂E is C 2 is sharp since there exists sets with C 1,1 boundary such that the cut locus is of positive Lebesgue measure [START_REF] Mantegazza | Hamilton-Jacobi equations and distance functions on Riemannian manifolds[END_REF]. The set S is sometime called the cut locus of ∂E. We refer to [START_REF] Ambrosio | Calculus of variations and partial differential equations, Topics on geometrical evolution problems and degree theory[END_REF][START_REF] Mantegazza | Hamilton-Jacobi equations and distance functions on Riemannian manifolds[END_REF] for a proof of these properties of the distance function b.

If x ∈ {b = t} is a point out of S, by the smoothness of b and by classical formulas there holds [START_REF] Ambrosio | Calculus of variations and partial differential equations, Topics on geometrical evolution problems and degree theory[END_REF] -∆b

(x) = κ {b=t} (x) = d-1 i=1 κ i (π(x)) 1 -b(x)κ i (π(x))
where π(x) is the (unique) projection of x on ∂E and where κ i are the principal curvatures of ∂E. By the convexity of the function κ → κ/(1bκ), and recalling that the mean curvature of ∂E is positive, we get that ∆b(x) ≤ 0 on E\S. Finally, since the singular part of the measure ∆b (which is concentrated on S) is non positive, we find that ∆b ≤ 0 in the sense of measures.

By the Coarea Formula, for a.e. t > 0 we have H d-1 (∂{b > t} ∩ S) = 0, so that for such t's

P ({b > t}) -P (E) = {b=t} ∇b • ν + ∂E ∇b • ν = {0<b<t} ∆b ≤ 0 , (9) 
where ν denotes the exterior unit normal to the set {0 < b < t}, so that ν = -∇b on ∂E and ν = ∇b on {b = t} \ S.

As the vector field ∇b is bounded and its divergence ∆b is a Radon measure, the integration by part formula in ( 9 Remark 2.6. Under the hypothesis Λ := min ∂E κ > 0, one could also replace [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF] by

P (E)R max ≥ |E| where R max ≤ d-1
Λ is the radius of the largest ball contained in E.

Remark 2.7. Notice that the inequality

d -1 d P (E) 2 ≥ |E| ∂E κ (10) 
which is one of the Alexandrov-Fenchel inequalities (and which implies (8)) does not hold for a general smooth compact set. Indeed, for d = 2 we can consider a disjoint union of N balls of radius r i , so that the left hand-side is of order ( i r i ) 2 and the right hand-side is of order N i r 2 i . Hence, if we let r i = 1/i 2 , we get that the left hand-side remains bounded while the right hand-side blows-up when the number of balls N increases, thus violating [START_REF] Chen | Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws[END_REF].

We are finally in position to prove existence of minimizers of problem (4).

Theorem 2.8. Let d ≤ 7, then for all v > 0 there exists a compact minimizer E v of (4) with ∂E v of class C 2,α . Moreover, E v is also a minimizer of F µ for all

µ ≥ C 1 (d) g ∞ + C 2 (d)v -1 d (11)
where C 1 (d) and C 2 (d) are two positive constants depending only on d.

Proof. Letting E µ be a bounded and smooth minimizer of F µ , given by Proposition 2.4, We will show that |E µ | = v, for µ large enough. Let µ be larger than g ∞ and suppose by contradiction

|E µ | = v. Then, if |E µ | > v, the Euler-Lagrange equation for F µ writes κ Eµ = g -µ
where κ Eµ is the mean curvature of E µ . But this is impossible since µ > g ∞ , which would lead to κ Eµ < 0, contradicting the compactness of E µ .

Thus for µ > g ∞ , we have |E µ | < v and

κ Eµ = g + µ.
Using inequality ( 8) with E = E µ , and the fact that |E µ | ≥ v/2 by Lemma 2.2, we get

F µ (E µ ) ≥ 1 d -1 (µ -g ∞ )|E µ | -g ∞ |E µ | ≥ 1 d -1 (µ -g ∞ ) v 2 -g ∞ v.
On the other hand,

F µ (E µ ) ≤ F µ (B v )
, where B v is a ball of volume v, so that

C(d)v d-1 d + g ∞ v ≥ F µ (B v ) ≥ 1 d -1 (µ -g ∞ ) v 2 -g ∞ v
and we finally obtain

µ ≤ C 1 (d) g ∞ + C 2 (d)v -1 d .
Remark 2.9. The minimizer E v satisfies the Euler-Lagrange equation

κ E = g + λ v with |λ v | ≤ µ,
where µ verifies [START_REF] Crasta | The distance function from the boundary in a Minkowski space[END_REF]. In particular, λ v and thus also κ E ∞ are uniformly bounded in v,

for v ∈ [ε, +∞).
The regularity of ∂E v also follows from the works of Rigot [START_REF] Rigot | Ensembles Quasi-Minimaux avec Contrainte de Volume et Rectifiabilité Uniforme[END_REF] and Xia [START_REF] Xia | Regularity of minimizers of quasi perimeters with a volume constraint[END_REF] on quasiminimizers of the perimeter with a volume constraint.

Properties of the isovolumetric function

We show here some of the properties of the isovolumetric f defined by (4).

Proposition 3.1. The function f is sub-additive and locally Lipschitz continuous. Let v be a point of differentiability of f and E v be a minimizer of (4) then f ′ (v) = λ v where λ v is the Lagrange multiplier associated to E v , that is, κ Ev = g + λ v . As a consequence, λ v is unique for almost every v > 0, in the sense that it does not depend on the specific minimizer E v .

Proof. Let E v and E v ′ be compact minimizers associated to v and v ′ . Up to a translation we can suppose that

F (E v ∪ E v ′ ) = F (E v ) + F (E v ′ ), so that f (v + v ′ ) ≤ F (E v ∪ E v ′ ) = F (E v ) + F (E v ′ ) = f (v) + f (v ′ )
and f is sub-additive.

By Theorem 2.8, for every α > 0 there exists µ α such that, for every v ≥ α, the constrained problem ( 4) and the relaxed one [START_REF] Bethuel | Parametric Surfaces with Prescribed Mean Curvature[END_REF] 

are equivalent for µ ≥ µ α . Let v, v ′ ∈ [α, +∞), then f (v) = F (E v ) ≤ P (E v ′ ) - E v ′ g dx + µ α |v -v ′ | = f (v ′ ) + µ α |v -v ′ | thus |f (v) -f (v ′ )| ≤ µ α |v -v ′ | and f is Lipschitz continuous on [α, +∞).
We now compute the derivative of f . For v, ε > 0 we have

f (v + ε) -f (v) ≤ F ((1 + ε/v) 1 d E v ) -F (E v ).
Let

δ ε = (1 + ε/v) 1 d -1; then (1 + ε/v) 1 d E v = E v + δ ε E v . Recalling that κ Ev = g + λ v we get P ((1 + δ ε )E v ) = P (E v ) + δ ε ∂Ev κ Ev x • ν dH d-1 + o(δ ε ) = P (E v ) + δ ε ∂Ev g(x)x • ν dH d-1 + δ ε ∂Ev λ v x • ν dH d-1 + o(δ ε ) = P (E v ) + δ ε ∂Ev g(x)x • ν dH d-1 + δ ε λ v d|E v | + o(δ ε ) and (1+δε)Ev g = Ev g dx + δ ε ∂Ev g(x)x • ν dH d-1 + o(δ ε ).
From this we obtain

F ((1 + ε/v) 1 d E v ) -F (E v ) = δ ε vdλ v + o(δ ε ). As δ ε = ε/(vd) + o(ε), we find lim sup ε→0 + f (v + ε) -f (v) ε ≤ λ v lim inf ε→0 - f (v + ε) -f (v) ε ≥ λ v .
In particular, if f is differentiable in v we have

f ′ (v) = λ v .
In fact, the isovolumetric function f is slightly more regular. 

lim h→0 + f (v + h) -f (v) h = λ min v ≤ λ max v = lim h→0 - f (v + h) -f (v) h . ( 12 
)
The proof is based on the following lemma:

Lemma 3.3. Let v n be a sequence converging to v. Then there exist sets To conclude the proof we must show that κ E = g + λ. As proved for instance in [START_REF] Tamanini | Boundaries of Caccioppoli sets with Hölder continuous normal vector[END_REF], for every x ∈ ∂E there exists r > 0 such that for n large enough the set B r (x) ∩ ∂E n is the graph of a function ϕ n , and the set B r (x) ∩ ∂E is the graph of a function ϕ, in a suitable coordinate system. We then have that ϕ n tends uniformly to ϕ, as n → +∞, and

E n with |E n | = v n and f (v n ) = F (E n ),
-div ∇ϕ n 1 + |∇ϕ n | 2 = g(x, ϕ n (x)) + λ n ( 13 
)
for all n big enough. By elliptic regularity [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF], we can pass to the limit in ( 13) and obtain that φ solves

-div ∇ϕ 1 + |∇ϕ| 2 = κ E = g(x, ϕ(x)) + λ.
Proof of Proposition 3.2. Let v > 0 and let

λ = lim inf ε→0+ f ′ (v + ε) (14) 
Notice that, for every ε > 0, there exists a

v ε ∈]v, v + ε[ such that f ′ (v ε ) ≤ f (v + ε) -f (v) ε . (15) 
From ( 15) we get

λ ≤ lim inf ε→0+ f (v + ε) -f (v) ε .
Let ε n be a sequence realizing the infimum in [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF] and let E n ⊂ B R be a set of volume

v n = v + ε n such that f (v n ) = F (E n ).
By Lemma 3.3 the sets E n converge, up to a subsequence in the L 1 -topology, to a limit set E, with |E| = v and κ E = g + λ, where λ = lim n λ n . Reasoning as in Proposition 3.1, we see that lim inf

ε→0+ f (v + ε) -f (v) ε ≥ λ ≥ lim sup ε→0 + f (v + ε) -f (v) ε
hence f admits a right derivative which is equal to λ min v . Analogously one can show that f has a left derivative equal to λ max v . Remark 3.4. Notice that ( 12) implies that f is differentiable at any local minimum so that, if equation ( 1) has no solution, either f is increasing on [0, +∞), or there exists v > 0 such that f is increasing on [0, v], decreasing on [v, +∞), and is not differentiable at v. We now give an example of a isovolumetric function f which has a point of nondifferentiability. It is not clear to which extent this is a generic phenomenon.

Example. Consider a periodic function g which is equal to 0 everywhere in the unit cell Q, except in the neighborhood of two points a and b. Around these points, g is taken to be equal to radial parabolas centered at the point, one parabola high and thin, and the other small and large (see Figure 2).

It is shown in [START_REF] Figalli | On The Equilibrium Shapes Of Liquid Drops And Crystals[END_REF] that, when the volume v is sufficiently small, the minimizer E v is connected. Since the bound on v depends only on g ∞ , which can be fixed as small as we want, we can suppose that the minimizers E v are connected and are located near a or b. By the isoperimetric inequality [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF] we then get that E v is a disk with volume v centered at a or b, and will be denoted by D v (a), D v (b), respectively.

Therefore, for small volumes the global minimizer is D v (a) and, once the equality

Dv(a) g = Dv(b)
g is attained, it switches to the disk D v (b). When this transition occurs, there is a jump singularity of the derivative f ′ .

Existence of surfaces with prescribed mean curvature

In this section we shall assume that g has zero average and satisfies

E g ≤ (1 -Λ)P (E, Q) ∀E ⊂ Q (16) 
for some Λ > 0. Notice that ( 16) is always satisfied if g L d (Q) is small enough, and is precisely the assumption needed in [START_REF] Chambolle | Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem[END_REF] (see also [START_REF] Caffarelli | Planelike Minimizers in Periodic Media[END_REF]) to prove existence of planelike minimizers of F . Notice also that, if g satisfies ( 16), then the inequality in ( 16) holds for all sets E ⊂ R d of finite perimeter. In particular, this implies the following estimate on the function f :

c v d-1 d ≤ f (v) ≤ C v d-1 d for some 0 < c < C. (17) 
In the sequel we will need a representation result for the functional F , due to Bourgain and Brezis [START_REF] Bourgain | On the Equation div Y = f and Application to Control of Phases[END_REF].

Theorem 4.1. Let g be a function verifying [START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF] then there exists a periodic and continuous function σ with max σ(x) < 1 satisfying div σ = g. The energy F can thus be written as an anisotropic perimeter:

F (E) = ∂ * E (1 + σ(x) • ν) . Theorem 4.1 implies that ΛP (E) ≤ F (E) ≤ 2P (E) (18) 
for all sets E of finite perimeter.

The next Lemma gives an upper bound on the number of "large" connected components of a volume-constrained minimizer. Lemma 4.2. Let g be a periodic C 0,α function with zero average and satisfying [START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF]. Let E v be a compact minimizer of (4), and let E i be the connected components of E v . We can order the sets E i in such a way that

|E i | is decreasing in i. Given δ > 0 let N δ = 1 + C c d 1 δ d . Then ∞ i=N δ |E i | ≤ δv. (19) 
Proof. Let

x i = |E i | v ∈ [0, 1]. Recalling (17), we have cv d-1 d ∞ i=1 x d-1 d i ≤ ∞ i=1 f (|E i |) = f (v) ≤ Cv d-1 d , hence ∞ i=1 x d-1 d i ≤ C c and ∞ i=1 x i = 1.
Let now M be the smallest integer such that

∞ i=M +1 x i < δ,
we want to prove that M < N δ . Indeed, we have

δ ≤ ∞ n=M x i = ∞ n=M x 1 d i x d-1 d i ≤ x 1 d M ∞ n=M x d-1 d i ≤ C c x 1 d M .
We then obtain

x M ≥ c C d δ d .
Hence, as

1 ≥ M i=1 x i ≥ M i=1 x M = M x M ,
by the decreasing property of x i , we get

1 ≥ M x M ≥ M c C d δ d , which gives M ≤ C c d 1 δ d < N δ .
4.1 Compact solutions with big volume.

From ( 17), Proposition 3.2 and Remark 3.4, we immediately obtain the following result.

Proposition 4.3. Let g be a periodic C 0,α function of zero average satisfying [START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF]. Assume that f ′ (v) ≤ 0 for some v > 0. Then there exists w > 0 such that f ′ (w) = 0, therefore problem (1) admits a compact solution.

Theorem 4.4. Let g be a periodic C 0,α function with zero average and satisfying [START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF].

There exist v n → +∞ and compact minimizers E n of (4) such that

|E n | = v n and E n solves κ = g + λ n
with λ n ≥ 0 and λ n → 0 as n → +∞.

Proof. Two situations can occur:

Case 1. There exists a sequence ṽn → +∞ such that f ′ (ṽ n ) ≤ 0. Recalling (17) we have

f (v) ≥ cv d-1
d , which implies that we can find v n ≥ ṽn such that f has a local minimum in v n , hence λ v = f ′ (v n ) = 0. Case 2. There exists v 0 > 0 such that f ′ (v) > 0 for every v ≥ v 0 . By (17) we have

f (v) ≤ Cv d-1 d , and f (v) = f (v 0 ) + v v 0 f ′ (s) ds.
It follows that there exists a sequence v n → +∞ such that

lim n→+∞ f ′ (v n ) = 0.
Corollary 4.5. Let g be a periodic C 0,α function with zero average and satisfying [START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF].

Then for every ε > 0 there exists ε ′ ∈ [0, ε] such that there exists a compact solution of

κ = g + ε ′ .
Notice that for a general function g we cannot let ε ′ = 0 in Corollary 4.5. Indeed, as shown in [START_REF] Barles | Homogenization of fronts in highly heterogeneous media[END_REF], there are no compact solutions to (1) for periodic functions g, of zero average, which are translation invariant in some direction and of sufficiently small lipschitz norm.

We expect that condition ( 16) is not necessary for the thesis of Corollary 4.5 to hold, as suggested by the following result: Theorem 4.6. Let g be a periodic C 0,α function with zero average and such that g| ∂Q = 0. Then for every ε > 0 there exists a compact solution of κ = g + ε.

Proof. Fix ε > 0. For N ∈ N we let E N be a minimizer of the problem min

E⊂Q N P (E) - E (g(x) + ε) dx.
Since g| ∂Q = 0, by strong maximum principle, E N is contained in the interior of Q N and either

E N = ∅ or ∂E N is a C 2,α solution of κ = g + ε.
However, from the inequality

P (E N ) - E N (g(x) + ε) dx ≤ P (Q N ) -εN d + = N d-1 2 d -εN < 0 which holds for all N > 2 d /ε, it follows E N = ∅.

Asymptotic behavior of minimizers.

For ε > 0 and E ⊂ R d of finite perimeter, we let

F ε (E) = ε (d-1) F ε -1 E = P (E) - 1 ε E g x ε dx.
Notice that, given a minimizer E v of (4), the set εE v is a volume-constrained minimizer of F ε . We recall from [9, Theorem 2] the following result.

Theorem 4.7. Let g be a periodic C 0,α function with zero average and satisfying [START_REF] Huang | Closed Surface with Prescribed Mean Curvature in R 3[END_REF].

Then there exists a convex positively one-homogeneous function φ g : R d → [0, +∞), with φ g (x) > 0 for all x = 0, such that the functionals F ε Γ-converge, with respect to the L 1 -convergence of the characteristic functions, to the anisotropic functional

F 0 (E) = ∂ * E φ g (ν) dH d-1 E ⊂ R d of finite perimeter.
We remark that, with a minor modification of the proof, the result of Theorem 4.7 also holds if we restrict the functionals F ε and F 0 to set of prescribed volume. In particular, by a general property of Γ-converging sequences [START_REF] Maso | An introduction to Γ-convergence[END_REF], we have the following consequence of Theorem 4.7.

Corollary 4.8. Let E ε be minimizers of

F ε with volume constraint | E ε | = v, then lim sup ε→0 F ε ( E ε ) ≤ min | E|=v F 0 ( E). ( 20 
)
Moreover, if | E ε ∆ E| → 0 for some E ⊂ R d , as ε → 0, then | E| = v and E is a volume- constrained minimizer of F 0 . More generally, if E ε → E in the L 1 loc topology, then E is a minimizer of F 0 with volume constraint | E| ≤ v.
Given the function φ g as above, we let

W g = x ∈ R d : max φg(y)≤1
x • y ≤ 1 be the Wulff Shape corresponding to φ g . It is well-known that W g is the unique minimizer of F 0 with volume constraint, up to homothety and translation [START_REF] Wulff | Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflichen[END_REF][START_REF] Taylor | Crystalline variational problems[END_REF].

By Theorem 4.7 we can characterize the asymptotic shape of the constrained minimizers as the volume tend to infinity. Theorem 4.9. Let d ≤ 7. For v > 0 we let E v be volume-constrained minimizers of (4), whose existence is guaranteed by Theorem 2.8. Then, there exist points z v ∈ R d such that letting

E v = |W g | v 1 d E v + z v it holds lim v→+∞ E v ∆W g = 0. (21) 
Proof. Notice first that E v is a minimizer of F

( |Wg | v ) 1 d , with volume constraint | E v | = |W g |.
Moreover, by (17) the perimeter of E v is uniformly bounded in v.

Case 1. Let us consider the case d = 2. Assume first that E v is connected. Then we have diam( E v ) ≤ P ( E v )/π, hence the sets E v are all contained, up to a translation, in a fixed ball centered in the origin. By the compactness theorem for sets of finite perimeter [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF], there exist a bounded set E ∞ of finite perimeter and a sequence

v k → ∞ such that | E ∞ | = |W g | and lim k→+∞ E v k ∆ E ∞ = 0.
Since by Theorem 4.7 the set E ∞ is also a volume-constrained minimizer of F 0 , by uniqueness of the minimizer it follows that E ∞ is equal to W g up to a translation. We now consider the general case when the sets E v are not necessarily connected. In particular we can write

E v = ∪ i≥1 E i v , with | E i v | a decreasing sequence and i≥1 | E i v | = 1.
Reasoning as before, there exists a sequence v k → +∞ such that for all i ∈ N the sets E i v k converge to ρ i W g , up to a translation, where ρ i ∈ [0, 1] is a decreasing sequence. Moreover, by Lemma 4.2, for all δ > 0 there exists

N δ ∈ N such that ∞ i=N δ | E i v | ≤ δ|W g | for all δ > 0, which implies in the limit ∞ i=1 ρ 2 i = 1. (22) 
We claim that ρ 1 = 1 and ρ i = 0 for all i > 1. Indeed, from [START_REF] Morgan | Regularity of isoperimetric hypersurfaces in Riemannian manifolds[END_REF] we have

F 0 (W g ) ≥ lim sup k→+∞ F |Wg | v k 1 2 ( E v k ) ≥ +∞ i=1 F 0 (ρ i W g ) = F 0 (W g ) +∞ i=1 ρ i .
Recalling [START_REF] Novaga | Bump solutions for the mesoscopic Allen-Cahn equation in periodic media[END_REF], this implies

+∞ i=1 ρ i = +∞ i=1 ρ 2 i = 1
which proves the claim. Case 2. We now turn to the general case. Let v k → +∞ and let

ε k = (|W g |/v k ) 1 d
. For all k, let {Q i,k } i∈N be a partition of R d into disjoint cubes of equal volume larger than 2|W g |, such that the sets E v k ∩ Q i,k are of decreasing measure, and let

x i,k = | E v k ∩ Q i,k |/|W g |.
By the isoperimetric inequality [START_REF] Giusti | Minimal Surfaces and functions of Bounded Variation[END_REF], there exist 0 < c < C such that

c i x d-1 d i,k = c i min | E v k ∩ Q i,k | |W g | , |Q i,k \ E v k | |W g | d-1 d ≤ i P ( E v k , Q i,k ) ≤ i 1 Λ ∂ Ev k ∩Q i,k 1 + σ x ε k • ν dH d-1 ≤ 1 Λ F ε k ( E v k ) ≤ C hence +∞ i=1 x i,k = 1 and +∞ i=1 x d-1 d i,k ≤ C c .
Reasoning as in Lemma 4.2 we obtain that for all δ > 0 there exists

N δ ∈ N such that ∞ i=N δ x i,k ≤ δ. (23) 
Up to extracting a subsequence, we can suppose that x i,k → α d i ∈ [0, 1] as k → +∞ for every i ∈ N, so that by [START_REF] Psaradakis | L 1 Hardy inequalities with weights[END_REF] we have i

α d i = 1. ( 24 
)
Let z i,k ∈ Q i,k . Up to extracting a further subsequence, we can suppose that d(z i,k , z j,k ) → c ij ∈ [0, +∞], and

E v k -z i,k → E i in the L 1 loc -convergence
for every i ∈ N (see Figure 3). By Corollary 4.8 we thus have

E i = ρ i W g ρ i ∈ [0, 1].
We say that i ∼ j if c ij < +∞ and we denote by [i] the equivalence class of i. Notice that E i equals E j up to a traslation, if i ∼ j. We want to prove that

[i] ρ d i ≥ 1, (25) 
where the sum is taken over all equivalence classes. For all R > 0 let Q R = [-R/2, R/2] d be the cube of sidelength R. Then for every i ∈ N,

|E i | ≥ |E i ∩ Q R | = lim k→+∞ E v k -z i,k ∩ Q R .
If j is such that j ∼ i and c ij ≤ R 2 , possibly increasing R we have Q j,kz i,k ⊂ Q R for all k ∈ N, so that

lim k→+∞ E v k -z i,k ∩ Q R ≥ lim k→+∞ c ij ≤ R 2 | E v k ∩ Q j,k | = c ij ≤ R 2 α d j |W g |.
Letting R → +∞ we then have hence, recalling (24),

|E i | ≥ i∼j α d j |W g | E v k -z i,k E v k -z j,k
[i]

|E i | ≥ |W g |,
thus proving [START_REF] Rigot | Ensembles Quasi-Minimaux avec Contrainte de Volume et Rectifiabilité Uniforme[END_REF].

Let us now show that

[i] ρ d-1 i = 1. (26) 
Up to passing to a subsequence, from now on we shall assume that c ij = +∞ for all i = j.

Let I ∈ N be fixed. Then for every R > 0 there exists K ∈ N such that for every k ≥ K and i, j less than I, we have d(z i,k , z j,k ) > R.

For k ≥ K we thus have

F ε k ( E v k ) ≥ I i=1 ∂ Ev k ∩(B R +z i,k ) 1 + σ x ε k • ν dH d-1 = I i=1 ∂( Ev k -z i,k )∩B R 1 + σ x ε k • ν dH d-1 = I i=1 F ε k ( E v k -z i,k , B R )
where

F ε (E, B R ) = ∂E∩B R 1 + σ x ε k • ν dH d-1 .
From this, (20) and the Γ-convergence of F ε (•, B R ) to F 0 (•, B R ), we get

F 0 (W g ) ≥ lim sup ε k →0 F ε k ( E v k ) ≥ I i=1 lim inf ε k →0 F ε k ( E v k -z i,k , B R ) ≥ I i=1 F 0 (E i , B R ).
For R > diam(W g ) we have F 0 (E i , B R ) = F 0 (E i ) because E i = ρ i W g and therefore

F 0 (W g ) ≥ I i=1 F 0 (E i ) = I i=1 ρ d-1 i F 0 (W g ).
Letting I → +∞ we get [START_REF] Tamanini | Boundaries of Caccioppoli sets with Hölder continuous normal vector[END_REF]. Recalling [START_REF] Rigot | Ensembles Quasi-Minimaux avec Contrainte de Volume et Rectifiabilité Uniforme[END_REF], from [START_REF] Tamanini | Boundaries of Caccioppoli sets with Hölder continuous normal vector[END_REF] we then obtain

i ρ d-1 i = i ρ d i = 1.
As before, this implies ρ 1 = 1 and ρ i = 0 for all i > 1, thus giving

lim k→+∞ E v k -z 1,k ∆W g = 0.
By the uniqueness of the limit this shows that the whole sequence E v tends to W g as v → +∞, up to suitable translations.

Remark 4.10. Let us point out that, if uniform density estimates for E v were available, we would get Hausdorff convergence instead of L 1 convergence in [START_REF] Morgan | Stable constant-mean-curvature hypersurfaces are area minimizing in small L 1 neighborhoods[END_REF], showing in particular that the sets E v are connected for v large enough (see [START_REF] Morgan | Stable constant-mean-curvature hypersurfaces are area minimizing in small L 1 neighborhoods[END_REF]). We believe that such estimates are true even if we were not able to prove them.

Remark 4.11. The asymptotic behavior of minimizers of (4), in the small volume regime, have been considered in [START_REF] Figalli | On The Equilibrium Shapes Of Liquid Drops And Crystals[END_REF], where the authors prove a result similar to Theorem 4.9, with the Wulff Shape W g replaced by the Euclidean ball, showing in particular that the volume term becomes irrelevant for small volumes.

Remark 4.12. Notice that the results of this paper can be extended with minor modifications of the proofs to anisotropic perimeters of the form

P φ (E) = ∂ * E φ(ν)dH d-1
where φ : R d → [0, +∞) is a smooth and uniformly convex norm on R d , with d ≤ 3 [START_REF] Almgren | Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals[END_REF].
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  Moreover, by the lower-semi-continuity of the perimeter and the continuity of f , the setE verifies f (v) = F (E).Let us now prove that the convergence also occurs in the sense of Hausdorff.Let ε > 0 be fixed and let x ∈ E ∩ {y / d(y, ∂E) > ε}. If x is not in E n then by Proposition 2.1 we have |E n ∆E| ≥ |B ε (x)\E n | ≥ γε d . This is impossible if n is big enough because |E n ∆E| tends to zero. Similarly, we can show that for n big enough, all the points of E c ∩ {y / d(y, ∂E) > ε} are outside E n . This shows that ∂E n ⊂ {y / d(y, ∂E) ≤ ε}. Inverting the rôles of E n and E, the same argument proves that ∂E ⊂ {y / d(y, ∂E n ) ≤ ε} giving the Hausdorff convergence of ∂E n to ∂E. Now if λ n is the Lagrange multiplier associated with E n , it is uniformly bounded and we can extract a converging subsequence which converges to some λ ∈ R.

and a set E with |E| = v and f (v) = F (E), such that, up to extraction, E n tends to E in the L 1 -topology, ∂E n tends to ∂E in the Hausdorff sense, and λ n tends to λ, where λ n (resp. λ) is the Lagrange multiplier corresponding to E n (resp. to E). Proof. By Theorem 2.8, we can find minimizers E n of (4), with |E n | = v n . Moreover, by Proposition 2.3 we can assume that E n ⊂ B R with R independent of n. Since P (E n ) is uniformly bounded from above, it then follows that there exists a (not relabelled) subsequence of E n converging in the L 1 -topology to a set E ⊂ B R with volume v = lim n v n .