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Abstract

Linear systems of neutral type are considered using the infinite dimensional
approach. Conditions for exact controllability and regular asymptotic stabiliz-
ability are given. The main tools are the moment problem approach and the
existence of a Riesz basis of invariant subspaces.
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In this paper we consider the problem of controllability and stabilizability for a
general class of neutral systems with distributed delays given by the equation

ż(t)−A−1ż(t−1) = Lzt(·) =
∫ 0

−1
A2(θ)ż(t+θ)dθ+

∫ 0

−1
A3(θ)z(t+θ)dθ+Bu(t), (1)

where A−1 is a constant n × n-matrix, A2, A3 are n × n, L2 valued matrices. We
consider the operator model of the neutral type system (1) in the product space
M2 = Cn × L2(−1, 0; Cn), so (1) can be reformulated as

ẋ(t) = Ax(t) + Bu(t), x(0) =
(

y
z(·)

)
, A =

(
0 L

0 d
dθ

)
, B =

(
B
0

)
, (2)

with D(A) = {(y, z(·)) ∈ M2 : z ∈ H1([−1, 0]; C), y = z(0) − A−1z(−1)}, and A is
the generator of a C0-semigroup. The reachability set RT is such that RT ⊂ D(A)
for all T > 0, with u(·) ∈ L2, the solution of (2) being in D(A).

Theorem 1. The system (2) is exactly null-controllable, i.e. RT = D(A), iff the
pair (A−1, B) is controllable and rank

(
∆A(λ) B

)
= n for all λ ∈ C, where

∆A(λ) = λI − λe−λA−1 − λ

∫ 0

−1
eλsA2(s)ds−

∫ 0

−1
eλsA3(s)ds,

1



If these conditions hold then the system is controllable at any time T > n1, where
n1 is the controllability index of the pair (A−1, B). It is not controllable at T ≤ n1.

The main tools of the analysis is the moment problem approach and the the-
ory of basis of exponential families. We construct a special Riesz basis using the
existence of a Riesz basis of invariant subspaces [5] and describe the controllability
problem via a moment problem in order to get the time of controllability. See [3]
for the monovariable and discrete delay case, via a different approach, and [4] for a
preliminary result.

The same Riesz basis of subspaces allows to characterize the problem of asymp-
totic stabilizability by a regular feedback law. From the operator point of view, the
regular feedback law

u = Fx =
∫ 0

−1
F2(θ)ż(t + θ)dt +

∫ 0

−1
F3(θ)z(t + θ)dt, (3)

where F2, F3 ∈ L2(−1, 0; Cn×n) means a perturbation ofA by the operator BF which
is relatively A-bounded and verifies D(A) = D(A+ BF). Such a perturbation does
not mean, in general, that A+BF is the infinitesimal generator of a C0-semigroup.
However, in our case, this fact is verified directly since after the feedback we get
also a neutral type system like (1) with D(A) = D(A + BF). This feedback law is
essentially different from that which use the term Fẋ(t − 1) (cf. for example [2])
and for which D(A) 6= D(A+ BF). Our main result is

Theorem 2. (Rabah, Sklyar & Rezounenko) Under the assumptions: the eigenval-
ues of the matrix A−1 satisfy |µ| ≤ 1, the eigenvalues µj , |µj | = 1 are simple, the
system (1) is regularly asymptotically stabilizable if rank

(
∆A(λ) B

)
= n for all

λ : Re λ ≥ 0, and rank
(
µI −A−1 B

)
= n for all µ : |µ| = 1.

In the case when A−1 has at least one eigenvalue |µ| = 1 with a nontrivial Jordan
chain, the system can not be stabilized by a control of the form (3). The same if
σ(A−1) 6⊂ {µ : |µ| ≤ 1}. This follows from the fact that any control of the form (3)
leaves the system in the same form and then it remains unstable [5].
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