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Summary. The problem of exact null controllability is considered for linear neutral
type systems with distributed delay. A characterization of this problem is given. The
minimal time of controllability is precised. The results are based on the analysis
of the Riesz basis property of eigenspaces in Hilbert space. Recent results on the
moment problem and properties of exponential families are used.

1 Introduction

The problem of controllability for delay systems was considered by several
authors in different framework. One approach is based on the analysis of time
delay system in a module framework (space over ring, see [8]). In this case
the controllability problem is considered in a formal way using different inter-
pretations of the Kalman rank condition. Another approach is based on the
analysis of time delay systems in vector spaces with finite or infinite dimen-
sion. A powerful tool is to consider a delay system as a system in a Banach
functional space, this approach was developed widely in [5]. Because the state
space for delay systems is a functional space, the most important notion is
the function space controllability. A first important contribution in the char-
acterization of null functional controllability was given by Olbrot [10] by using
some finite dimensional tools as (A,B)-invariant subspaces for an extended
system. For retarded systems one can refer to [7] (and references therein) for
the analysis of function space controllability in abstract Banach spaces. The
case of neutral type systems with discrete delay was also considered in such
a framework (see O’Connor and Tarn [9] and references therein). A general
analysis of the time delay systems in infinite dimensional spaces is given in
the book [3] where several methods and references are given.
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The problem considered in this paper is close to that studied in [9]. In
this work the exact controllability problem was considered for neutral type
systems with discrete delay using a semigroup approach in Sobolev spaces
W

(1)
2 and a boundary control problem.
We consider the problem of controllability for distributed delay system of

neutral type in the space M2(−h, 0; Cn) = Cn×L2(−h, 0; Cn) which is natural
for control problems. The semigroup theory developed here is based on the
Hilbert space model introduced in [4]. One of our result is a generalization of
the result in [9]. The main non trivial precision is the time of controllability. We
generalize the results given [6] for the case of a single input and one localized
delay (see also [2, 14]). The approach developed here is different from that
of [9]. Our main results are based on the characterization of controllability
as a moment problem and using some recent results on the solvability of this
problem (see [1] for the main tools used here). Using a precise Riesz basis in
the space M2(−h, 0; Cn) we can give a characterization of null-controllability
and of the minimal time of controllability.

The present paper contains only the main idea of the approach and the
formulations of the main results on exact controllability. A complete presen-
tation of this approach is the subject of our extensive work which is to be
published. One can also find the detailed proofs in the the preprint [11].

2 The model and the controllability problem

We study the following neutral type system

ż(t) = A−1ż(t− h) +
∫ 0

−h

A2(θ)ż(t+ θ)dθ +
∫ 0

−h

A3(θ)z(t+ θ)dθ +Bu, (1)

where A−1 is constant n× n-matrix, detA−1 6= 0, A2, A3 are n× n-matrices
whose elements belong to L2(−h, 0), h > 0 is a constant delay. We consider
the operator model of the neutral type system (1) introduced by Burns and
al. in product spaces. The state space is M2(−h, 0; Cn) = Cn×L2(−h, 0; Cn),
shortly M2, and (1) is rewritten as

d
dt

(
y(t)
zt(·)

)
= A

(
y(t)
zt(·)

)
+ Bu (2)

where the operator A is given by

A
(
y(t)
zt(·)

)
=

( ∫ 0

−h
A2(θ)żt(θ)dθ +

∫ 0

−h
A3(θ)zt(θ)dθ

dzt(θ)/dθ

)
with the domain

D(A) =
{
(y, z(·)) : z ∈ H1(−h, 0; Cn), y = z(0)−A−1z(−h)

}
⊂M2.
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The operator A is the infinitesimal generator of a C0-group. The operator B
is defined by Bu = (Bu, 0). The relation between the solutions of the neutral
type system (1) and the system (2) is given by the substitutions

y(t) = z(t)−A−1z(t− 1), zt(θ) = z(t+ θ).

The reachability set at time T is defined by

RT =

{∫ T

0

eAtBu(t)dt : u(·) ∈ L2(0, T ; Cn)

}

It is easy to show that RT1 ⊂ RT2 as T1 < T2. An important result is
that RT ⊂ D(A) ⊂ M2. This non-trivial fact permits to formulate the null-
controllability problem in the following setting:
i) To find maximal possible set RT (depending on T );
ii) To find minimal T for which the set RT becomes maximal possible, i.e.
RT = D(A).

Definition 1. The system (2) is said null-controllable at the time T if RT =
D(A)

The main tool is to consider the null-controllability problem as a problem of
moments.

2.1 The moment problem

In order to formulate the moment problem we need a Riesz basis in the Hilbert
space M2. We recall that a Riesz basis is a basis which may be transformed to
an orthogonal basis with respect to another equivalent scalar product. Each
Riesz basis possesses a biorthogonal basis. Let {ϕ} be a Riesz basis in M2

and {ψ} the corresponding biorthogonal basis. Then for each x ∈M2 we have
x =

∑
ϕ∈{ϕ}〈x, ψ〉ϕ. In a separable Hilbert space there always exists a Riesz

basis.

A state x =
(

y
z(·)

)
∈ M2 is reachable at time T by a control u(·) ∈

L2(0, T ; Cr) iff the steering condition

x =
(

y
z(·)

)
=

∫ T

0

eAtBu(t)dt. (3)

holds. This steering condition may be expanded using the basis {ϕ}. A state
x is reachable iff ∑

ϕ∈{ϕ}

〈x, ψ〉ϕ =
∑

ϕ∈{ϕ}

∫ T

0

〈eAtBu(t), ψ〉dtϕ,
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for some u(·) ∈ L2(−h, 0; Rr). Then the steering condition (3) can be substi-
tuted by the following system of equalities

〈x, ψ〉 =
∫ T

0

〈eAtBu(t), ψ〉dt, ψ ∈ {ψ}. (4)

Let {b1, . . . , br} be an arbitrary basis in ImB, the image of the matrix B and

bi =
(
bi
0

)
∈M2, i = 1, . . . , r. Then the right hand side of (4) takes the form

∫ T

0

〈eAtBu(t), ψ〉dt =
r∑

i=1

∫ T

0

〈eAtbi, ψ〉ui(t)dt. (5)

Effectiveness of the proposed approach becomes obvious if we assume that the
operatorA possess a Riesz basis of eigenvector. This situation is characteristic,
for example, for control systems of hyperbolic type when A is skew-adjoint
(A∗ = −A) and has a compact resolvent (see, for example, [1], [16], [17]). Let
in this case {ϕk}, k ∈ N, be a orthonormal eigenbasis with Aϕk = iλkϕk,
λk ∈ R. Assuming for simplicity r = 1, b1 = b =

∑
k αkϕk, αk 6= 0, we have

from (4), (5)
xk

αk
=

∫ T

0

e−iλktu(t)dt, k ∈ N, (6)

where x =
∑

k xkϕk. Equalities (6) are a non-Fourier trigonometric moment
problem whose solvability is closely connected with the property for the family
of exponentials e−iλkt, k ∈ N, to form a Riesz basis on the interval [0, T ] ([1]).
In particular, if e−iλkt forms a Riesz basis of L2[0, T0] then one has

RT =

{
x :

∑
k

(
xk

αk

)2

<∞

}
for all T ≥ T0. (7)

Obviously formula (7) gives the complete answer to the both items of the
controllability problem. Returning now to neutral type systems we observe
that the operator A given in (2) is not skew-adjoint and, moreover, does not
possess a basis even of generalized eigenvectors. So the choice of a proper
Riesz basis in context of formulas (4), (5) is an essentially more complicated
problem.

2.2 The choice of basis

In order to design the needed basis for our case we use spectral the properties
of the operator A obtained in [13]. Let µ1, . . . , µ`, µi 6= µj be eigenvalues of
A−1 and let the integers pm be defined as : dim (A−1 − µmI)n = pm, m =
1, . . . , `. Denote by

λ(k)
m =

1
h

(ln |µm|+ i(argµm + 2πk)) , m = 1, . . . , `; k ∈ Z,
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and let L(k)
m be the circles of the fixed radius r ≤ r0 = 1

3 min |λ(k)
m − λ

(j)
i |

centered at λ(k)
m .

Let {V (k)
m } k∈ Z

m=1,...,`
be a family of A-invariant subspaces given by

V (k)
m = P (k)

m M2, P (k)
m =

1
2πi

∫
L

(k)
m

R(A, λ)dλ.

The following theorem plays an essential role in our approach

Theorem 1. [12] There exists N0 large enough such that for any N ≥ N0

i) dimV
(k)
m = pm, k ≥ N ,

ii) the family {V (k)
m } |k|≥N

m=1,...,`
∪ V̂N forms a Riesz basis (of subspaces) in M2,

where V̂N is a finite-dimensional subspace (dim V̂N = 2(N + 1)n) spanned
by all generalized eigenvectors corresponding to all eigenvalues of A located
outside of all circles L(k)

m , |k| ≥ N , m = 1, . . . , `.

Using this theorem we construct a Riesz basis {ϕ} of the form{
ϕk

m,j , |k| > N ;m = 1, . . . , l; j = 1, . . . , pm

}
∪

{
ϕ̂N

j , j = 1, . . . , 2(N + 1)n
}

where for any m = 1, . . . , l, and k : |k| > N the collection {ϕk
m,j}j=1,...,pm is in

a special way chosen basis of V (k)
m and {ϕ̂N

j }j=1,...,2(N+1)n is a basis of V̂N . In
this basis equalities (4) with regard to (5) turns into a moment problem with
respect to a special collection of quasipolynomials. Analyzing the mentioned
moment problem by means of the methods given in [1] we obtain our main
results concerning the null-controllability problem.

3 The main results

The characterization of the null-controllability is given by the following The-
orem.

Theorem 2. The system (2) is null-controllable by controls from L2(0, T ) for
some T > 0 iff the following two conditions hold:
i) rank [∆A(λ) B ] = n, ∀λ ∈ C; where

∆A(λ) = −λI + λe−λhA−1 + λ

∫ 0

−h

eλsA2(s)ds+
∫ 0

−h

eλsA3(s)ds.

ii) rank [B A−1B · · · An−1
−1 B ] = n.

The main results on the time of controllability are as follows.

Theorem 3. Let the conditions i) and ii) of Theorem 2 hold. Then

i) The system (2) is null-controllable at the time T as T > nh;
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ii) If the system (2) is of single control (r = 1), then the estimation of the
time of controllability in i) is exact, i.e. the system is not controllable at
time T = nh.

For the multivariable case, the time depends on some controllability indices.
suppose that dimB = r. Let {b1, . . . , br} be an arbitrary basis noted β. Let us
introduce a set integers. We denote by Bi = ( bi+1, . . . , br ) , i = 0, 1, . . . , r−1,
which gives in particular B0 = B and Br−1 = ( br ) and we put formally
Br = 0. Let us consider the integers

nβ
i = rank [Bi−1 A−1Bi−1 · · · An−1

−1 Bi−1 ], i = 1, . . . , r,

corresponding to the basis β. We need in fact the integers

mβ
i = nβ

i−1 − nβ
i ,

Let us denote by

mmin = max
β

mβ
1 mmax = min

β
max

i
mβ

i ,

for all possible choice of a basis β.
The main result for the multivariable case is the following Theorem.

Theorem 4. Let the conditions i) and ii) of the Theorem 2 hold, then

i) The system (2) is null-controllable at the time T > mmaxh;
ii) The system (2) is not null-controllable at the time T < mminh.

The proofs are based on the construction of a special Riesz basis of A-
invariant subspaces in the space M2 according to [12] and on the analysis
of the properties of some quasi-exponential functions to be a Riesz basis in
L2(0, T ) depending of the time T [1].

4 Final Conclusions

For the delayed system of neutral type (1) we have the following results:

i) All the reachable states z(t), t ∈ [T − 1, T ] from 0 are elements of
H1[T − 1, T ] (independently of T ).

ii) If T > mmaxh then the set of reachable states on [0, T ] coincides with
H1[T − 1, T ].

iii) If T < mminh then the set of reachable states is an essential subspace of
H1[T − 1, T ].

If r = 1, this gives mmax = mmin = n and then

iv) For T = n the reachable states form a subspace in H1[T − 1, T ] of finite
codimension; for T < n there exists an infinite-dimensional subspace
in H1[T − 1, T ] of unreachable states.
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