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Abstract

The problem of curve registration appears in many different areas of applications ranging from neuroscience
to road traffic modeling. In the present work1, we propose a nonparametric testing framework in which we
develop a generalized likelihood ratio test to perform curve registration. We first prove that, under the null
hypothesis, the resulting test statistic is asymptotically distributed as a chi-squared random variable. This
result, often referred to as Wilks’ phenomenon, provides a natural threshold for the test of a prescribed
asymptotic significance level and a natural measure of lack-of-fit in terms of the p-value of the χ2-test. We
also prove that the proposed test is consistent, i.e., its power is asymptotically equal to 1. Finite sample
properties of the proposed methodology are demonstrated by numerical simulations. As an application, a
new local descriptor for digital images is introduced and an experimental evaluation of its discriminative
power is conducted.

Keywords: nonparametric inference, hypotheses testing, Wilks’ phenomenon, keypoint matching

Introduction

Boosted by applications in different areas such as biology, medicine, computer vision and road traffic
forecasting, the problem of curve registration and, more particularly, some aspects of this problem related
to nonparametric and semiparametric estimation, have been explored in a number of recent statistical
studies. In this context, the model used for deriving statistical inference represents the input data as a finite
collection of noisy signals such that each input signal is obtained from a given signal, termed mean template
or structural pattern, by a parametric deformation and by adding a white noise. Hereafter, we refer to
this as the deformed mean template model. The main difficulties for developing statistical inference in this
problem are caused by the nonlinearity of the deformations and the fact that not only the deformations but
also the mean template used to generate the observed data are unknown.

While the problems of estimating the mean template and the deformations was thoroughly investigated
in recent years, the question of the adequacy of modeling the available data by the deformed mean template
model received little attention. By the present work, we intend to fill this gap by introducing a nonparametric
goodness-of-fit testing framework that allows us to propose a measure of appropriateness of a deformed mean
template model. To this end, we focus our attention on the case where the only allowed deformations are
translations and propose a measure of goodness-of-fit based on the p-value of a chi-squared test.

Model description

We consider the case of functional data, that is each observation is a function on a fixed interval, taken
for simplicity equal to [0, 1]. More precisely, assume that two independent samples, denoted {Xi}i=1,...,n and
{X#

i }i=1,...,n# , of functional data are available such that within each sample the observations are independent

1This paper was presented in part at the AI-STATS 2012 conference.
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identically distributed (i.i.d. ) drifted and scaled Brownian motions. Let f and f # be the corresponding
drift functions: f(t) = dE[X1(t)]/dt and f

#(t) = dE[X#

1(t)]/dt. Then, for t ∈ [0, 1],

Xi(t) =

∫ t

0

f(u) du+ sBi(t), X#

ℓ (t) =

∫ t

0

f #(u) du+ s#B#

ℓ (t),

where s, s# > 0 are the scaling parameters and (B1, . . . , Bn, B
#

1, . . . , B
#

n#) are independent Brownian motions.
Since we assume that the entire paths are observed, the scale parameters s and s# can be recovered with
arbitrarily small error using the quadratic variation. So, in what follows, these parameters are assumed to
be known (an extension to the setting of unknown noise level is briefly discussed in Section 3).

The goal of the present work is to provide a statistical testing procedure for deciding whether the curves
of the functions f and f # coincide up to a translation. Considering periodic extensions of f and f # on the
whole real line, this is equivalent to checking the null hypothesis

H0 : ∃ (τ∗, a∗) ∈ [0, 1]× R such that f(·) = f #(·+ τ∗) + a∗. (1)

If the null hypothesis is satisfied, we are in the set-up of a deformed mean template model, where f(·) plays
the role of the mean template and spatial translations represent the set of possible deformations.

Starting from [23] and [31], semiparametric and nonparametric estimation in different instances of the
deformed mean template model have been intensively investigated [4, 6, 8–11, 14, 16, 20, 25, 41, 43, 44] with
applications to image warping [5, 22]. However, prior to estimating the common template, the deformations
or any other object involved in a deformed mean template model, it is natural to check its appropriateness,
which is the purpose of this work.

To achieve this goal, we first note that the pair of sequences of complex-valued random variables Y =
(Y0, Y1, . . .) and Y # = (Y #

0 , Y
#

1 , . . .), defined by

[

Yj , Y
#

j

]

=

∫ 1

0

e2πijt d

[

1

n

n
∑

i=1

Xi(t),
1

n#

n#

∑

ℓ=1

X#

ℓ (t)

]

,

is a sufficient statistic in the model generated by observations (X1, . . . , Xn) and (X#

1 , . . . , X
#

n#). Therefore,
without any loss of information, the initial (functional) data can be replaced by the transformed data

(Y ,Y #). Let us denote by cj =
∫ 1

0
f(x) e2ijπx dx and c#j =

∫ 1

0
f #(x) e2ijπx dx the complex Fourier coefficients

of the signals f and f #. Then, the first components of the observed sequences, (Y0, Y
#

0 ), can be written as

Y0 = c0 +
s√
n
ǫ0, Y #

0 = c#0 +
s#√
n#

ǫ#0,

where ǫ0 and ǫ#0 are two independent, real, standard Gaussian variables. Furthermore, for j ≥ 1, we have

Yj = cj +
s√
2n

ǫj , Y #

j = c#j +
s#√
2n#

ǫ#j , (2)

where the complex valued random variables ǫj , ǫ
#

j are i.i.d. standard Gaussian: ǫj, ǫ
#

j ∼ NC(0, 1), which
means that their real and imaginary parts are independent N (0, 1) random variables. Moreover, (ǫ0, ǫ

#

0) are
independent of {(ǫj , ǫ#j) : j ≥ 1}. In what follows, we will use boldface letters for denoting vectors or infinite
sequences so that, for example, c and c# refer to {cj; j = 0, 1, . . .} and {c#j ; j = 0, 1, . . .}, respectively.

Under the mild assumption that f and f # are squared integrable, the likelihood ratio of the Gaussian
process Y •,# = (Y ,Y #) is well defined. Using the notation c•,# = (c, c#), σ = s/

√
2n and σ# = s#/

√
2n#,

the corresponding negative log-likelihood is given by

ℓ(Y •,#, c•,#) =
(Y0 − c0)

2

4σ2
+

(Y #

0 − c#0)
2

4σ#2
+
∑

j≥1

( |Yj − cj |2
2σ2

+
|Y #

j − c#j |2
2σ#2

)

. (3)

In the present work, we present a theoretical analysis of the penalized likelihood ratio test in the asymptotics
of large samples, i.e., when both n and n# tend to infinity, or equivalently, when σ and σ# tend to zero. The
finite sample properties are examined through numerical simulations.
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Some motivations

Even if the shifted curve model is a very particular instance of the general deformed mean template
model, it plays a central role in several applications. To cite a few of them:

ECG interpretation: An electro-cardiogram (ECG) can be seen as a collection of replica of nearly the
same signal, up to a time shift. Significant information about heart malformations or diseases can be
extracted from the mean signal if we are able to align the available curves. For more details we refer
to [43].

Road traffic forecast: In [33], a road traffic forecasting procedure is introduced. To this end, archetypes
of the different types of road trafficking behavior on the Parisian highway network are built, using a
hierarchical classification method. In each obtained cluster, the curves all represent the same events,
only randomly shifted in time.

Keypoint matching: An important problem in computer vision is to decide whether two points in a same
image or in two different images correspond to the same real-world point. The points in images are
then usually described by the regression function of the magnitude of the gradient over the direction
of the gradient of the image restricted to a given neighborhood (cf. [34]). The methodology we shall
develop in the present paper allows to test whether two points in images coincide, up to a rotation
and an illumination change, since a rotation corresponds to shifting the argument of the regression
function by the angle of the rotation.

Relation to previous work

The problem of estimating the parameters of the deformation is a semiparametric one, since the defor-
mation involves a finite number of parameters that have to be estimated by assuming that the unknown
mean template is merely a nuisance parameter. In contrast, the testing problem we are concerned with is
clearly nonparametric. The parameter describing the probability distribution of the observations is infinite-
dimensional not only under the alternative but also under the null hypothesis. Surprisingly, the statistical
literature on this type of testing problems is very scarce. Indeed, while [27] analyzes the optimality and
the adaptivity of testing procedures in the setting of a parametric null hypothesis against a nonparametric
alternative, to the best of our knowledge, the only papers concerned with nonparametric null hypotheses
are [1, 2] and [21]. Unfortunately, the results derived in [1, 2] are inapplicable in our set-up since the
null hypothesis in our problem is neither linear nor convex. The set-up of [21] is closer to ours. However,
they only investigate the minimax rates of separation without providing the asymptotic distribution of the
proposed test statistic, which generally results in an overly conservative testing procedure. Furthermore,
their theoretical framework comprises a condition on the sup-norm-entropy of the null hypothesis, which is
irrelevant in our set-up and may be violated.

There is also a relatively vast literature on the nonparametric comparison of several curves (see [35, 36, 38,
42] and the references therein). The results developed in most of these papers concern the regression model
with random design and assume that a noisy version of each curve is observed. The tests proposed therein
are mainly based on kernel smoothing, which are quite different from the tests analyzed in the present paper.
In particular, tests based on kernel smoothing may achieve optimal rates only for smoothness classes with
regularity less than 1. Note also that when transposed to the model of Gaussian white noise, the problem
of testing the equality of two functions boils down to that of testing that a function vanishes everywhere,
just by computing the difference of observed noisy signals. Thus the null hypothesis becomes simple.

In a companion2 paper [12], the problem of curve registration by statistical hypotheses testing has
been tackled from an asymptotic minimax point of view. In [12], as a complement of the present work,
minimax rates of separation (up to log factors) are established and a smoothness-adaptive test is proposed
under some assumptions, which are substantially stronger than those required in this paper. Note also that

2The writing of the paper [12] being completed slightly later than the present one, it has been published earlier because of
the randomness of the reviewing process.
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preliminary versions of some results reported in the present manuscript have been presented at AI-STATS
conference [15]. The present manuscript is a corrected, completed and significantly developed version of
[15]. More precisely, Section 3 contains important extensions of the presented methodology to the case of
multidimensional signals and unknown noise variance, whereas Section 5 presents an original application to
the problem of keypoint matching in computer vision.

Our contribution

We adopt, in this work, the approach based on the generalized likelihood ratio tests, cf. [18] for a
comprehensive account on the topic. The advantage of this approach is that it provides a general framework
for constructing testing procedures which asymptotically achieve the prescribed significance level for the type
I error and, under mild conditions, have a power that tends to one. It is worth mentioning that in the context
of nonparametric testing, the use of the generalized likelihood ratio leads to a substantial improvement upon
the likelihood ratio, very popular in parametric statistics. In simple words, the generalized likelihood allows
to incorporate some prior information on the unknown signal in the test statistic which introduces more
flexibility and turns out to be crucial both in theory and in practice, see [19].

We prove that under the null hypothesis the generalized likelihood ratio test statistic is asymptotically
distributed as a χ2-random variable. This allows us to choose a threshold that makes it possible to asymp-
totically control the test significance level without being excessively conservative. Such results are referred
to as Wilks’ phenomena. In this relation, let us quote [18]: “While we have observed the Wilks’ phenomenon
and demonstrated it for a few useful cases, it is impossible for us to verify the phenomenon for all nonpara-
metric hypothesis testing problems. The Wilks’ phenomenon needs to be checked for other problems that
have not been covered in this paper. In addition, most of the topics outlined in the above discussion remains
open and are technically and intellectually challenging. More developments are needed, which will push the
core of statistical theory and methods forward.”

It is noteworthy that our results apply to the Gaussian sequence model (2), which is often seen as
a prototype of nonparametric statistical model. In fact, it is provably asymptotically equivalent to many
other statistical models [7, 17, 24, 37, 40] and captures most theoretical difficulties of the statistical inference.
Furthermore, using the aforementioned results on asymptotic equivalence, the main theoretical findings of
the present paper automatically carry over the nonparametric regression model, the density model, the
ergodic diffusion model, etc.

Finally, we provide a detailed explanation of how the proposed methodology can be used for solving the
problem of keypoint matching in digital images. This leads to a new descriptor termed Localized Fourier
Transform which is particularly well adapted for testing for rotation. The first experiments reported in this
work show the validity of our theoretical findings and the potential of the new descriptor.

Organization

The rest of the paper is organized as follows. After a brief presentation of the model, we introduce the
generalized likelihood ratio framework in Section 1. The main results characterizing the asymptotic behavior
of the proposed testing procedure, based on generalized likelihood ratio testing for a large variety of shrinkage
weights, are stated in Section 2. Section 3 contains extensions of our results to the multidimensional setting
and to the case of unknown noise magnitude. Some numerical examples illustrating the theoretical results
are included in Section 4, while Section 5 is devoted to the application of the proposed methodology to
the problem of keypoint matching in computer vision. The resulting Localized Fourier Transform (LoFT)
descriptor is tested on a pair of real images degraded by white Gaussian noise. The proofs of the lemmas
and of the theorems are postponed to the Appendix.

1. Penalized Likelihood Ratio Test

We are interested in testing the hypothesis (1), which translates in the Fourier domain to

H0 : there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#j for all j ≥ 1.
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Indeed, one easily checks that if (1) is true, then3

c#j =

∫ 1

0

f(t− τ∗)e2ijπt dt = e2ijπτ
∗

∫ 1

0

f(z)e2ijπz dz = e2ijπτ
∗

cj

and, therefore, the aforementioned relation holds with τ̄∗ = 2πτ∗. If no additional assumptions are imposed
on the functions f and f #, or equivalently on their Fourier coefficients c and c#, the nonparametric testing
problem has no consistent solution. A natural assumption widely used in nonparametric statistics is that
c = (c0, c1, . . .) and c# = (c#0, c

#

1, . . .) belong to some Sobolev ball

Fs,L =
{

u = (u0, u1, . . .) :

+∞
∑

j=0

j2s|uj |2 ≤ L2
}

,

where the positive real numbers s and L stand for the smoothness and the radius of the class Fs,L.

Since we will also aim at establishing the (uniform) consistency of the proposed testing procedure, we
need to precise the form of the alternative. It seems that the most compelling form for the null and the
alternative is

{

H0 : there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#j for all j ≥ 1.

H1 : infτ
∑+∞

j=1 |cj − e−ijτ c#j |2 ≥ ρ
(4)

for some ρ > 0. In other terms, under H0 the graph of the function f # is obtained from that of f by a
translation. To ease notation, we will use the symbol ◦ to denote coefficient-by-coefficient multiplication,
also known as the Hadamard product, and e(τ) will stand for the sequence (e−iτ , e−2iτ , . . .).

To present the penalized likelihood ratio test, which is a variant of the generalized likelihood ratio test,
we introduce a penalization in terms of weighted ℓ2-norm of c•,#. In this context, the choice of the ℓ2-
norm penalization is mainly motivated by the fact that Sobolev regularity assumptions are made on the
functions f and f #. For a sequence of non-negative real numbers, ω, we define the weighted ℓ2 norm
‖c‖2ω,2 =

∑

j≥0 ωj |cj |2. We will also use the standard notation ‖u‖p = (
∑

j |uj |p)1/p for any p > 0. Using
this notation, the penalized log-likelihood is given by

pℓ(Y •,#, c•,#) =ℓ(Y •,#, c•,#) +
‖c‖2ω,2

2σ2
+

‖c#‖2ω,2

2σ#2
. (5)

The resulting penalized likelihood ratio test is based on the test statistic

∆(Y •,#) = min
c•,#:H0 is true

pℓ(Y •,#, c•,#)−min
c•,#

pℓ(Y •,#, c•,#). (6)

It is clear that ∆(Y •,#) is always non-negative. Furthermore, it is small when H0 is satisfied and is large if
H0 is violated. Therefore, ∆(Y •,#) is a good test statistic for deciding whether or not the null hypothesis
H0 should be rejected.

Lemma 1. The test statistic ∆(Y •,#) can be written in the following form:

∆(Y •,#) =
1

2(σ2 + (σ#)2)
min

τ∈[0,2π]

+∞
∑

j=1

|Yj − e−ijτY #

j |2
1 + ωj

. (7)

Proof. We start by noting that the minimization of the quadratic functional (5) leads to

min
c•,#

pℓ(Y •,#, c•,#) =
1

2σ2

∑

j≥1

ωj

1 + ωj
|Yj |2 +

1

2σ#2

∑

j≥1

ωj

1 + ωj
|Y #

j |2. (8)

3We use here the change of the variable z = t − τ∗ and the fact that the integral of a 1-periodic function on an interval of
length one does not depend on the interval of integration.
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Let us compute the statistic minc•,#:H0 is true pℓ(Y
•,#, c•,#) that can be equivalently written in the form

minτ∈[0,2π]mincj=e−ijτ̄∗c#j ,j≥1 pℓ(Y
•,#, c•,#). When c•,# satisfies the null hypothesis, simple algebra yields

that the relation

pℓ(Y •,#, c•,#) =
∑

j≥1

( |Yj − cj |2
2σ2

+
|e−ijτ̄∗

Y #

j − cj|2
2σ#2

)

+
‖c‖2

ω,2

2σ2
+

‖c‖2
ω,2

2σ#2

is true for some τ̄∗. We need to compute the minimum with respect to c of the right-hand side of the last
display. To ease notation, let us set σ̄2 = 1/( 1

σ2 + 1
σ#2 ) and Z = σ−2Y + σ#−2e(τ̄∗) ◦ Y #. Then, we get

pℓ(Y •,#, c•,#) =
∑

j≥1

( |Yj |2
2σ2

+
|Y #

j |2
2σ#2

+
1 + ωj

2σ̄2
|cj |2 − Re(Z̄jcj)

)

.

The minimum of this expression is attained at cj =
σ̄2Zj

1+ωj
. This leads to

min
c•,#:H0 is true

pℓ(Y •,#, c•,#) =
∑

j≥1

( |Yj |2
2σ2

+
|Y #

j |2
2σ#2

− σ̄2

2(1 + ωj)
|Zj|2

)

. (9)

Combining equations (8) and (9) we get

∆(Y •,#) =
1

2σ2

∑

j

|Yj |2
1 + ωj

+
1

2σ#2

∑

j

|Y #

j |2
1 + ωj

−
∑

j

σ̄2

2(1 + ωj)
|Zj |2.

To complete the proof, it suffices to replace Z by its definition and to use the identity σ−2 − σ̄2σ−4 =
σ#−2 − σ̄2σ#−4 = (σ2 + σ#2)−1.

From now on, it will be more convenient to use the notation νj = 1/(1 + ωj). The elements of the
sequence ν = {νj; j ≥ 1} are hereafter referred to as shrinkage weights. They are allowed to take any value
between 0 and 1. Even the value 0 will be authorized, corresponding to the limiting case when wj = +∞,
or equivalently to our belief that the corresponding Fourier coefficient is 0. The test statistic can then be
written as:

∆(Y •,#) =
1

2(σ2 + (σ#)2)
min

τ∈[0,2π]
‖Y − e(τ) ◦ Y #‖22,ν , (10)

and one of the goals is to find the asymptotic distribution of this quantity under the null hypothesis.

2. Main results

The test based on the generalized likelihood ratio statistic involves a sequence ν, which should be chosen
by the user. However, we are able to provide theoretical guarantees only under some conditions on these
weights. To state these conditions, we set σ∗ = max(σ, σ#) and choose a positive integer N = Nσ∗

≥ 2, which
represents the number of Fourier coefficients involved in our testing procedure. In addition to requiring that
0 ≤ νj ≤ 1 for every j, we assume that:

(A) ν1 = 1, and νj = 0, ∀j > Nσ∗
,

(B) for some positive constant c, it holds that
∑

j≥1

ν2j ≥ cNσ∗
.

Moreover, we will use the following condition in the proof of the consistency of the test:

(C) ∃ c > 0, such that min{j ≥ 0, νj < c} → +∞, as σ∗ → 0.
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In simple words, this condition implies that the number of terms νj that are above a given strictly positive
level goes to +∞ as σ∗ converges to 0. If Nσ∗

→ +∞ as σ∗ → 0, then all the aforementioned conditions
are satisfied for the shrinkage weights ν of the form νj+1 = h(j/Nσ∗

), where h : R → [0, 1] is an integrable
function, supported on [0, 1], continuous in 0 and satisfying h(0) = 1. The classical examples of shrinkage
weights include:

νj =























1{j≤Nσ∗
}, (projection weight)

{

1 +
(

j
κNσ∗

)µ}−1
1{j≤Nσ∗

}, κ > 0, µ > 1, (Tikhonov weight)

{

1−
(

j
Nσ∗

)µ}

+
, µ > 0. (Pinsker weight)

(11)

Note that condition (C) is satisfied in all these examples with c = 0.5, or any other value in (0, 1). Here on,
we write ∆ν,σ∗

(Y •,#) instead of ∆(Y •,#) in order to stress its dependence on ν and on σ∗.

Theorem 1. Let c ∈ F1,L and |c1| > 0. Assume that the shrinkage weights νj are chosen to satisfy

conditions (A), (B), Nσ∗
→ +∞ and σ2

∗N
5/2
σ∗

log(Nσ∗
) → 0. Then, under the null hypothesis, the test

statistic ∆ν,σ∗
(Y •,#) is asymptotically distributed as a Gaussian random variable:

∆ν,σ∗
(Y •,#)− ‖ν‖1
‖ν‖2

D−−−−→
σ∗→0

N (0, 1). (12)

The main outcome of this result is a test of hypothesis H0 that is asymptotically of a prescribed signifi-
cance level α ∈ (0, 1). Indeed, let us define the test that rejects H0 if and only if

∆ν,σ∗
(Y •,#) ≥ ‖ν‖1 + z1−α‖ν‖2, (13)

where z1−α is the (1− α)-quantile of the standard Gaussian distribution.

Corollary 1. The test of hypothesis H0 defined by the critical region (13) is asymptotically of significance
level α.

Remark 1. Let us consider the case of projection weights νj = 1(j ≤ Nσ∗
). One can reformulate the

asymptotic relation stated in Theorem 1 by claiming that 2∆ν,σ∗
(Y •,#) is approximately N (2Nσ∗

, 4Nσ∗
)

distributed. Since the latter distribution approaches the chi-squared distribution (as Nσ∗
→ ∞), we get:

2∆ν,σ∗
(Y •,#)

D≈ χ2
2Nσ∗

, as σ∗ → 0.

In the case of general shrinkage weights satisfying the assumptions stated in the beginning of this section,
an analogous relation holds as well:

2‖ν‖1
‖ν‖22

∆ν,σ∗
(Y •,#)

D≈ χ2
2‖ν‖2

1
/‖ν‖2

2

, as σ∗ → 0.

This type of results are often referred to as Wilks’ phenomenon.

The proof of Theorem 1 is rather technical and, therefore, is deferred to the Appendix. Let us simply
mention here that we present the proof in a slightly more general case c ∈ Fs,L with a smoothness s ∈
(0, 1]. It appears from the proof that the convergence stated in (12) holds if s > 7/8, Nσ∗

→ ∞ and

σ2
∗N

−2s+9/2
σ∗

log(Nσ∗
) → 0, as σ∗ → 0. We do not know whether the last condition on Nσ∗

can be avoided
by using other techniques, but it seems that in our proof there is no room for improvement in order to relax
this assumption. At a heuristic level, it is quite natural to avoid choosing Nσ∗

too large. Indeed, large Nσ∗

leads to undersmoothing in the problem of estimating the quadratic functional ‖c− e(τ) ◦ c#‖22. Therefore,
the test statistic corresponds to registration of two curves in which the signal is dominated by noise, which
is clearly not a favorable situation for performing curve registration.
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Remark 2. The p-value of the aforementioned test based on the Gaussian or chi-squared approximation can
be used as a measure of the goodness-of-fit or, in other terms, as a measure of alignment for the pair of
curves under consideration. If the observed two noisy curves lead to the data y•,#, then the (asymptotic)
p-value is defined as

α∗ = Φ
(∆ν,σ∗

(y•,#)− ‖ν‖1
‖ν‖2

)

,

where Φ stands for the c.d.f. of the standard Gaussian distribution.

Note that a similar result in the model of regression has been established by [25][Theorem 3]. Their
results are based on another test statistics, involving kernel smoothing, and hold under more stringent
assumptions, like the existence of a uniformly continuous second-order derivative of the regression function.
Remark also that under these assumptions, the test presented in [25] is definitely not rate optimal in the
sense of minimax rate of separation [30], while our test is minimax rate optimal up to logarithmic factors, as
proved in the companion paper [12]. Finally, [25] does not provide any result on the power of the proposed
test statistics.

So far, we have only focused on the behavior of the test under the null without paying attention on what
happens under the alternative. The next theorem fills this gap by establishing the consistency of the test
defined by the critical region (13).

Theorem 2. Let condition (C) be satisfied and let σ4
∗Nσ∗

tend to 0 as σ∗ → 0. Then the test statistic

Tσ∗
=

∆ν,σ∗
(Y •,#)−‖ν‖1

‖ν‖2
diverges under H1, i.e., Tσ∗

P−→ +∞ as σ∗ → 0.

In other words, Theorem 2 establishes the convergence to one of the power of the test defined via (13)
as the noise level σ∗ tends to 0.

The previous theorem tells us nothing about the (minimax) rate of separation of the null hypothesis
from the alternative. In other words, Theorem 2 does not provide the rate of divergence of Tσ∗

. Under more
stringent assumptions on the weight sequence ν and when σ = σ#, the minimax approach is developed in the
companion paper [12]. Here, we focus our attention on studying other aspects of the previously introduced
methodology, more related to their applicability in the area of computer vision.

Remark 3. It might be compelling to start the shifted-curve test by performing a test of equality of norms.
Indeed, if there is enough evidence for rejecting the hypothesis ‖c‖2 = ‖c#‖2, then the hypothesis cj =
e−ijτ̄∗

c#j , j ≥ 1, will be rejected as well. To perform the test of the equality of norms, one can use the
procedure proposed in [13], which is proved to achieve optimal rates of separation.

3. Some extensions

This section presents two possible extensions of the methodology developed in foregoing sections. They
stem from practical considerations and concern the case of multidimensional curves and the setting of
unknown noise magnitude.

3.1. Multidimensional signals

Theorems 1 and 2 can be straightforwardly extended to the case of multidimensional curves f and f #

from R → R
d, with an arbitrary integer d ≥ 1. More precisely, we may assume that the observations

{Xi, . . . ,Xn;X
#

1, . . . ,X
#

n#} are R
d values random processes given by

Xi(t) =

∫ t

0

f(u) du+ diag(S)Bi(t), X#

ℓ(t) =

∫ t

0

f
#(u) du+ diag(S#)B#

ℓ(t),

8



where diag(S) and diag(S#) are diagonal d × d matrices with positive entries and the random processes
{B1, . . . ,Bn,B

#

1, . . . ,B
#

n#} are independent d-dimensional Brownian motions. In order to test the null
hypothesis

H0 : ∃ (τ∗, a∗) ∈ [0, 1]× R
d such that f(·) = f#(·+ τ∗) + a∗, (14)

it suffices to compute the Fourier coefficients

[

Y j ,Y
#

j

]

=

∫ 1

0

e2πijt d

[

1

n

n
∑

i=1

Xi(t),
1

n#

n#

∑

ℓ=1

X#

ℓ(t)

]

j = 1, 2, . . .

and to evaluate the test statistic

∆(Y •,#) =
1

2
min

τ∈[0,2π]

∑

j∈N

νj
∥

∥(diag(σ)2 + diag(σ#)2)−1/2
(

Y j − e−ijτY #

j

)∥

∥

2

2
,

where σ = S/
√
2n and σ# = S#/

√
2n#. One can easily check that if H0 is true, then under the assumptions

of Theorem 1, as σ∗ = max(‖σ‖∞, ‖σ#‖∞) → 0, the random variable Tσ∗
= (∆(Y •,#) − d‖ν‖1)/(

√
d‖ν‖2)

converges in distribution to a standard Gaussian random variable. Furthermore, underH1, we have Tσ∗
→ ∞

in probability provided that the assumptions of Theorem 2 are fulfilled.

3.2. Unknown noise level

In several application it is not realistic to assume that the magnitude of noise, denoted by (σ, σ#) is
known in advance. In such a situation, the testing procedure defined by the critical region (13) cannot be
applied, since the test statistic ∆ν,σ∗

(Y •,#) depends on σ2 + σ#2. We describe below one possible approach
to address this issue. Note that in order to make this setting meaningful, we assume that the noisy Fourier
coefficients Yj and Y

#

j are observable only for a finite number of indices j ∈ {1, . . . , p}. Therefore, we assume

in this section that Y and Y # are complex valued vectors of dimension p.

Adopting the same strategy as before, we aim at defining a testing procedure based on the principle of
penalized likelihood ratio evaluation. However, when the pair (σ, σ#) is unknown, the expression (3) for the
negative log-likelihood is not valid anymore. Instead, up to some irrelevant summands, we have

ℓ(Y •,#, c•,#, σ•,#) = p(log σ + log σ#) +
‖Y − c‖22

2σ2
+

‖Y # − c#‖22
2σ#2

. (15)

Therefore, given a vector of weights ω ∈ R
p
+, the penalized log-likelihood is defined as

pℓ(Y •,#, c•,#, σ•,#) =ℓ(Y •,#, c•,#, σ•,#) +
‖c‖2

ω,2

2σ2
+

‖c#‖2
ω,2

2σ#2
. (16)

Thus, the test statistic to be used is the difference between the minimum of the penalized log-likelihood
constrained to H0 and the unconstrained minimum of the penalized log-likelihood, that is

∆(Y •,#) = min
σ•,#

min
c•,#:H0 is true

pℓ(Y •,#, c•,#, σ•,#)−min
σ•,#

min
c•,#

pℓ(Y •,#, c•,#, σ•,#). (17)

Denoting by ν the vector (1/(1 + ω1), . . . , 1/(1 + ωp))
⊤ and by 1 − ν the vector (1 − ν1, . . . , 1 − νp)

⊤, and
restricting the minimization to σ = σ#, we get

∆(Y •,#) = p log

(

1 +
minτ∈[0,2π[ ‖Y − e(τ) ◦ Y #‖22,ν

2(‖Y ‖22,1−ν
+ ‖Y #‖22,1−ν

)

)

.

Let α ∈ (0, 1) be a prescribed significance level and let us introduce the statistic

∆̃(Y •,#) =
‖1− ν‖1

‖Y ‖22,1−ν
+ ‖Y #‖22,1−ν

min
τ∈[0,2π[

‖Y − e(τ) ◦ Y #‖22,ν . (18)

9



Intuitively, this new test statistic ∆̃(Y •,#) can be seen as an estimator of 1
2(σ2+σ#2)minτ ‖Y − e(τ) ◦ Y #‖22,ν

used in the setting of known noise level. Therefore, it is not so much a surprise that the critical region we
deduce from (18) is of the form

∆̃(Y •,#) ≥ Cν,α,

where Cν,α is a given threshold. To propose a choice of this threshold that leads to a test of asymptotic

level α, the asymptotic distribution of ∆̃(Y •,#) should be characterized under the null hypothesis. Let us
introduce the statistic

T (Y •,#) =
∆̃(Y •,#)− ‖ν‖1

‖ν‖2
. (19)

In order to simplify the presentation, we develop the subsequent arguments only in the case σ = σ# = σ∗.
We further assume that the noisy Fourier coefficients Y and Y # are generated by a process described in the
Introduction, cf. (2), which means that σ∗ is equal to s/

√
2n with a known parameter n and an unknown

factor s. The asymptotic setting σ∗ → 0 corresponds then to the standard “large sample asymptotics”
n → ∞. The main advantage of this setting is that it allows us to use the knowledge of n in the choice of
the sequence ν.

Theorem 3. Let c ∈ F1,L and let the sequence ν satisfy conditions (A) and (B) with an integer Nσ∗
that

depends only on n so that Nσ∗
→ +∞ and σ∗Nσ∗

= O(1) when σ∗ tends to zero. Assume, in addition,

that p ≥ 2Nσ∗
is large enough to satisfy (p − Nσ∗

)σ2
∗N

3/2
σ∗

→ ∞ and that for some constant c′ > 0,
maxj≥1 j

−2(1 − νj) ≤ c′N−2
σ∗

. Then, under the null hypothesis, if σ = σ# tends to zero, the test statistic

T (Y •,#) satisfies

T (Y •,#) ≤
p

∑

j=1

νj(|ξj |2 − 2)

2‖ν‖2
+

‖ν‖1
4‖ν‖2

p
∑

j=1

1− νj
‖1− ν‖1

(

4− |ξj |2 − |ξ#j |2
)

+
OP (1)

(p−Nσ∗
)σ2

∗N
3/2
σ∗

∧ (p−Nσ∗
)1/2

,

where {ξj ; ξ#j} are i.i.d. NC(0, 1) random variables.

The proof of this theorem is postponed to the Appendix. Instead, we discuss here some relevant
consequences of it. First of all, note that a simple application of Lyapunov’s central limit theorem im-
plies that under the conditions Nσ∗

→ ∞ and (p − Nσ∗
)2/p → ∞ both sums

∑p
j=1

νj
2‖ν‖2

(|ξj |2 − 2) and
∑p

j=1
1−νj

2
√
2‖1−ν‖2

(

4−|ξj|2−|ξ#j |2
)

converge in distribution to the standard Gaussian distribution. Therefore,

the test defined by the critical region

T (Y •,#) ≥ min
0<β<1

(

z1−β +
‖ν‖1‖1− ν‖2√
2‖ν‖2‖1− ν‖1

z1−α+β

)

(20)

is asymptotically of level not larger than α. Note also that a more precise critical region can be deduced
from Theorem 3 without relying on the central limit theorem. Indeed, the main terms

∑p
j=1

νj
2‖ν‖2

(|ξj |2− 2)

and
∑p

j=1
1−νj

2
√
2‖1−ν‖2

(

4 − |ξj |2 − |ξ#j |2
)

have parameter free distributions, the quantiles of which can be

determined numerically by means of Monte Carlo simulations. In the case of projection weights, one can
also use the quantiles of chi squared distributions.

To conclude this section, let us have a closer look at the assumptions of the last theorem. The conditions
(A), (B) and maxj 6=0 j

−2(1 − νj) ≤ c′N−2
σ∗

are satisfied for most weights used in practice. Thus, the most

important conditions are (p−Nσ∗
)σ2

∗N
3/2
σ∗

→ ∞ and σ∗Nσ∗
→ 0. The first of these two conditions ensures

that the error term coming from the estimation of the unknown noise level is small. The second one is a

weak version of the condition σ∗N
5/2
σ∗

logNσ∗
= o(1) present in Theorem 1, which ensures that we do not

use a strongly undersmoothed test statistic. We manage here to obtain a condition on Nσ∗
which is weaker

than the corresponding condition in Theorem 1 because we do not establish the asymptotic distribution of

10



the test statistic but just an upper bound of the latter. The choice of p and Nσ∗
is particularly important

for obtaining a test with a power close to one, especially in the case of alternatives that are close to the null.
However, the investigation of this point is out of scope of the present work. Let us just mention that if we
choose Nσ∗

= σ−β
∗ and p = 2σ−γ

∗ , the conditions of Theorem 3 are satisfied if β ≤ min(γ, 1) and 2γ+3β ≥ 4.
Of course, these conditions are closely related to the assumption that the unknown signal belongs to the
smoothness class of regularity 1.

4. Numerical experiments

We have implemented the proposed testing procedures (13) and (20) in Matlab and carried out a certain
number of numerical experiments on synthetic data. The aim of these experiments is merely to show that
the methodology developed in the present paper is applicable and to give an illustration of how the different
characteristics of the testing procedure, such as the significance level and the power, depend on the noise
variance σ2

∗ and on the shrinkage weights ν. We also aimed at comparing the performance of the testing
procedure (20) with that of (13). In order to ensure the reproducibility, the Matlab code of the experiments
reported in this section is made available on https://code.google.com/p/shifted-curve-testing/.

4.1. Behavior of the Type I error rate

In order to illustrate the convergence of the test statistic of the procedure (13) when σ∗ tends to zero
and to assess the Type I error rate, we conducted the following experiment. We chose as function f the
smoothed version of the HeaviSine function, considered as a benchmark in the signal processing community,
and computed its complex Fourier coefficients {cj; j = 0, . . . , 106}. More precisely, the jth Fourier coefficients
cj of f is obtained by dividing by j the corresponding Fourier coefficient of the HeaviSine function.
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Figure 1: The proportion of true negatives in the experiment described in Section 4.1 as a function of n = log2 σ
−2 for three

different shrinkage weights: projection (dashed line), Tikhonov (solid line) and Pinsker (dash-dotted line). One can observe
that for all the weights the proportion of true negatives converges to the nominal level 0.95. The left panel plots the results for
the test procedure using the true noise level, while the right panel plots the results for the procedure corresponding to unknown
noise level.

For each value of n taken from the set {nk = 20×2k, k = 1, . . . , 15}, we repeated 105 times the following
computations:

• set σ∗ = n−1/2 and4 Nσ∗
= [50σ

−1/2
∗ ],

4This value of Nσ∗
satisfies the assumptions required by our theoretical results.
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• generate the noisy sequence {Yj ; j = 1, . . . , Nσ∗
} by adding to {cj} an i.i.d. NC(0, σ

2
∗) sequence {ξj},

• randomly choose a parameter τ∗ uniformly distributed in [0, 2π], independent of {ξj},
• generate the shifted noisy sequence {Y #

j ; j = 1, . . . , Nσ∗
} by adding to {eijτ∗

cj} an i.i.d. NC(0, σ
2
∗)

sequence {ξ#j}, independent of {ξj} and of τ∗,

• compute the three values of the test statistic ∆ν,σ∗
corresponding to the classical shrinkage weights

defined by (11) and compare these values with the threshold for α = 5%.

We denote by pprojaccept(σ∗), p
Tikh
accept(σ∗) and pPinsk

accept(σ∗) the proportion of experiments (among 105 that were
realized) for which the value of the corresponding test statistic was lower than the threshold, i.e., the
proportion of experiments leading to the non-rejection of the null hypothesis. We plotted in the left panel
of Fig. 1 the (linearly interpolated) curves k 7→ pprojaccept(nk), k 7→ pTikh

accept(nk) and k 7→ pPinsk
accept(nk). For the

Pinsker weights, we (somewhat arbitrarily) chose µ = 2, while the parameters of the Tikhonov weights were
chosen as follows: κ = 1/2 and µ = 2. The graphs plotted in the left panel of Figure 1 show that the
proportion of true negatives is very close to the nominal level 0.95, irrespectively from the choice of the
weight sequence. Furthermore, when σ∗ goes to zero (that is when n becomes large) the empirical Type I
error rate converges to the nominal level. This is in line with the claim of Theorem 1.

We also carried out the same experiment for the test statistic (18) that does not require the knowledge
of the noise levels σ and σ#. The data generation process was the same as before, except that σ∗ was defined
as s/

√
n, where s was drawn at random uniformly in the interval [1, 4]. The cut-off parameter Nσ∗

= Nn

was then set to [50n1/4], independently of the value of s. The number p of Fourier coefficients was chosen
proportional to N3/2. It is interesting to observe that in this situation as well the observed proportion of
true negatives is dominating the nominal level. This test is more conservative than the one based on the
full knowledge of the noise level and this is not surprising since the threshold used in (20) is not based on
as asymptotic distribution of the test statistic but merely on an asymptotic upper bound. It should also
be noted the noise-level-adaptive procedure has a computational complexity which is slightly higher than
the one of the test procedure for known σ∗. This increase of computational complexity is due to the fact
that the estimation of σ2

∗ requires computing the Fourier coefficients of the observed signals corresponding
to high frequencies.

4.2. Power of the tests

In the previous experiment, we illustrated the behavior of the penalized likelihood ratio test under the
null hypothesis. The aim of the second experiment is to show what happens under the alternative. To this
end, we still use the smoothed HeaviSine function as signal f and define f # = f + γϕ, where γ is a real
parameter. Two cases are considered: ϕ(t) = c cos(4t) and ϕ(t) = c/(1 + t2), where c is a constant ensuring
that ϕ has an L2 norm equal to that of f . For the sake of the conciseness, only the results obtained for the
projection weights are reported.

In the experiment described in this section, we chose n from {n(k) = 2k : k = 1, . . . , 4} and γ from
{γ(ℓ) = 0.1ℓ : ℓ = 1, . . . , 15}. For each value of the pair (n(k), γ(ℓ)), we repeated 5000 times the following
computations:

• set σ∗ = n(k)−1/2 and Nσ∗
= [50σ

−1/2
∗ ],

• compute the complex Fourier coefficients {cj; j = 1, . . . , 106} and {c#j; j = 1, . . . , 106} of f and f #,
respectively,

• generate the noisy sequence {Yj ; j = 1, . . . , Nσ∗
} by adding to {cj} an i.i.d. NC(0, σ

2
∗) sequence {ξj},

• generate the shifted noisy sequence {Y #

j ; j = 1, . . . , Nσ∗
} by adding to {c#j} an i.i.d. NC(0, σ

2
∗) sequence

{ξ#j}, independent of {ξj},
• compute the value of the test statistic ∆ν,σ∗

corresponding to the projection weights and compare this
value with the threshold for α = 5%.
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To demonstrate the behavior of the test under H1 when the distance between the null and the alternative
varies, we computed the proportion of true positives, also called the empirical power, among the 5000
simulated random samples. The results, plotted in Fig. 2 show that even for moderately small values of γ,
the test succeeds in taking the correct decision. We also clearly observe the convergence of the test since the
curves corresponding to small values of σ∗ (or, equivalently, large values of n) are at the left of the curves
corresponding to larger values of σ∗. Note also that the results for ϕ(t) = c cos(4t) and ϕ(t) = c/(1 + t2)
are quite comparable.
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Figure 2: The proportion of true positives in the experiment described in Section 4.2 as a function of the parameter γ measuring
the “distance” from the null. The parameter n is defined as σ−2

∗
, where σ∗ is the noise level. We can observe that even for

relatively small values of γ the test has a power close to one.

To further investigate the power of the generalized likelihood ratio test described in previous sections, we
carried out the last experiment with a nonsmooth function ϕ. More precisely, we chose as ϕ the unsmoothed
version of the function ψ(t) = 1/(1 + t2), in the sense that the Fourier coefficient cj of ϕ is equal to the
corresponding Fourier coefficient of ψ(·) multiplied by j, for j ≥ 1. The function ϕ obtained in this way is
then normalized to have a L2-norm equal to that of f . Note that the nonsmoothness of ϕ implies that of
f #. The results are plotted in Fig. 3. When compared with Fig. 2, this plot clearly shows that the power of
the test gets deteriorated in the nonsmooth case. Indeed, in order to achieve a behavior of the power similar
to that of Fig. 2, we need to multiply γ by a factor close to 10.
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Figure 3: The proportion of true positives in the experiment described in Section 4.2 as a function of the parameter γ measuring
the “distance” from the null. The “perturbation” function ϕ is the unsmoothed version of the function c/(1 + t2). Comparing
this plot to Fig. 2, we see that, for a given n, the values of γ leading to a power close to one are much larger.

Finally, we performed the same experiment for the noise-level-adaptive procedure defined by (18), (19)
and (20). The differences compared to the protocol described in the beginning of this subsection were that
the values of n were chosen among {n(k) = 10 × 2k : k = 1, . . . , 4} and σ∗ and Nσ∗

were set to sn−1/2
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and [50n1/4], respectively. As in the nonsmooth case, here also we observe that the rate of convergence gets
deteriorated. The noise-level-adaptive procedure has a power equivalent to that of the original procedure
for noise levels that are divided by

√
10. This is in part explained by the fact that the adaptive test is

conservative (cf. the right panel of Fig. 1) but also by the fact that the substitution of the noise level by an
estimator results in an increased stochastic error.
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Figure 4: The proportion of true positives in the experiment described in Section 4.2 as a function of the parameter γ measuring
the “distance” from the null. As opposed to Fig. 2, here we applied the noise-level-adaptive test defined by (18), (19) and (20).
The parameter n is defined as σ−2

∗
, where σ∗ is the noise level. We can observe that in order to get plots similar to those of

Fig. 2, we used much smaller values of σ∗. This means that the convergence of the noise-level adaptive-test is slower than that
of the original generalized likelihood ratio test.

5. Application to keypoint matching

As mentioned in the introduction, the methodology developed in previous sections may be applied to
the problem of keypoint matching in computer vision. More specifically, for a pair of digital images I and
I# representing the same 3D object, the task of keypoint matching consists in finding pairs of image points
(x0,x

#

0) in images I and I# respectively, corresponding to the same 3D point. For more details on this and
related topics, we refer the interested reader to the book [26]. For our purposes here, we assume that we are
given a pair of points (x0,x

#

0) in images I and I# respectively and the goal is to decide whether they are the
projections of the same 3D point or not. In fact, we will tackle a slightly simpler5 problem corresponding
to deciding whether a neighborhood of x0 in the image I coincides with a neighborhood of x#

0 in the image
I# up to a rotation. Of course, this problem is made harder by the fact that the images are contaminated
by noise.

The plan of this section is as follows. As a first step, we present a new definition of a local descriptor
(termed LoFT for Localized Fourier Transform) of a keypoint x0 in some image I. This local descriptor is
based on the Fourier coefficients of some mapping related to the local neighborhood of the image I around
x0. Therefore, it is particularly well suited for testing for rotation between two keypoints. In a second
step, we define a matching criterion: a {0, 1}-valued mapping that takes as input pairs (x0, I) and (x#

0, I
#)

and outputs 1 if and only if x0 and x#

0 are classified as matching points (i.e., corresponding to the same
3D point). Finally, as a third step, we perform several experiments showing the potential of the proposed
approach.

5Note here that using the state-of-the-art techniques of keypoint detection based on the differences of Gaussians, see [34],
one can recover a rather reliable value of the scale parameter for every keypoint. Using this scale parameter, the problem of
testing for a similarity transform reduces to the problem of testing for a rotation that we consider in this section.

14



(a) (b) (c)

0

r

�
3r

2

�
2r

2

r

2

π

2
π 3π

2
2π

0 1 2 3 4 5 6
0

100

200

0 1 2 3 4 5 6
0

100

200

0 1 2 3 4 5 6
0

100

200

0 1 2 3 4 5 6
0

50

100

0 1 2 3 4 5 6
0

50

100

0 1 2 3 4 5 6
0

100

200

0 1 2 3 4 5 6
0

100

200

0 1 2 3 4 5 6
0

100

200

(d) (e) (f)

Figure 5: Illustration of the construction of the LoFT descriptor of a keypoint x0 in an image I. Once a keypoint is chosen
along with the radius of the neighborhood to be considered (a,b), we split the corresponding subimage into 4 rings of equal areas
represented in (c). In (d), we plot the pixel intensities as a function of polar coordinates of the pixel. Each band corresponds
to a ring in (c). The four curves in (e) are obtained by averaging the pixel intensities corresponding to the same angle within
each band of (d). Smoothed versions of these curves obtained by removing high frequencies are plotted in (f).

5.1. LoFT descriptor

We start by describing the construction of the LoFT descriptor of a point x0 in a digital image I. For
the purpose of illustration we use color images, but all the experiments were conducted on grayscale images
only. As any other construction of local descriptor, it is necessary to choose a radius r > 0 that specifies the
neighborhood around x0. In all our experiments we used r = 32 pixels, which seems to lead to good results.
Thus, we restrict the image I to the disc D(x0, r) with center x0 and radius r, as shown in Fig. 6 (a) and
(b). Note that this disc contains approximately πr2 > 3000 pixels, but we will encode the restriction of I
to D(x0, r) by a vector of size 128.

The main idea consists in considering the function X : [0, 2π] → R
4 defined by

X(t) =







X1(t)
...

X4(t)






, Xℓ(t) =

∫

√
ℓr/2

√
ℓ−1r/2

I
(

x0 + u[sin(t), cos(t)]
)

du, ℓ = 1, . . . , 4. (21)

In other terms, each Xℓ(t) describes the behavior of I on some ring centered at x0, cf. Fig. 5(c) for an
illustration. As shown in Fig. 5(e), because of noise and textures present in the images, the functions Xi are
highly nonsmooth. Since the details are not necessarily very informative when matching two image regions,
we suggest to smooth out the functions Xℓ by removing high frequency Fourier coefficients, cf. Fig. 5(f).
The resulting descriptor is the vector composed of the first k Fourier coefficients

Yj =
1√
2π

∫ 2π

0

X(t)eijt dt, j = 1, . . . , k. (22)
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To get a descriptor of size 128 (a complex number is encoded as two real numbers corresponding to its real
and imaginary parts), we chose k = 16. The computation of each element of the descriptor requires thus to
evaluate an integral of the form

Yj(ℓ) =
1√
2π

∫ 2π

0

∫

√
ℓr/2

√
ℓ−1r/2

eijtI
(

x0 + u[sin(t), cos(t)]
)

du dt. (23)

Note that we dispose only a regularly sampled version of the image I in the Cartesian coordinate sys-
tem. This results in a nonregular sampling in the polar coordinate system, illustrated in Fig. 5(d). The
integrals are then approximated by the corresponding Riemann sums; the rings being chosen so that they
contain approximately the same number of sampled points, the qualities of these approximations are roughly
equivalent.

5.2. Matching criterion

The rationale for using this function X is the following. Assume that x0 and x#

0 are two true matches
and that the images are observed without noise. That is to say that x0 and x#

0 are two points in I and I#,
respectively, such that if we rotate I by some angle τ∗ around x0 then in the neighborhood of x0 of radius r
the image I coincides with I# in the neighborhood of x′. Or, mathematically speaking, ∀(u, t) ∈ [0, r]×[0, 2π],

I
(

x0 + u[sin(t− τ∗), cos(t− τ∗)]
)

= I#
(

x#

0 + u[sin t, cos t]
)

. (24)

Then, by simple integration and using (21) one checks that

X(t− τ∗) = X#(t), ∀t ∈ [0, 2π], (25)

whereX# is defined in the same manner asX, that is by replacing in (21) I by I# and x0 by x#

0. Furthermore,
since these two functions are 2π-periodic, relation (25) holds for the smoothed versions of X and X# as
well.

This observation, depicted in Fig. 6, leads to the following criterion for keypoint matching based on
their LoFT descriptors. Given a threshold λ > 0 and a (estimated) noise level σ, we declare that the LoFT
descriptors Y and Y # corresponding to the keypoints x0 and x#

0 and defined by (23) match if and only if

∆ :=
1

4σ2
min

τ∈[0,2π]

k
∑

j=1

‖Y j − e−ijτY #

j‖22 ≤ λ. (26)

According to the theoretical results established in foregoing sections, under the null hypothesis (that is
when the pair (x0,x

#

0) is a true match) the test statistic ∆ is asymptotically parameter free and the limiting
distribution is Gaussian with zero mean and a variance that can be easily computed. We carried out some
experiments, reported in the next subsection, which show that this property holds not only for small σ, but
also for reasonably high values of it. Furthermore, substituting the true noise level by an estimated one
yields sensibly similar results.

5.3. Experimental evaluation

To empirically assess the properties of the LoFT descriptor and the matching criterion defined in (26),
we carried out some numerical experiments. All the codes and the images necessary to reproduce the results
and the figures reported in this section can be freely downloaded from the website http://imagine.enpc.
fr/~dalalyan/LoFT.

We chose two grayscale images of resolution 300 × 450 that coincide up to a rotation by an angle π/2.
We degraded these images by adding two independent white Gaussian noises of variance σ2. This resulted
in two noisy images I and I# depicted in Fig. 7 (left panels). Then we chose at random L = 104 pairs of
truly matching points (xℓ,x

#

ℓ). The only restriction made on these points is that the distance between two
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Figure 6: Rotated image regions correspond to shifted curves. (a) and (b) are an image region and the corresponding curves
used in the definition of the LoFT descriptor. (c) is the image region (a) rotated by the angle π/4, the corresponding curves
are depicted in (d). We clearly see that the four curves in (d) are obtained from those in (b) by shifting to left (with a shift
equal to π/2 ≈ 1.57.

distinct points xℓ and xℓ′ is at least of 5 pixel. Then we chose points x̃#

ℓ such that x̃#

ℓ = x#

ℓ + (10, 10) which
we used as false matches with xℓ’s. We computed the corresponding LoFT descriptors in each image. This

yielded three sets of vectors {Y ℓ}, {Y #

ℓ} and {Ỹ #

ℓ}. Finally, the values of the test statistic ∆ were computed

for the pairs (Y ℓ,Y
#

ℓ) and (Y ℓ, Ỹ
#

ℓ). We obtained two samples δ1, . . . , δL and δ′1, . . . , δ
′
L. The first sample

characterizes the behavior of the test statistic under the null (i.e., for true matches), whereas the second
sample characterizes the behavior of the test statistic under the alternative (false matches).

The parallel boxplots of these two samples, computed for several values of σ, are plotted in the right-
bottom panel of Fig. 7. Two scenarios were considered: known σ and unknown σ. In the second scenario the
estimator of σ proposed by [28] were used and injected in (26) instead of σ. The results of the first scenario
are plotted in the first row of the right-bottom panel of Fig. 7, while those of the second scenario are in the
second row. One can note that the different values for the noise level considered in these experiments are
σ ∈ {5, 10, 30, 60}.

In the light of these figures, several observations can be made. Perhaps the most striking one is that
even for a noise level as high as6 σ = 30, there is a clear separation between the two samples. Furthermore,
the top-right panel of Fig. 7 shows that the distribution of the test statistic under the null is extremely close
to the Gaussian distribution, as proved in our theoretical results. Therefore, choosing as λ any reasonable
quantile (95%, 99%, 99.9%) of this distribution results in rejecting all the false matches. In other terms, the
p-values associated to the elements of the second sample, the one of false matches, are all below the level of
0.1%.

A second important observation is that the result is almost not impacted by the substitution of the true
noise variance by its estimated value. This may be very useful for applying LoFT descriptors to very noisy
images such as those encountered in medical imaging and astrophysics. A last observation is that when
σ = 60, the noise is so strong that nearly 5% of false matches are classified as true matches, when the
threshold λ in (26) is chosen equal to 2.22, which is the 99%-quantile of the distribution of the test statistic
under the null. This is not so surprising and shows the limits of the presented approach.

To close this section, let us stress that the primary aim here was to show the applicability and the
potential of the proposed approach. A more comprehensive experimental evaluation of the discriminative
power of the LoFT descriptor comparing it to other state-of-the-art descriptors is the subject of an ongoing
work.

6Note that the standard deviation of the image intensities in this example being equal to 40.25, the signal-to-noise ratio is
very small.
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Figure 7: Experimental evaluation of the discriminative power of the LoFT descriptor. Top-left and bottom-left : two noisy
images used in our experiments that coincide up to a rotation by angle π/2. Top-right : the histogram of the test statistic ∆ (cf.
(26)) computed for 104 randomly chosen pairs of truly matching points. The true noise level is equal to 30, for image intensities
ranging from 0 to 255. The value of σ used in (26) is the estimated noise level computed by the procedure described in [28].
One can observe that the distribution is very close to a Gaussian one. Bottom-right : the boxplots of the logarithm of the test
statistic ∆ for true matches and for false matches computed for different noise levels. In the first (top) row the true σ is used
in (26), while in the second row we used the estimator provided by [28]. A remarkable property is that the boxplots under H0

are almost not impacted by the change of σ. It is also noteworthy that the boxplots of true matches are well separated from
those of false matches for all values of σ except for σ = 60.

6. Conclusion

In the present work, we provided a methodological and theoretical analysis of the curve registration
problem from a statistical standpoint based on the nonparametric goodness-of-fit testing. In the case
where the noise is white Gaussian and additive with a small variance we established that under the null
hypothesis the penalized log-likelihood ratio statistic is asymptotically distribution free. This result is valid
for the weighted l2-penalization under some mild assumptions on the weights. Furthermore, we proved
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that the test based on the Gaussian (or chi-squared) approximation of the penalized log-likelihood ratio
statistic is consistent. These results naturally carry over to other nonparametric models for which asymptotic
equivalence (in the Le Cam sense) with the Gaussian white noise has been proven.

It can be interesting, however, to develop a direct inference in these models. In particular, the model of
spatial Poisson processes (cf. [29]) can be of special interest because of its applications in image analysis.
Some important issues closely related to the present work have been treated in the companion paper [12].
In that paper, focusing on the case of equal variances of noise and considering only projection weights,
the minimax rate of separation of the null hypothesis from the alternative is obtained (up to a log-factor)
and an adaptive test is proposed. It should be mentioned, that although the procedure proposed in [12] is
adaptive and achieves the asymptotically minimax rates of separation, it is not necessarily suitable for the
real applications because it is often overly conservative. This is due to the fact that the minimax procedures
are essentially designed to be optimal in the worst cases, but can be outperformed in the favorable situations.

Finally, we demonstrated that the main ideas introduced in the present work lead to a new local descriptor
for digital images tailored to testing for rotation between two image regions. The optimization of the
implementation of this descriptor and its more systematic evaluation on various benchmark datasets used
in computer vision is another promising direction of future research.

Appendix A. Proofs of the theorems

This and the following appendices contain the technical proofs of the theorems stated in previous sections.
For the sake of self-containedness, we provide all the details of the proofs although some of them—such as
the Berman theorem—have been already used in earlier references (see, for instance, [12]).

The proof of Wilks’ phenomenon is divided into several parts. First we assume that H0 is true and study
the convergence of the pseudo-estimator τ̂ (of the shift τ̄∗) defined as the maximizer of the log-likelihood
over the interval [τ̄∗ − π, τ̄∗ + π]. Here, τ̄∗ is an element of [0, 2π[ such that cj = e−ijτ̄∗

c#j , for all j ≥ 1.

Appendix A.1. Maximizer of the log-likelihood

Proposition 1. Let c ∈ Fs,L for some s ∈ (0, 1], L > 0 and let |c1| > 0. If the shrinkage weights νj satisfy

conditions (A) and (B), then the solution τ̂ to the optimization problem

τ̂ = arg max
τ :|τ−τ̄∗|≤π

M(τ), with M(τ) =
∑

j≥1

νj Re(e
ijτYjY #

j )

satisfies the asymptotic relation

|τ̂ − τ̄∗| = σ∗
√

logNσ∗

(

N1−s
σ∗

+ σ∗N
3/2
σ∗

)

OP (1), as σ∗ → 0.

Proof of Proposition 1. Throughout this proof, we work under the null hypothesisH0. If we set ηj = e−ijτ̄∗

ǫj
and η#j = ǫ#j , we can write the decomposition

M(τ)−E[M(τ)] = σ∗S(τ) + σσ#D(τ + τ̄∗),

where

S(τ) =
∑

j≥1

νj Re
{

eijτ
( σ

σ∗
cjηj +

σ#

σ∗
cjη#j

)}

, D(τ) =
∑

j≥1

νj Re
(

eijτηjη#j
)

.

Furthermore, the expectation of M(τ) is given by E[M(τ)] =
∑

j≥1 νj |cj |2 cos[j(τ − τ̄∗)]. In what follows,
for every function f : R → R, we denote by ‖f‖∞ the supremum over R of the function f .

19



On the one hand, using the assumption |c1| > 0 along with condition (A), we get that for every τ ∈
[τ̄∗ − π, τ̄∗ + π] it holds

E
[

M(τ)
]

−E
[

M(τ̄∗)
]

(τ − τ̄∗)2
≤ −ν1|c1|2

1− cos(τ − τ̄∗)

(τ − τ̄∗)2
≤ −2|c1|

π2
, C < 0.

Therefore,

M(τ) −M(τ̄∗) = E[M(τ)]−E[M(τ̄∗)] + σ∗
[

S(τ) − S(τ̄∗)
]

+ σσ#
[

D(τ) −D(τ̄∗)
]

≤ −C |τ − τ̄∗|2 + σ∗|τ − τ̄∗| · ‖S′‖∞ + σ2
∗|τ − τ̄∗| · ‖D′‖∞

= |τ − τ̄∗|
{

σ∗‖S′‖∞ + σ2
∗‖D′‖∞ − C|τ − τ̄∗|

}

.

Replacing in this inequality τ by τ̂ and using that M(τ̂ )−M(τ̄∗) ≥ 0, we get

|τ̂ − τ̄∗| ≤ C−1
{

σ∗‖S′‖∞ + σ2
∗‖D′‖∞

}

. (A.1)

On the other hand, we have

S′(τ) =

√

σ2 + σ#2

σ∗

∑

j≥1

j|cj|νj Re
(

eijτ ζj
)

,

where ζj are i.i.d. complex valued random variables, whose real and imaginary parts are independent
standard Gaussian random variables. Therefore, the large deviations of the sup-norm of S′ can be controlled
using the following lemma.

Lemma 2. Let s = (s1, . . . , sN) be a vector from R
N and let {ξj} and {ξ′j} be two independent sequences

of i.i.d. N (0, 1) random variables. The sup-norm of the function Z(t) =
∑N

j=1 sj{cos(jt)ξj + sin(jt)ξ′j},
satisfies

P(‖Z‖∞ ≥ ‖s‖2x) ≤ (N + 1)e−x2/2, ∀x > 0.

Proof. See Appendix C.

To apply this result to Z(t) = S′(t), we choose sj =

√
σ2+σ#2

σ∗

j|cj|νj , which leads to a vector s =
(s1, . . . , sNσ∗

) with Euclidean norm

‖s‖22 =
σ2 + σ#

2

σ2
∗

Nσ∗
∑

j=1

j2|cj |2ν2j ≤ 2N2(1−s)
σ∗

L2.

The last inequality follows from the fact that c ∈ Fs,L, σ∗ = max(σ, σ#) and νj ∈ [0, 1] for every j. Using
this bound, Lemma 2 and the fact that Nσ∗

≥ 1, we get that the inequality

P
(

‖S′‖∞ ≥ 2LN1−s
σ∗

√

log(4Nσ∗
/α)

)

≤ α

2
(A.2)

holds true for every α ∈ (0, 1).

Finally, the large deviations of the term ‖D′‖∞ are controlled by the following lemma.

Lemma 3. Let N be some positive integer and let ηj, η
#

j , j = 1, . . . , N be independent complex valued

random variables such that their real and imaginary parts are independent standard Gaussian variables. Let

s = (s1, . . . , sN ) be a vector of real numbers. Denote Z(t) =
∑N

j=1 sj Re
(

eijtηjη
#

j

)

for every t in [0, 2π] and
‖Z‖∞ = supt∈[0,2π] |Z(t)|. Then,

P
{

‖Z‖∞ >
√
2x

(

‖s‖2 + y‖s‖∞
)

}

≤ (N + 1)e−x2/2 + e−y2/2, ∀x, y > 0.
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Proof. See Appendix C.

In order to bound the sup-norm of D′(·) using Lemma 3, we set N = Nσ∗
and sj = jνj for all j =

1, . . . , Nσ∗
. This yields ‖s‖2 ≤ N

3/2
σ∗

and ‖s‖∞ ≤ Nσ∗
. Therefore,

P
{

‖D′‖∞ >
√
2xNσ∗

(
√

Nσ∗
+ y

)

}

≤ (Nσ∗
+ 1)e−x2/2 + e−y2/2, ∀x, y > 0. (A.3)

For any α ∈ (0, 1), choosing x =
√

2 log(8Nσ∗
/α) and y =

√

2 log(4/α), we arrive at

P
{

‖D′‖∞ > 2Nσ∗

√

log(8Nσ∗
/α)

(
√

Nσ∗
+
√

log(4/α)
)

}

≤ α

2
. (A.4)

Inequalities (A.1), (A.2) and (A.4) imply that |τ̂−τ̄∗| is, in probability, at most of the order σ∗
√

logNσ∗

(

N1−s
σ∗

+

σ∗N
3/2
σ∗

)

.

Appendix A.2. Proof of Theorem 1

Recall that we present the proof in the case c ∈ Fs,L for s > 7/8. The claim of Theorem 1 can be readily
obtained by taking s = 1.

One can check that, under H0,

∆ν,σ∗
(Y •,#) =

1

2(σ2 + (σ#)2)
min

τ∈[0,2π[

[

+∞
∑

j=1

νj
∣

∣Yj − e−ijτY #

j

∣

∣

2

]

(A.5)

=
1

2(σ2 + (σ#)2)
min

|τ−τ̄∗|≤π

{

Dσ∗
(τ) + 2Cσ∗

(τ) + Pσ∗
(τ)

}

, (A.6)

where we have used the notation:

Dσ∗
(τ) =

+∞
∑

j=1

νj |cj |2
∣

∣1− e−ij(τ−τ̄∗)
∣

∣

2
, (deterministic term)

Cσ∗
(τ) =

+∞
∑

j=1

νj Re
[

cj
(

1− e−ij(τ−τ̄∗)
)(

σǫj − e−ijτσ#ǫ#j
)]

, (cross term)

Pσ∗
(τ) =

+∞
∑

j=1

νj
∣

∣σǫj − e−ijτσ#ǫ#j
∣

∣

2
. (principal term)

(Since H0 is assumed satisfied, there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#j for all j ≥ 1.) We denote
by τ̂ the pseudo-estimator of τ̄∗ defined as the minimizer of the right-hand side of (A.5) over the interval
[τ̄∗ − π, τ̄∗ + π] and study the asymptotic behavior of the terms Dσ∗

, Cσ∗
and Pσ∗

separately.

For the deterministic term, in view of Proposition 1, it holds that

|Dσ∗
(τ̂ )| ≤

+∞
∑

j=1

j2νj |cj |2(τ̂ − τ̄∗)2 ≤ (τ̂ − τ̄∗)2
Nσ∗
∑

j=1

j2|cj |2 ≤ N2(1−s)
σ∗

L2(τ̂ − τ̄∗)2

= {σ2
∗N

2(1−s)
σ∗

(N2(1−s)
σ∗

+ σ2
∗N

3
σ∗
) logNσ∗

}Op(1).

Therefore,

|Dσ∗
(τ̂ )|

σ2
∗‖ν‖2

≤ {(N
7

2
−4s

σ∗
+ σ2

∗N
9

2
−2s

σ∗
) logNσ∗

}Op(1). (A.7)
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Let us turn now to the cross term. As Cσ∗
(τ̄∗) = 0, we have

|Cσ∗
(τ̂ )| ≤ |τ̂ − τ̄∗| · ‖C′

σ∗
‖∞.

Furthermore, if we define ξj and ξ′j as respectively the real and the imaginary parts of the random variable
cj

|cj|
√
σ2+σ#2

(

σǭj − eijτ̄
∗

σ# ǭ#j
)

, we get

C′
σ∗
(τ̄∗ + t) =

√

σ2 + σ#2
+∞
∑

j=1

jνj |cj |
[

sin(jt)ξj + cos(jt)ξ′j
]

, ∀t ∈ R.

Using Lemma 2, we check that ‖C′
σ∗
‖∞ is, in probability, of the order {σ∗N1−s

σ∗

√

logNσ∗
}. Therefore, in

view of Proposition 1, it holds that

|Cσ∗
(τ̂ )| = {σ2

∗(N
1−s
σ∗

+ σ∗N
3/2
σ∗

)N1−s
σ∗

logNσ∗
}Op(1)

and, therefore,

|Cσ∗
(τ̂ )|

σ2
∗‖ν‖2

= {(N
3

2
−2s

σ∗
+ σ∗N

2−s
σ∗

) logNσ∗
}Op(1). (A.8)

Let us study the last term, Pσ∗
(τ) =

∑+∞
j=1 νj

∣

∣σǫj − e−ijτσ#ǫ#j
∣

∣

2
, which will determine the asymptotic

behavior of the test statistic. Denoting ηj = eijτ̄
∗

ǫj and η#j = ǫ#j , we can rewrite this term as Pσ∗
(τ) =

∑+∞
j=1 νj

∣

∣σηj − e−ij(τ−τ̄∗)σ#η#j
∣

∣

2
. We wish to prove that under the null hypothesis H0, if conditions (A),

(B), Nσ∗
→ +∞ and σ2

∗N
5/2
σ∗

log(Nσ∗
) = oP (1) are fulfilled, then

Hσ∗
(τ̂ ) =

Pσ∗
(τ̂ )− 2(σ2 + (σ#)2)‖ν‖1
2(σ2 + (σ#)2)‖ν‖2

D−−−−→
σ∗→0

N (0, 1).

To check this property, we decompose the principal term as follows:

Hσ∗
(τ̂ ) = Hσ∗

(τ̄∗) +Rσ∗
(τ̂ ), with Rσ∗

(τ̂ ) =
Pσ∗

(τ̂ )− Pσ∗
(τ̄∗)

2(σ2 + (σ#)2)‖ν‖2
.

We start by writing Hσ∗
(τ̄∗) as

Hσ∗
(τ̄∗) =

Nσ∗
∑

j=1

Xj,σ∗
, with Xj,σ∗

=
νj

2‖ν‖2

(∣

∣

∣

σηj − σ#η#j
(σ2 + (σ#)2)1/2

∣

∣

∣

2

− 2
)

,

and, by applying the Berry-Esseen inequality [39, Theorem 5.4], which is valid since the Xj,σ∗
’s are inde-

pendent random variables with mean 0 and finite third moment. Furthermore, we have

Bσ∗
=

Nσ∗
∑

j=1

Var
(

Xj,σ∗

)

= 1, and Lσ∗
= B

− 3

2

σ∗

Nσ∗
∑

j=1

E|Xj,σ∗
|3 ≤ C N

− 1

2

σ∗
.

Therefore, the Berry-Esseen inequality yields supx |Fσ∗
(x) − Φ(x)| ≤ K Lσ∗

, where Φ is the c.d.f. of the

standard Gaussian distribution, Fσ∗
(x) = P

(

B
− 1

2

σ∗

∑Nσ∗

j=1 Xj,σ∗
< x

)

and K is an absolute constant. Hence

Hσ∗
(τ̄∗)

D−−−−→
σ∗→0

N (0, 1).
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It remains to prove that Rσ∗
(τ̂ ) tends to 0 in probability, which—in view of Slutski’s lemma—will be

sufficient for completing the proof. By the mean value theorem, there exists some real number t between τ̂
and τ̄∗ such that

Rσ∗
(τ̂ ) =

σσ#

σ2 + (σ#)2

+∞
∑

j=1

νj
‖ν‖2

Re
(

ηjη#j (e
ij(τ̂−τ̄∗) − 1)

)

=
σσ#

σ2 + (σ#)2

Nσ∗
∑

j=1

jνj(τ̂ − τ̄∗)

‖ν‖2
Re

(

eijtηjη#j
)

.

Then, by virtue of Lemma 3,

|Rσ∗
(τ̂ )| ≤ σσ#|τ̂ − τ̄∗|

(σ2 + (σ#)2)‖ν‖2
sup

t∈[0,2π]

∣

∣

∣

Nσ∗
∑

j=1

jνj Re
(

eijtηjη#j
)

∣

∣

∣

= {σ∗(N1−s
σ∗

+ σ∗N
3/2
σ∗

)Nσ∗
logNσ∗

} ·OP (1).

Combining all these relations, we get

(∆ν,σ∗
(Y •,#)− ‖ν‖1)
‖ν‖2

=
Dσ∗(τ̂ ) + 2Cσ∗

(τ̂ )

2(σ2 + σ#2)‖ν‖2
+Hσ∗

(τ̄∗) +Rσ∗
(τ̂ )

= Hσ∗
(τ̄∗) + {N

7

2
−4s

σ∗
+ σ2

∗N
9

2
−2s

σ∗
+N

3

2
−2s

σ∗
+ σ∗N

2−s
σ∗

+ σ2
∗N

5

2

σ∗
}OP (logNσ∗

).

Under the assumptions s > 7/8, Nσ∗
→ ∞ and σ2

∗N
−2s+9/2
σ∗

logNσ∗
→ 0, as σ∗ → 0, we infer the relation

(∆ν,σ∗
(Y •,#)− ‖ν‖1)/‖ν‖2 = Hσ∗

(τ̄∗)+OP (1). The application of the Slutsky lemma completes the proof.

Appendix A.3. Power of the test

The aim of this section is to present a proof of Theorem 2. To this end, we study the test statistic
Tσ∗

= (∆ν,σ∗
(Y •,#)− ‖ν‖1)/‖ν‖2, and show that it tends to +∞ in probability under H1. Actually, the

hypothesis H1 will be supposed to be satisfied throughout this section. It holds true that:

∆ν,σ∗
(Y •,#) =

1

σ2
∗

min
τ∈[0,2π]

∑

j≥1

νj
∣

∣Yj − e−ijτY #

j

∣

∣

2

=
1

σ2
∗

min
τ∈[0,2π]

∑

j≥1

νj

∣

∣

∣

(

cj − e−ijτ c#j) + (σǫj − e−ijτσ#ǫ#j
)

∣

∣

∣

2

≥ 1

σ2
∗

min
τ∈[0,2π]

{

∑

j≥1

νj |cj − e−ijτ c#j |2
}

− 2

σ∗
max

τ∈[0,2π]

{

∑

j≥1

νj |cj − e−ijτ c#j | · (|ǫj |+ |ǫ#j |)
}

.

Let us focus on the first term. Denoting δσ∗
= min{j ≥ 1, νj < c}, we get by condition (C) that δσ∗

→ +∞,
which implies

min
τ∈[0,2π]

∑

j≥1

νj |cj − e−ijτ c#j |2 ≥ c min
τ∈[0,2π]

δσ∗
∑

j=1

|cj − e−ijτ c#j |2

≥ c
(

min
τ∈[0,2π]

+∞
∑

j=1

|cj − e−ijτ c#j |2 − 4L2δ−2
σ∗

)

≥ c
(

ρ− 4L2δ−2
σ∗

)

.
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For the second term, we use that for every τ it holds that

∑

j≥1

νj
∣

∣cj − e−ijτ c#j
∣

∣ ·
∣

∣ǫj − e−ijτ ǫ#j
∣

∣ ≤ max
j=1,...,Nσ∗

(|ǫj | ∨ |ǫ#j |)
Nσ∗
∑

j=1

(

|cj |+ |c#j |
)

= OP (
√

logNσ∗
)

Nσ∗
∑

j=1

(

|cj |+ |c#j |
)

.

Furthermore, using the Cauchy-Schwarz inequality, we get

Nσ∗
∑

j=1

(

|cj |+ |c#j |
)

≤
(Nσ∗
∑

j=1

j−2

)1/2(Nσ∗
∑

j=1

j2
(

|cj|+ |c#j |
)2

)1/2

≤ 3L.

Therefore,

max
τ∈[0,2π]

∑

j≥1

νj
∣

∣cj − e−ijτ c#j
∣

∣ ·
∣

∣ǫj − e−ijτ ǫ#j
∣

∣ = OP (
√

logNσ∗
).

Combining all these estimates, we get

Tσ∗
=

∆ν,σ∗
(Y •,#)− ‖ν‖1
‖ν‖2

≥
cρ− 4Lcδ−2

σ∗
−OP

(

σ∗
√

logNσ∗

)

− σ2
∗Nσ∗

σ2
∗
√

Nσ∗

P−→ +∞

in view of the convergences δσ∗
→ ∞, Nσ∗

→ ∞ and σ2
∗Nσ∗

→ 0 as σ∗ → 0.

Appendix B. Proof of Theorem 3

Throughout this proof, we assume that H0 is fulfilled, that is for some τ̄∗ ∈ [0, 2π[, the relation cj =
e−ijτ̄∗

c#j holds for every j ∈ N. We also recall that σ and σ# are assumed to be equal. One easily checks that

min
τ∈[0,2π[

‖Y − e(τ) ◦ Y #‖22,ν
2(σ2 + σ#2)

≤
‖Y − e(τ̄∗) ◦ Y #‖22,ν

2(σ2 + σ#2)
= ‖ν‖1 +

1

2

p
∑

j=1

νj(|ξj |2 − 2). (B.1)

where ξj = (ǫj − e−ijτ̄∗

ǫ#j)/
√
2 for every j ∈ N. Therefore, using the notation Ûσ∗

=
4σ2

∗
‖1−ν‖1

‖Y ‖2

2,1−ν
+‖Y #‖2

2,1−ν

and

Zσ∗
=

∑p
j=1

νj
2‖ν‖2

(|ξj |2 − 2), we get

T (Y •,#) =
Ûσ∗

‖ν‖2
min

τ∈[0,2π[

‖Y − e(τ) ◦ Y #‖22,ν
4σ2

∗
− ‖ν‖1

‖ν‖2

≤ Ûσ∗

(‖ν‖1
‖ν‖2

+

p
∑

j=1

νj
2‖ν‖2

(|ξj |2 − 2)

)

− ‖ν‖1
‖ν‖2

= Zσ∗
+
(

Ûσ∗
− 1

)

(‖ν‖1
‖ν‖2

+ Zσ∗

)

. (B.2)

Since the random variables Zσ∗
tend in distribution to N (0, 1) as σ∗ → 0, and ‖ν‖2

‖ν‖1

≤ ‖ν‖2

‖ν‖2

2

≤ (cNσ∗
)−1/2

(the last inequality follows from condition (B)), we arrive at

T (Y •,#) ≤ Zσ∗
+
(

Ûσ∗
− 1

)‖ν‖1
‖ν‖2

(

1 +OP (N
−1/2
σ∗

)
)

. (B.3)
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To complete the proof, we study the behavior of Ûσ∗
as σ∗ → 0. To this end, we define

Z ′
σ∗

=
(2‖1− ν‖1 − ‖ǫ‖22,1−ν

) + (2‖1− ν‖1 − ‖ǫ#‖22,1−ν
)

4‖1− ν‖2
,

Z ′′
σ∗

=
〈c, ǫ+ e(τ̄∗) ◦ ǫ#〉1−ν√

2‖c‖2,(1−ν)2
.

We have

Û−1
σ∗

= 1 +
‖Y ‖22,1−ν

+ ‖Y #‖22,1−ν
− 4σ2

∗‖1− ν‖1
4σ2

∗‖1− ν‖1

= 1− ‖1− ν‖2
‖1− ν‖1

Z ′
σ∗

+
‖c‖22,1−ν

2σ2
∗‖1− ν‖1

+
‖c‖2,(1−ν)2Z

′′
σ∗√

2σ∗‖1− ν‖1
. (B.4)

To evaluate the right-hand side, we first upper-bound ‖c‖22,1−ν
=

∑

j(1 − νj)|cj |2 by the expression
[

maxj≥1 j
−2(1−νj)

]
∑

j j
2|cj |2 ≤ c′LN−2

σ∗
. Taking into account the facts that σ∗Nσ∗

= O(1), Z ′′
σ∗

∼ N (0, 2)

and ‖c‖22,(1−ν)2 =
∑

j(1− νj)
2|cj |2 ≤ ‖c‖22,1−ν ≤ c′LN−2

σ∗
, we get

Û−1
σ∗

= 1− ‖1− ν‖2
‖1− ν‖1

Z ′
σ∗

+
O((σ∗Nσ∗

)−2) +OP ((σ∗Nσ∗
)−1)

‖1− ν‖1

= 1− ‖1− ν‖2
‖1− ν‖1

Z ′
σ∗

+
OP (1)

(σ∗Nσ∗
)2‖1− ν‖1

.

Finally, using the inequality ‖1− ν‖1 ≥ p−Nσ∗
, we get that

Û−1
σ∗

= 1− ‖1− ν‖2
‖1− ν‖1

Z ′
σ∗

+
OP (1)

(p−Nσ∗
)(σ∗Nσ∗

)2
. (B.5)

On the other hand, since νj ∈ [0, 1] for every j and νj = 0 for j ≥ Nσ∗
, we have ‖1 − ν‖2 ≤ ‖1 − ν‖1/21 =

‖1−ν‖1

‖1−ν‖1/2
1

≤ ‖1 − ν‖1/(p − Nσ∗
)1/2. In particular, relation (B.5) in conjunction with the condition (p −

Nσ∗
)σ2

∗N
3/2
σ∗

→ +∞ implies that |Û−1
σ∗

− 1| ≤ ‖1−ν‖2

‖1−ν‖1
|Z ′

σ∗
|+ oP (N−1/2

σ∗
) = (p−Nσ∗

)−1/2OP (1)+ oP (N
−1/2
σ∗

)

and, therefore, Ûσ∗
= 1 +OP (N

−1/2
σ∗

). Combining this with (B.5) and (B.3), we arrive at

T (Y •,#) ≤ Zσ∗
+ Ûσ∗

(

1− Û−1
σ∗

)‖ν‖1
‖ν‖2

(

1 +OP (N
−1/2
σ∗

)
)

= Zσ∗
+
(

1− Û−1
σ∗

)‖ν‖1
‖ν‖2

(

1 +OP (N
−1/2
σ∗

)
)

= Zσ∗
+

(‖1− ν‖2
‖1− ν‖1

Z ′
σ∗

+
OP (1)

(p−Nσ∗
)(σ∗Nσ∗

)2

)‖ν‖1
‖ν‖2

(

1 +OP (N
−1/2
σ∗

)
)

= Zσ∗
+

(‖1− ν‖2
‖1− ν‖1

Z ′
σ∗

+
OP (1)

(p−Nσ∗
)(σ∗Nσ∗

)2
+

OP (1)

(p−Nσ∗
)1/2N

1/2
σ∗

)‖ν‖1
‖ν‖2

= Zσ∗
+

‖ν‖1‖1− ν‖2
‖ν‖2‖1− ν‖1

Z ′
σ∗

+
OP (1)

(p−Nσ∗
)σ2

∗N
3/2
σ∗

+
OP (1)

(p−Nσ∗
)1/2

.

This result, combined with the obvious identity |ǫj |2 + |ǫ#j|2 = 1
2 |ǫj + e−ijτ̄∗

ǫ#j |2 + 1
2 |ǫj − e−ijτ̄∗

ǫ#j |2 = |ξj |2 +
|ξ#j |2, completes the proof of the theorem.

Appendix C. Bounds for the maxima of random sums

In this section, we will gather some useful technical lemmas. They essentially characterize the stochastic
behavior of the maximum of the sum of independent random quantities, which are either “simple” Gaussian
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processes [3] or scaled chi-squared random variables. Note that instead of Berman’s formula, one could
use the combination of the Dudley theorem and Talagrand’s inequality to control the supremum of the
considered random process. Both approaches lead to optimal results. However, the Berman formula is much
easier to apply since it avoids the computation of the covering numbers or other quantities of the same
flavor. It should be however emphasized that this is made possible by the fact that the noise is assumed
Gaussian and the sample paths of the process to be maximized are continuously differentiable. In a more
general situation (non Gaussian noise, nonsmooth sample paths, etc.) one would most likely have no other
choice than applying the Dudley-Talagrand routine.

Proposition 2 ([3]). Suppose that gj are continuously differentiable functions satisfying
∑n

j=1 gj(t)
2 = 1

for all t, and ξj
iid∼ N (0, 1). Then, for every x > 0, we have

P

(

sup
[a,b]

n
∑

j=1

gj(t)ξj ≥ x

)

≤ L0

2π
e−

x2

2 +

∫ +∞

x

e−
t2

2√
2π

dt, with L0 =

∫ b

a

[ n
∑

j=1

g′j(t)
2

]1/2

dt.

We will also use the following fact about moderate deviations of the random variables that can be written
as the sum of squares of independent centered Gaussian random variables.

Lemma 4. Let N be some positive integer and let η#j , j = 1, . . . , N be independent complex valued random

variables such that their real and imaginary parts are independent standard Gaussian variables. Let s =
(s1, . . . , sN) be a vector of real numbers. For any y ≥ 0, it holds that

P
{

N
∑

j=1

s2j |η#j |2 ≥ 2‖s‖22 + 2
√
2‖s‖24y + 2‖s‖2∞y2

}

≤ e−y2/2,

with the standard notations ‖s‖∞ = max
j=1,...,N

|sj | and ‖s‖qq =
∑N

j=1 |sj |q.

Proof. This is a direct consequence of [32, Lemma 1].

Proof of Lemma 2. We apply Proposition 2 to the functions {gj(t)}j=1,...,2N defined on the interval [a, b] =
[0, 2π] by gj(t) = [sj cos(jt)1(j ≤ N)+sj sin(jt)1(j > N)]/‖s‖2. One easily checks that for every t ∈ [0, 2π],

we have
∑2N

j=1 g
2
j (t) = 1. Therefore, applying Berman’s result we get

P
(

‖Z‖∞ ≥ ‖s‖2x
)

= P
(

sup
t∈[0,2π]

∑

j≤N

gj(t)ξj +
∑

j>N

gj(t)ξ
′
j ≥ x

)

≤
(L0

2π
+ 1

)

e−x2/2.

In the present context, the constant L0 admits the following simple upper bound:

L0 =

∫ 2π

0

[

N
∑

j=1

j2s2j/‖s‖22
]1/2

dt ≤ 2πN,

which yields the desired result.

Proof of Lemma 3. First note that we can not directly apply Berman’s formula, since the summands are not
Gaussian. However, they are conditionally Gaussian if the conditioning is done, for example, with respect to
the sequence {η#j}j=1,...,N . Indeed, one easily checks that conditionally to {η#j}j=1,...,N , the random processes

τ 7→
N
∑

j=1

sj Re
(

eijτ ηjη
#

j

)

26



and

τ 7→
N
∑

j=1

sj |η#j |
(

cos(jτ)ξj − sin(jτ)ξ′j
)

with ξj , ξ
′
j
iid∼ N (0, 1)

have the same distributions. Therefore, it follows from Lemma 2 that

P

(

sup
[0,2π]

∣

∣

∣

N
∑

j=1

sj Re
(

eijτηjη
#

j

)

∣

∣

∣
≥ x

(

N
∑

j=1

s2j |η#j |2
)

1

2

∣

∣

∣
{η#j}j=1,...,N

)

≤ (N + 1)e−x2/2.

Let us now denote by ζ the square root of the random variable
∑N

j=1 s
2
j |η#j |2. It is clear that for all a > 0,

P
(

‖Z‖∞ ≥ ax
)

= P
(

‖Z‖∞ ≥ ax; ζ ≤ a
)

+P
(

‖Z‖∞ ≥ ax; ζ > a
)

≤ P
(

‖Z‖∞ ≥ xζ
)

+P
(

ζ > a
)

≤ (N + 1)e−x2/2 +P
(

ζ > a
)

.

To complete the proof, it suffices to replace a by
√
2(‖s‖2 + y‖s‖∞) and to apply Lemma 4 along with the

inequalities ‖s‖2 + ‖s‖∞y = (‖s‖22 + 2‖s‖∞‖s‖2y + ‖s‖2∞y2)1/2 ≥ (‖s‖22 +
√
2‖s‖24y + ‖s‖2∞y2)1/2.
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