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1 General comments

We would like to thank the Associate Editor and the Reviewer for their prompt reviews con-
taining insightful comments. We have substantially revised our manuscript taking into account
all the issues raised by the AE and the Reviewer. In particular, we have performed additional
numerical experiments for illustrating the performance of the noise-level-adaptive test proce-
dure described in Section 3.2.

We have also carefully revised the Matlab code of the experiments reported in Sec-
tion 4 and, in order to ensure the reproducibility, made it freely available on
https://code.google.com/p/shifted-curve-testing/.

In addition, we changed the layout of the manuscript using the LATEX style file provided by the
publisher.

We believe that these modifications improved significantly the presentation of the material.
Specific details answering the comments of each Reviewer separately are provided below.

2 Reply to the AE’s comments

1.
1. From a technical point of view, the paper follows a standard routine in Theorem 1 but the
result is nice. Theorem 2 is for me quite incomplete since no rates are described here, but
the authors argue that the companion paper of [Collier,12] provides the missing results. I
have checked this, and thus have carefully read also the companion paper . . .Then, I have
been quite confused about the intertwining of the proofs between the two papers. In this
submitted paper, the argument are self contained but some of them are already used in the
EJS paper. Hence, I would advise the authors to improve the presentation of the technical
results, and to underline what are the supplementary technical difficulties here, even if I
understand the justifiable repetitions.
For example: the authors use the Berman formula on the supremum of Gaussian processes.
This formula is available for the supremum of the sums of the form

n∑

j=1

gj(t)ξj ,

where the functions gj are smooth functions. But this novelty should be balanced by the
fact that it is already used in the paper of [Collier,12].

We agree that several arguments used in the proofs of the present paper are also used
in [Collier,12]. However, the perspectives of [Collier,12] and of the present paper are
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substantially different. While [Collier,12] studies the limits of testing and provides the
(nearly) optimal separation rate between the null and the alternative hypotheses, the
present work is concerned with the possibility of establishing Wilks’ property for the
penalized likelihood ratio test. In this paper, the asymptotic behavior of the test under
H0 is carefully studied, whereas in [Collier,12] only an upper bound on the probability of
making an error under H0 is obtained. We could say that this paper is concerned with a
very practical issue, i.e. setting the threshold of the GLR test, while [Collier,12] was a the-
oretical study where the analysis was carried out up to constants and no clear guidance
for choosing the threshold was provided.

Besides, even if we agree that the arguments of our proofs are standard (Berry-Esseen
inequality, tails of chi-square, Berman’s formula,. . . ), we feel that this does not make the
results less interesting, as they are novel in both papers. So, in a nutshell, the results on
Gaussian processes are not the point of this paper, nor were they the point of [Collier,12].
We believe that it is suitable to give them in both papers for the sake of self-containedness.
Following the suggestion of the AE, we added the following sentence in the beginning of
the Appendix (page 18):
For the sake of self-containedness, we provide all the details of the proofs although some
of them—such as the Berman theorem—have been already used in earlier references (see,
for instance, [Collier,12]).

2.
The, authors make the assumption that the signal f belongs to F1,L. It is indeed an impor-
tant assumption regarding the framework of curve registration. In fact, one should expect
that when the function f is not regular, it may be easier to estimate shifts and then derive
statistical testing procedure. This last point should be at the least included in a remark in
the text. What should be wrong is the smoothness parameter s is lower than 1? Standard
results are generally obtained for s > 1/2 ... The balance between the size of Nσ∗ and σ∗

should be commented and related to the bias and variance tradeoff involved in the Fourier
cut-off. Finally, it is not clear to me with in the statements of Theorem 1 it is not possible
to consider some values of s lower than 1.

Following your remark, we have rewritten the proof of Theorem 1 in the case of general
s > 0. It appears from the proof that the condition we really need is s > 7/8. We added
the following discussion just after Remark 1 to give the reader some insight on this point.
The proof of Theorem 1 is rather technical and, therefore, is deferred to the Appendix. Let
us simply mention here that we present the proof in a slightly more general case c ∈ Fs,L

with a smoothness s ∈ (0, 1]. It appears from the proof that the convergence stated in (12)

holds if s > 7/8, Nσ∗
→ ∞ and σ2

∗N
−2s+9/2
σ∗

log(Nσ∗
) → 0, as σ∗ → 0. We do not know

whether the last condition on Nσ∗
can be avoided by using other techniques, but it seems

that in our proof there is no room for improvement in order to relax this assumption. At a
heuristic level, it is quite natural to avoid choosing Nσ∗

too large. Indeed, large Nσ∗
leads

to undersmoothing in the problem of estimating the quadratic functional ‖c−e(τ)◦c#‖22.
Therefore, the test statistic corresponds to registration of two curves in which the signal
is dominated by noise, which is clearly not a favorable situation for performing curve
registration.

3.
I would explicitely said that the statistic ∆σ∗ depends on the weight sequence ν.

Done.

4.
The frequency threshold Nσ∗ used in Theorem 1 plays a significant role. Some discussions
should be helpful for non familiar readers.
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Done (cf. the last paragraph of Page 7).

5.
Page 8, l-8: a comma is missing after ’these assumptions’.

Indeed, we have added the comma.

6.
The statement of Theorem 3 is quite long. Maybe authors should try to alleviate it.

We have now removed the second statement of the theorem, which was overly technical
and probably not very interesting. We have also used this opportunity for simplifying
the proof and slightly sharpening the result. In particular, the condition imposed on p
and Nσ∗

has been improved.

7.
The balance between (p,Nσ∗) and σ∗ should be more discussed, especially regarding the
assumption on Theorem 1.

We completely agree with this point and, therefore, have added the following discussion
at the end of Section 3:
To conclude this section, let us have a closer look at the assumptions of the last theorem.
The conditions (A), (B) and maxj 6=0 j

−2(1 − νj) ≤ c′N−2
σ∗

are satisfied for most weights

used in practice. Thus, the most important conditions are (p − Nσ∗
)σ2

∗N
3/2
σ∗

→ ∞ and
σ∗Nσ∗

→ 0. The first of these two conditions ensures that the error term coming from
the estimation of the unknown noise level is small. The second one is a weak version
of the condition σ∗N

5/2
σ∗

logNσ∗
= o(1) present in Theorem 1, which ensures that we do

not use a strongly undersmoothed test statistic. We manage here to obtain a condition on
Nσ∗

which is weaker than the corresponding condition in Theorem 1 because we do not
establish the asymptotic distribution of the test statistic but just an upper bound of the
latter. The choice of p and Nσ∗

is particularly important for obtaining a test with a power
close to one, especially in the case of alternatives that are close to the null. However,
the investigation of this point is out of scope of the present work. Let us just mention

that if we choose Nσ∗
= σ−β

∗ and p = 2σ−γ
∗ , the conditions of Theorem 3 are satisfied

if β ≤ min(γ, 1) and 2γ + 3β ≥ 4. Of course, these conditions are closely related to the
assumption that the unknown signal belongs to the smoothness class of regularity 1.

8.
In the numerical experiments, authors are concerned with the HeavySine function, but I
would like to see the effect of the smoothness of the unknown functions.

We have now modified the function used in the experiments by using the smoothed ver-
sion of the HeavySine function. In order to observe the impact of the smoothness, we per-
formed a new experiment (described in Section 4.2) in which the perturbation function ϕ
is chosen to have a smoothness degree lower than the one of the function ϕ(t) = c/(1+t2).
We see that this results in a much lower power, which is consistent with the existing the-
oretical results.

9.
There is a typo page 12 line -7.

Actually this was not a typo, but a character used by the JRSS B style file for indicating the
footnote. Since we use the Elsevier style file now, this character does not appear anymore.
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10.
I do not find in the paper the justification of 4 rings for the LoFT descriptors. I guess it
depends on the size of the radius r and the smoothness of the signal. Some details should
be helpful.

There is no theoretical justification for this choice. We just tried several values for the
number of rings and the number 4 leaded to the best results.

11.
Concerning the deviation of the supremum: could the authors illustrate the technical dif-
ferences reached either using the Berman formula or using the Dudley + Talagrand rou-
tine? It would be nice for the reader to know what argument provides the best results.

In the context of the present work, both approaches lead to optimal results. However, the
Berman formula is much easier to apply since it avoids the computation of the covering
numbers or other quantities of the same flavor. It should be however emphasized that this
is made possible by the fact that the noise is assumed Gaussian and the functions gj(t) are
continuously differentiable. In a more general situation (non Gaussian noise, nonsmooth
sample paths, etc.) one would most likely have no other choice than applying the Dudley
+ Talagrand routine. This discussion is now added to the paper (page 26, first paragraph).
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3 Answer to the Reviewer

1.
Equation (7) : after a bit more involved computations, the authors claim to obtain Equa-
tion (7). The reader may find computation details in the companion paper [1]. When the
model is homoscedastic (σ = σ#), it is straightforward to obtain Equation (7). But when
σ 6= σ#, the minimum of the penalized log-likelihood is reached for linear combination

of Fourier coefficients Yj and Y #
j which weights may depend of σ and σ# respectively.

In this case, I do not understand why this weights would disappear in the final result :
when I compare naively the terms in |Yj |2 in Equation (6) and Equation (7), it does not
match. Then the test statistic appears to me more as a test which is built from a contrast
and not as a penalized likelihood ratio test. Could the authors give more details about their
computations ?
[1] A.S. Dalalyan and O. Collier.Wilks’ phenomenon and penalized likelihood ratio test for
nonparametric curve registration. Journal of Machine Learning Research - Proceedings
Track, 22: 264-272, 2012.

We added in Section 1 a new lemma, Lemma 1, stating the validity of Equation (7). The
proof of this lemma is also presented. This made the section a bit longer, but we agree
that these computations are worth being included in the paper, especially that the corre-
sponding result of the paper [1] was stated with a mistake (the factor in front of the min
was not correctly computed).

2.
The Fourier coefficient (Y0;Y

#
0 ) disappears while the null hypothesis, Equation (4), takes

it account. On the other hand, this would explain why the authors claim that they are able
to whether two points in images coincide up to a rotation and an illumination change for
keypoint matching application. The authors should clarify this point.

Reviewer 1 is perfectly right, there were an inconsistency between the statement of the
null and alternative hypotheses and the definition of the test statistics. This inconsistency
is repaired in the revised version by changing the definition of the null and the alternative
to the following one:

H0 : ∃ (τ∗, a∗) ∈ [0, 1] × R such that f(·) = f#(·+ τ∗) + a∗, (1)

which means that under the null the functions f and f# coincide up to a spatial shift (not
necessarily horizontal).

3.
Numerical experiments : the test procedure should take into account a sufficient large
number of Fourier coefficients. On Figure 1, the number of Fourier coefficients is fixed

according to the level of the noise : Nσ∗ = 50σ
−1/2
∗ . For large value of sigma, the test

nominal level is not close 1 − α = 0.95. Have the authors investigated for these values
the effect of Nσ∗

in order to get maybe a more satisfactory coverage level? The Tikhonov
and Pinsker weights depend on parameters κ and ν which are not set for the numerical
experiments. Moreover, it would be desirable to present simulation on the unknown noise
level test procedure.

We have carefully checked our code and it turns out that the poor behavior of the Type
I error rate for small values of Nσ∗

(or, equivalently, large values of σ∗) was caused by
our implementation. In fact, we compute the minimum over τ ∈ [0, 1] by an exhaustive
search over a fine grid and, in the previous experiment, the mesh of the grid was not
chosen small enough. The new experiments reported in Section 4 of the revised version
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are carried out with a smaller mesh and the resulting Type I error rate is always smaller
than the nominal level.

We now make precise the parameters of the Pinsker and the Tikhonov weights. Thank
you for pointing out this flaw.

Finally, numerical experiments for the noise-level adaptive test procedure are presented
in the new version of the manuscript, cf. Section 4 (Figure 1, right panel, and Figure 3).

4.
page 2, line 8 : notation error for Brownian motion B#

n .

Thank you for spotting out this typo. There were two other similar typos in the text. They
are all corrected in the new version.

5.
Equation (2) : the authors define the complex random variables ǫj and ǫ#j as i.i.d. Gaus-
sian NC(0, 1), which means that their real and imaginary parts are independent N(0, 1)
random variables. But from the starting model (first Equation on page 2), we do not get
this settings since the L2-norm of the real part and imaginary part of t 7→ ei2πjt is equal
to 1/

√
2. This could be confusing to the reader since the variance may modify the normal-

ization of the test statistic, Equation (10) ?

This is a very good remark. In the new version of the paper, we consider separately
the cases j = 0 and j > 0. In the second case, we divide the standard deviation by√
2 in order to get standard Gaussian noise (cf. Eq. (2)). We have also modified all the

subsequent parts of the manuscript in order to make it consistent with this change.
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