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Curve registration by nonparametric goodness-of-fit

testing

Olivier Collier, Arnak S. Dalalyan

ENSAE-CREST and IMAGINE/LIGM, Université Paris Est, FRANCE

Abstract: : The problem of curve registration appears in many different areas of applica-
tions ranging from neuroscience to road traffic modeling. In the present work, we propose a
nonparametric testing framework in which we develop a generalized likelihood ratio test to
perform curve registration. We first prove that, under the null hypothesis, the resulting test
statistic is asymptotically distributed as a chi-squared random variable. This result, often
referred to as Wilks’ phenomenon, provides a natural threshold for the test of a prescribed
asymptotic significance level and a natural measure of lack-of-fit in terms of the p-value of
the χ2-test. We also prove that the proposed test is consistent, i.e., its power is asymptot-
ically equal to 1. Finite sample properties of the proposed methodology are demonstrated
by numerical simulations. As an application, a new local descriptor for digital images is
introduced and an experimental evaluation of its discriminative power is conducted.

Keywords and phrases: nonparametric inference, hypotheses testing, Wilks’ phenomenon,
keypoint matching .

Introduction

Boosted by applications in different areas such as biology, medicine, computer vision and road

traffic forecasting, the problem of curve registration and, more particularly, some aspects of this

problem related to nonparametric and semiparametric estimation, have been explored in a number

of recent statistical studies. In this context, the model used for deriving statistical inference rep-

resents the input data as a finite collection of noisy signals such that each input signal is obtained

from a given signal, termed mean template or structural pattern, by a parametric deformation and

by adding a white noise. Hereafter, we refer to this as the deformed mean template model. The

main difficulties for developing statistical inference in this problem are caused by the nonlinearity

of the deformations and the fact that not only the deformations but also the mean template used

to generate the observed data are unknown.

While the problems of estimating the mean template and the deformations was thoroughly

investigated in recent years, the question of the adequacy of modeling the available data by the

deformed mean template model received little attention. By the present work, we intend to fill this

gap by introducing a nonparametric goodness-of-fit testing framework that allows us to propose

a measure of appropriateness of a deformed mean template model. To this end, we focus our

attention on the case where the only allowed deformations are translations and propose a measure

of goodness-of-fit based on the p-value of a chi-squared test.

Model description

We consider the case of functional data, that is each observation is a function on a fixed interval,

taken for simplicity equal to [0, 1]. More precisely, assume that two independent samples, denoted

{Xi}i=1,...,n and {X#
i }i=1,...,n# , of functional data are available such that within each sample the
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Collier and Dalalyan/Curve registration by nonparametric goodness-of-fit testing 2

observations are independent identically distributed (i.i.d. ) drifted and scaled Brownian motions.

Let f and f # be the corresponding drift functions: f(t) = dE[X1(t)]/dt and f #(t) = dE[X#
1(t)]/dt.

Then, for t ∈ [0, 1],

Xi(t) =

∫ t

0

f(u) du+ sBi(t), X#
ℓ (t) =

∫ t

0

f #(u) du + s#B#
ℓ (t),

where s, s# > 0 are the scaling parameters and (B1, . . . , Bn, B
#
1, . . . , Bn#) are independent Brownian

motions. Since we assume that the entire paths are observed, the scale parameters s and s# can

be recovered with arbitrarily small error using the quadratic variation. So, in what follows, these

parameters are assumed to be known (an extension to the setting of unknown noise level is briefly

discussed in Section 3).

The goal of the present work is to provide a statistical testing procedure for deciding whether

the curves of the functions f and f # coincide up to a translation. Considering periodic extensions

of f and f # on the whole real line, this is equivalent to checking the null hypothesis

H0 : there exists τ∗ ∈ [0, 1] such that f(·) = f #(·+ τ∗). (1)

If the null hypothesis is satisfied, we are in the set-up of a deformed mean template model, where

f(·) plays the role of the mean template and spatial translations represent the set of possible

deformations.

Starting from Golubev [21] and Kneip and Gasser [29], semiparametric and nonparametric

estimation in different instances of the deformed mean template model have been intensively

investigated [4, 6, 8–11, 13, 15, 18, 23, 36–38] with applications to image warping [5, 20]. However,

prior to estimating the common template, the deformations or any other object involved in a

deformed mean template model, it is natural to check its appropriateness, which is the purpose of

this work.

To achieve this goal, we first note that the pair of sequences of complex-valued random variables

Y = (Y0, Y1, . . .) and Y # = (Y #
0 , Y

#
1 , . . .), defined by

[
Yj , Y

#
j

]
=

∫ 1

0

e2πijt d

[
1

n

n∑

i=1

Xi(t),
1

n#

n#

∑

ℓ=1

X#
ℓ (t)

]

,

constitutes a sufficient statistic in the model generated by the data (X1, . . . , Xn;X
#
1 , . . . , Xn#).

Therefore, without any loss of information, the initial (functional) data can be replaced by the

transformed data (Y ,Y #). It is clear that the latter satisfy

Yj = cj +
s√
n
ǫj , Y #

j = c#j +
s#√
n#

ǫ#j , j ∈ N, (2)

where cj =
∫ 1

0 f(x) e2ijπx dx, c#j =
∫ 1

0 f #(x) e2ijπx dx are the complex Fourier coefficients. The

complex valued random variables ǫj, ǫ#j are i.i.d. standard Gaussian: ǫj , ǫ
#
j ∼ NC(0, 1), which

means that their real and imaginary parts are independent N (0, 1) random variables. In what

follows, we will use boldface letters for denoting vectors or infinite sequences so that, for example,

c and c# refer to {cj ; j = 0, 1, . . .} and {c#j ; j = 0, 1, . . .}, respectively.

Under the mild assumption that f and f # are squared integrable, the likelihood ratios of the

Gaussian process Y •,# = (Y ,Y #) is well defined. Using the notation c•,# = (c, c#), σ = s/
√
n and

σ# = s#/
√
n#, the corresponding negative log-likelihood is given by

ℓ(Y •,#, c•,#) =
‖Y − c‖22

2σ2
+

‖Y # − c#‖22
2(σ#)2

. (3)

In the present work, we present a theoretical analysis of the penalized likelihood ratio test in the

asymptotics of large samples, i.e., when both n and n# tend to infinity, or equivalently, when σ

and σ# tend to zero. The finite sample properties are examined through numerical simulations.
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Some motivations

Even if the shifted curve model is a very particular instance of the general deformed mean template

model, it plays a central role in several applications. To cite a few of them:

ECG interpretation: An electro-cardiogram (ECG) can be seen as a collection of replica of

nearly the same signal, up to a time shift. Significant informations about heart malformations

or diseases can be extracted from the mean signal if we are able to align the available curves.

For more details we refer to [37].

Road traffic forecast: In [31], a road traffic forecasting procedure is introduced. To this end,

archetypes of the different types of road trafficking behavior on the Parisian highway network

are built, using a hierarchical classification method. In each obtained cluster, the curves all

represent the same events, only randomly shifted in time.

Keypoint matching: An important problem in computer vision is to decide whether two points

in a same image or in two different images correspond to the same real-world point. The

points in images are then usually described by the regression function of the magnitude of the

gradient over the direction of the gradient of the image restricted to a given neighborhood

(cf. [32]). The methodology we shall develop in the present paper allows to test whether

two points in images coincide, up to a rotation and an illumination change, since a rotation

corresponds to shifting the argument of the regression function by the angle of the rotation.

Relation to previous work

The problem of estimating the parameters of the deformation is a semiparametric one, since the

deformation involves a finite number of parameters that have to be estimated by assuming that

the unknown mean template is merely a nuisance parameter. In contrast, the testing problem we

are concerned with is clearly nonparametric. The parameter describing the probability distribution

of the observations is infinite-dimensional not only under the alternative but also under the null

hypothesis. Surprisingly, the statistical literature on this type of testing problems is very scarce.

Indeed, while [25] analyzes the optimality and the adaptivity of testing procedures in the setting

of a parametric null hypothesis against a nonparametric alternative, to the best of our knowledge,

the only papers concerned with nonparametric null hypotheses are [1, 2] and [19]. Unfortunately,

the results derived in [1, 2] are inapplicable in our set-up since the null hypothesis in our problem

is neither linear nor convex. The set-up of [19] is closer to ours. However, they only investigate

the minimax rates of separation without providing the asymptotic distribution of the proposed

test statistic, which generally results in an overly conservative testing procedure. Furthermore,

their theoretical framework comprises a condition on the sup-norm-entropy of the null hypothesis,

which is irrelevant in our set-up and may be violated.

Our contribution

We adopt, in this work, the approach based on the generalized likelihood ratio tests, cf. [16]

for a comprehensive account on the topic. The advantage of this approach is that it provides a

general framework for constructing testing procedures which asymptotically achieve the prescribed

significance level for the type I error and, under mild conditions, have a power that tends to one.

It is worth mentioning that in the context of nonparametric testing, the use of the generalized

likelihood ratio leads to a substantial improvement upon the likelihood ratio, very popular in

parametric statistics. In simple words, the generalized likelihood allows to incorporate some prior

information on the unknown signal in the test statistic which introduces more flexibility and turns

out to be crucial both in theory and in practice [17].
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We prove that under the null hypothesis the generalized likelihood ratio test statistic is asymp-

totically distributed as a χ2-random variable. This allows us to choose a threshold that makes it

possible to asymptotically control the test significance level without being excessively conservative.

Such results are referred to as Wilks’ phenomena. In this relation, let us quote [16]: “While we

have observed the Wilks’ phenomenon and demonstrated it for a few useful cases, it is impossible

for us to verify the phenomenon for all nonparametric hypothesis testing problems. The Wilks’

phenomenon needs to be checked for other problems that have not been covered in this paper. In

addition, most of the topics outlined in the above discussion remains open and are technically and

intellectually challenging. More developments are needed, which will push the core of statistical

theory and methods forward.”

It is noteworthy that our results apply to the Gaussian sequence model (2), which is often seen

as a prototype of nonparametric statistical model. In fact, it is provably asymptotically equivalent

to many other statistical models [7, 14, 22, 33, 35] and captures most theoretical difficulties of the

statistical inference. Furthermore, using the aforementioned results on asymptotic equivalence,

the main theoretical findings of the present paper automatically carry over the nonparametric

regression model, the density model, the ergodic diffusion model, etc.

Finally, we provide a detailed explanation of how the proposed methodology can be used for

solving the problem of keypoint matching in digital images. This leads to a new descriptor termed

Localized Fourier Transform which is particularly well adapted for testing for rotation. The first

experiments reported in this work show the validity of our theoretical findings and the potential

of the new descriptor.

Organization

The rest of the paper is organized as follows. After a brief presentation of the model, we intro-

duce the generalized likelihood ratio framework in Section 1. The main results characterizing the

asymptotic behavior of the proposed testing procedure, based on generalized likelihood ratio test-

ing for a large variety of shrinkage weights, are stated in Section 2. Section 3 contains extensions

of our results to the multidimensional setting and to the case of unknown noise magnitude. Some

numerical examples illustrating the theoretical results are included in Section 4, while Section 5 is

devoted to the application of the proposed methodology to the problem of keypoint matching in

computer vision. The resulting Localized Fourier Transform (LoFT) descriptor is tested on a pair

of real images degraded by white Gaussian noise. The proofs of the lemmas and of the theorems

are postponed to the Appendix.

1. Penalized Likelihood Ratio Test

We are interested in testing the hypothesis (1), which translates in the Fourier domain to

H0 : there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#j for all j ∈ N.

Indeed, one easily checks that if (1) is true, then1

c#j =

∫ 1

0

f(t− τ∗)e2ijπt dt = e2ijπτ
∗

∫ 1

0

f(z)e2ijπz dz = e2ijπτ
∗

cj

and, therefore, the aforementioned relation holds with τ̄∗ = 2πτ∗. If no additional assumptions

are imposed on the functions f and f #, or equivalently on their Fourier coefficients c and c#, the

1We use here the change of the variable z = t− τ∗ and the fact that the integral of a 1-periodic function on an
interval of length one does not depend on the interval of integration.
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nonparametric testing problem has no consistent solution. A natural assumption widely used in

nonparametric statistics is that c = (c0, c1, . . .) and c# = (c#0, c
#
1, . . .) belong to some Sobolev ball

Fs,L =
{

u = (u0, u1, . . .) :

+∞∑

j=0

j2s|uj|2 ≤ L2
}

,

where the positive real numbers s and L stand for the smoothness and the radius of the class Fs,L.

Since we will also be interested by establishing the (uniform) consistency of the proposed testing

procedure, we need to precise the from of the alternative. It seems that the most compelling form

for the null and the alternative is
{

H0 : there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#j for all j ∈ N.

H1 : infτ
∑+∞

j=0 |cj − e−ijτ c#j |2 ≥ ρ
(4)

for some ρ > 0. In other terms, under H0 the graph of the function f # is obtained from that of f

by a translation.

To present the penalized likelihood ratio test, which is a variant of the generalized likelihood

ratio test, we introduce a penalization in terms of weighted ℓ2-norm of c•,#. In this context,

the choice of the ℓ2-norm penalization is mainly motivated by the fact that Sobolev regularity

assumptions are made on the functions f and f #. For a sequence of non-negative real numbers,

ω, we define the weighted ℓ2 norm ‖c‖2ω,2 =
∑

j≥0 ωj |cj |2. We will also use the standard notation

‖u‖p = (
∑

j |uj |p)1/p for any p > 0. Using this notation, the penalized log-likelihood is given by

pℓ(Y •,#, c•,#) =
‖Y − c‖22 + ‖c‖2

ω,2

2σ2
+

‖Y # − c#‖22 + ‖c#‖2
ω,2

2(σ#)2
. (5)

The resulting penalized likelihood ratio test is based on the test statistic

∆(Y •,#) = min
c•,#:H0 is true

pℓ(Y •,#, c•,#)−min
c•,#

pℓ(Y •,#, c•,#). (6)

It is clear that ∆(Y •,#) is always non-negative. Furthermore, it is small when H0 is satisfied

and is large if H0 is violated. The minimization of the quadratic functional (5) is an easy exercise

and leads to

min
u•,#

pℓ(Y •,#,u•,#) =
1

2σ2

∑

j≥1

ωj

1 + ωj
|Yj |2 +

1

2(σ#)2

∑

j≥1

ωj

1 + ωj
|Y #

j |2.

Similar but a bit more involved computations lead to the following simple expression:

∆(Y •,#) =
1

2(σ2 + (σ#)2)
min

τ∈[0,2π]

+∞∑

j=1

|Yj − e−ijτY #
j |2

1 + ωj
. (7)

From now on, it will be more convenient to use the notation νj = 1/(1 + ωj). The elements of

the sequence ν = {νj; j ≥ 1} are hereafter referred to as shrinkage weights. They are allowed to

take any value between 0 and 1. Even the value 0 will be authorized, corresponding to the limiting

case when wj = +∞, or equivalently to our belief that the corresponding Fourier coefficient is 0.

To ease notation, we will use the symbol ◦ to denote coefficient-by-coefficient multiplication, also

known as the Hadamard product, and e(τ) will stand for the sequence (e−iτ , e−2iτ , . . .). The test

statistic can then be written as:

∆(Y •,#) =
1

2(σ2 + (σ#)2)
min

τ∈[0,2π]
‖Y − e(τ) ◦ Y #‖22,ν , (8)

and the goal is to find the asymptotic distribution of this quantity under the null hypothesis.
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2. Main results

The test based on the generalized likelihood ratio statistic involves a sequence ν, which should

be chosen by the user. However, we are able to provide theoretical guarantees only under some

conditions on these weights. To state these conditions, we set σ∗ = max(σ, σ#) and choose a

positive integer N = Nσ∗
≥ 2, which represents the number of Fourier coefficients involved in our

testing procedure. In addition to requiring that 0 ≤ νj ≤ 1 for every j, we assume that:

(A) ν1 = 1, and νj = 0, ∀j > Nσ∗
,

(B) for some positive constant c, it holds that
∑

j≥1

ν2j ≥ cNσ∗
.

Moreover, we will use the following condition in the proof of the consistency of the test:

(C) ∃ c > 0, such that min{j ≥ 0, νj < c} → +∞, as σ∗ → 0.

In simple words, this condition implies that the number of terms νj that are above a given strictly

positive level goes to +∞ as σ∗ converges to 0. If Nσ∗
→ +∞ as σ∗ → 0, then all the aforementioned

conditions are satisfied for the shrinkage weights ν of the form νj+1 = h(j/Nσ∗
), where h : R →

[0, 1] is an integrable function, supported on [0, 1], continuous in 0 and satisfying h(0) = 1. The

classical examples of shrinkage weights include:

νj =







1{j≤Nσ∗
}, (projection weight)

{
1 +

(
j

κNσ∗

)µ}−1
1{j≤Nσ∗

}, κ > 0, µ > 1, (Tikhonov weight)

{
1−

(
j

Nσ∗

)µ}

+
, µ > 0. (Pinsker weight)

(9)

Note that condition (C) is satisfied in all these examples with c = 0.5, or any other value in (0, 1).

Here on, we write ∆σ∗
(Y •,#) instead of ∆(Y •,#) in order to stress its dependence on σ∗.

Theorem 1. Let c ∈ F1,L and |c1| > 0. Assume that the shrinkage weights νj are chosen to satisfy

conditions (A), (B), Nσ∗
→ +∞ and σ2

∗N
5/2
σ∗

log(Nσ∗
) = o(1). Then, under the null hypothesis,

the test statistic ∆σ∗
(Y •,#) is asymptotically distributed as a Gaussian random variable:

∆σ∗
(Y •,#)− ‖ν‖1

‖ν‖2
D−−−−→

σ∗→0
N (0, 1). (10)

The main outcome of this result is a test of hypothesis H0 that is asymptotically of a prescribed

significance level α ∈ (0, 1). Indeed, let us define the test that rejects H0 if and only if

∆σ∗
(Y •,#) ≥ ‖ν‖1 + z1−α‖ν‖2, (11)

where z1−α is the (1− α)-quantile of the standard Gaussian distribution.

Corollary 1. The test of hypothesis H0 defined by the critical region (11) is asymptotically of

significance level α.

Remark 1. Let us consider the case of projection weights νj = 1(j ≤ Nσ∗
). One can reformu-

late the asymptotic relation stated in Theorem 1 by claiming that 2∆σ∗
(Y •,#) is approximately

N (2Nσ∗
, 4Nσ∗

) distributed. Since the latter distribution approaches the chi-squared distribution

(as Nσ∗
→ ∞), we get:

2∆σ∗
(Y •,#)

D≈ χ2
2Nσ∗

, as σ∗ → 0.
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In the case of general shrinkage weights satisfying the assumptions stated in the beginning of this

section, an analogous relation holds as well:

2‖ν‖1
‖ν‖22

∆σ∗
(Y •,#)

D≈ χ2
2‖ν‖2

1
/‖ν‖2

2

, as σ∗ → 0.

This type of results are often referred to as Wilks’ phenomenon.

Remark 2. The p-value of the aforementioned test based on the Gaussian or chi-squared approxi-

mation can be used as a measure of the goodness-of-fit or, in other terms, as a measure of alignment

for the pair of curves under consideration. If the observed two noisy curves lead to the data y•,#,
then the (asymptotic) p-value is defined as

α∗ = Φ
(∆σ∗

(y•,#)− ‖ν‖1
‖ν‖2

)

,

where Φ stands for the c.d.f. of the standard Gaussian distribution.

So far, we have only focused on the behavior of the test under the null without paying atten-

tion on what happens under the alternative. The next theorem fills this gap by establishing the

consistency of the test defined by the critical region (11).

Theorem 2. Let condition (C) be satisfied and let σ4
∗Nσ∗

tend to 0 as σ∗ → 0. Then the test

statistic Tσ∗
=

∆σ∗
(Y •,#)−‖ν‖1

‖ν‖2

diverges under H1, i.e.,

Tσ∗

P−→ +∞, as σ∗ → 0.

In other words, Theorem 2 establishes the convergence to one of the power of the test defined

via (11) as the noise level σ∗ tends to 0.

Remark 3. The previous theorem tells us nothing about the (minimax) rate of separation of

the null hypothesis from the alternative. In other words, Theorem 2 does not provide the rate

of divergence of Tσ∗
. However, a rate is present in the proof (cf. Section 4.2). In fact, in most

situations min{j ≥ 1; j < c̄} is of the order Nσ∗
, in which case we prove that

Tσ∗
≥ c̄ρ−O(N−2

σ∗
)−OP (σ∗

√
logNσ∗

)

σ2
∗
√
Nσ∗

as σ∗ → 0. This implies that, for instance, if Nσ∗
→ +∞ and satisfies σ∗

√
Nσ∗

= O(1) then Tσ∗

tends to infinity if and only if ρ/(σ∗
√
logNσ∗

) → ∞. This argument can be made rigorous to

establish that the minimax rate of separation is not slower than σ
1/2
∗ (log σ−1

∗ )1/4. However, we

will not go into the details here since we believe that this rate is not optimal and intend to develop

the minimax approach in a future work2.

3. Some extensions

This section presents two possible extensions of the methodology developed in foregoing sections.

They stem from practical considerations and concern the case of multidimensional curves and the

setting of unknown noise magnitude.

2During the reviewing process of the present manuscript, (nearly) asymptotically minimax rates of testing have
been obtained by Collier [12].
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3.1. Multidimensional signals

Theorems 1 and 2 can be straightforwardly extended to the case of multidimensional curves f, f # :

R → R
d, with an arbitrary integer d ≥ 1. More precisely, we may assume that the observations

{X1, . . . ,Xn;X
#
1, . . . ,X

#
n#} are R

d values random processes given by

Xi(t) =

∫ t

0

f (u) du+ diag(S)Bi(t), X#
ℓ(t) =

∫ t

0

f#(u) du+ diag(S#)B#
ℓ(t),

where diag(S) and diag(S#) are diagonal d × d matrices with positive entries and the processes

(B1, . . . ,Bn,B
#
1, . . . ,B

#
n#) are independent d-dimensional Brownian motions. In order to test the

null hypothesis

H0 : there exists τ∗ ∈ [0, 1] such that f(·) = f#(·+ τ∗), (12)

it suffices to compute the Fourier coefficients

[
Y j ,Y

#
j

]
=

∫ 1

0

e2πijt d

[
1

n

n∑

i=1

Xi(t),
1

n#

n#

∑

ℓ=1

X#
ℓ(t)

]

j = 1, 2, . . .

and to evaluate the test statistic

∆(Y •,#) =
1

2
min

τ∈[0,2π]

∑

j∈N

νj
∥
∥(diag(σ)2 + diag(σ#)2)−1/2

(
Y j − e−ijτY #

j

)∥
∥
2

2
,

where σ = S/
√
n and σ# = S#/

√
n#. One can easily check that if H0 is true, then under

the assumptions of Theorem 1, as σ∗ = max(‖σ‖∞, ‖σ#‖∞) → 0, the random variable Tσ∗
=

(∆(Y •,#)− d‖ν‖1)/(
√
d‖ν‖2) converges in distribution to a standard Gaussian random variable.

Furthermore, under H1, we have Tσ∗
→ ∞ in probability provided that the assumptions of The-

orem 2 are fulfilled.

3.2. Unknown noise level

In several application it is not realistic to assume that the magnitude of noise, denoted by (σ, σ#)

is known in advance. In such a situation, the testing procedure defined by the critical region (11)

cannot be applied, since the test statistic ∆σ∗
(Y •,#) depends on σ2 + σ#2. We describe below

one possible approach to address this issue. Note that in order to make this setting meaningful,

we assume that the noisy Fourier coefficients Yj and Y #
j are observable only for a finite number

of indices j. Therefore, we assume in this section that Y and Y # are complex valued vectors of

dimension p.

Adopting the same strategy as before, we aim at defining a testing procedure based on the

principle of penalized likelihood ratio evaluation. However, when the pair (σ, σ#) is unknown, the

expression (3) for the negative log-likelihood is not valid anymore. Instead, up to some irrelevant

summands, we have

ℓ(Y •,#, c•,#, σ•,#) = p(log σ + log σ#) +
‖Y − c‖22

2σ2
+

‖Y # − c#‖22
2σ#2

. (13)

Therefore, given a vector of weights ω ∈ R
p
+, the penalized log-likelihood is defined as

pℓ(Y •,#, c•,#, σ•,#) =p(log σ + log σ#) +
‖Y − c‖22 + ‖c‖2ω,2

2σ2
+

‖Y # − c#‖22 + ‖c#‖2ω,2

2σ#2
. (14)
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Thus, the test statistic to be used is the difference between the minimum of the penalized log-

likelihood constrained to H0 and the unconstrained minimum of the penalized log-likelihood, that

is

∆(Y •,#) = min
σ•,#

min
c•,#:H0 is true

pℓ(Y •,#, c•,#, σ•,#)−min
σ•,#

min
c•,#

pℓ(Y •,#, c•,#, σ•,#). (15)

Denoting by ν the vector (1/(1+ω1), . . . , 1/(1+ωp))
⊤ and by 1−ν the vector (1−ν1, . . . , 1−νp)

⊤,

and restricting the minimization to σ = σ#, we get

∆(Y •,#) = p log

(

1 +
minτ∈[0,2π[ ‖Y − e(τ) ◦ Y #‖22,ν

2(‖Y ‖22,1−ν
+ ‖Y #‖22,1−ν

)

)

. (16)

Let α ∈ (0, 1) be a prescribed significance level and let us introduce the statistic

∆̃(Y •,#) =
‖1− ν‖1

‖Y ‖22,1−ν
+ ‖Y #‖22,1−ν

min
τ∈[0,2π[

‖Y − e(τ) ◦ Y #‖22,ν .

Intuitively, this new test statistic ∆̃(Y •,#) can be seen as an estimator of the test statistic
1

2(σ2+σ#2)minτ∈[0,2π[ ‖Y − e(τ) ◦ Y #‖22,ν used in the setting of known noise level. Therefore, it

is not so much a surprise that the critical region we deduce from (16) is of the form

∆̃(Y •,#) ≥ Cν,α,

where Cν,α is a given threshold. To propose a choice of this threshold that leads to a test of

asymptotic level α, the asymptotic distribution of ∆̃(Y •,#) should be characterized under the null

hypothesis. This is done in the following result.

Theorem 3. Let c ∈ F1,L and let the shrinkage weights νj be chosen to satisfy conditions (A),

(B) and Nσ∗
→ +∞. Assume, in addition, that p is large enough to satisfy (p−Nσ∗

)σ4
∗N

4
σ∗

→ ∞
and that for some constant c′ > 0, maxj 6=0 j

−2(1− νj) ≤ c′N−2
σ∗

. Let us introduce the statistic

T (Y •,#) =
∆̃(Y •,#)− ‖ν‖1

‖ν‖2
.

Then, under the null hypothesis,

1. if σ = σ# tends to zero, the test statistic T (Y •,#) satisfies

T (Y •,#) ≤
p

∑

j=1

νj
2‖ν‖2

(|ξj |2 − 2) +
‖ν‖1
4‖ν‖2

p
∑

j=1

1− νj
‖1− ν‖1

(
4− |ξj |2 − |ξ#j |2

)

+
OP (1)

(p−Nσ∗
)σ2

∗N
3/2
σ∗

+
OP (1)

(p−Nσ∗
)1/2

,

where {ξj ; ξ#j} are i.i.d. NC(0, 1) random variables.

2. in the more general setting σ 6= σ#, the test statistic T (Y •,#) satisfies

T (Y •,#) ≤
p

∑

j=1

νj(|ξj |2 − 2)

2‖ν‖2
+

‖ν‖1
2‖ν‖2

[ p
∑

j=1

1− νj
‖1− ν‖1

(
2− |ǫj |2

)∨
p

∑

j=1

1− νj
‖1− ν‖1

(
2− |ǫ#j |2

)
]

+
OP (1)

(p−Nσ∗
)σ2

∗N
3/2
σ∗

+
OP (1)

(p−Nσ∗
)1/2

,

where {ǫj; ǫ#j} are the noise random variables of (2) and {ξj} are i.i.d. NC(0, 1) random

variables.
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Figure 1. The proportion of true negatives in the experiment described in Section 4.1 as a function of log2 σ
−2

for three different shrinkage weights: projection (Left), Tikhonov (Middle) and Pinsker (Right). One can observe
that for σ = 2−15/2

≈ 5×10−3, the proportion of true negatives is almost equal to the nominal level 0.95. Another
observation is that the Pinsker and the Tikhonov weights lead to a faster convergence to the nominal significance
level.

The proof of this theorem is postponed to the appendix. Instead, we discuss here some relevant

consequences of it. For simplicity, in this discussion, we restrict ourselves to the case of homoscedas-

tic errors. First of all, note that a simple application of Lyapunov’s central limit theorem implies

that under the conditions Nσ∗
→ ∞ and (p−Nσ∗

)2/p → ∞ both sums
∑p

j=1
νj

2‖ν‖2

(|ξj |2 − 2) and
∑p

j=1
1−νj

2
√
2‖1−ν‖2

(
4− |ξj |2 − |ξ#j |2

)
converge in distribution to the standard Gaussian distribution.

Therefore, the test defined by the critical region

T (Y •,#) ≥ z1−α/2 +
‖ν‖1‖1− ν‖2√
2‖ν‖2‖1− ν‖1

z1−α/2 (17)

is asymptotically of level not larger than α. In the case of projection weights νj = 1(j ≤ Nσ∗
), this

critical region takes the even simpler form T (Y •,#) ≥ z1−α/2

[
1+

(
Nσ∗

/2(p−Nσ∗
)
)1/2]

. Note also

that a more precise critical region can be deduced from Theorem 3 without relying on the central

limit theorem. Indeed, the main terms
∑p

j=1
νj

2‖ν‖2

(|ξj |2−2) and
∑p

j=1
1−νj

2
√
2‖1−ν‖2

(
4−|ξj|2−|ξ#j |2

)

have parameter free distributions, the quantiles of which can be determined numerically by means

of Monte Carlo simulations. In the case of projection weights, one can also use the quantiles of chi

squared distributions.

To conclude this section, let us have a closer look at the assumptions of the last theorem.

The conditions (A), (B) and maxj 6=0 j
−2(1 − νj) ≤ c′N−2

σ∗
are satisfied for most weights used in

practice. Thus, the most important condition is (p − Nσ∗
)σ4

∗N
4
σ∗

→ ∞ which basically requires

that either Nσ∗
or (p−Nσ∗

) to be large compared to σ−1.

4. Numerical experiments

We have implemented the proposed testing procedure (11) in Matlab and carried out a certain

number of numerical experiments on synthetic data. The aim of these experiments is merely to

show that the methodology developed in the present paper is applicable and to give an illustration

of how the different characteristics of the testing procedure, such as the significance level and the

power, depend on the noise variance σ2
∗ and on the shrinkage weights ν.
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4.1. Convergence of the type I error and the influence of the shrinkage weights

In order to illustrate the convergence of the test (11) when σ∗ tends to zero, we made the following

experiment. We chose the function HeaviSine, considered as a benchmark in the signal processing

community, and computed its complex Fourier coefficients {cj; j = 0, . . . , 106}. For each value of

σ∗ taken from the set {2−k/2, k = 1, . . . , 15}, we repeated 5000 times the following computations:

• set3 Nσ∗
= 50σ

−1/2
∗ ,

• generate the noisy sequence {Yj; j = 0, . . . , Nσ∗
} by adding to {cj} an i.i.d. NC(0, σ

2
∗) se-

quence {ξj},
• randomly choose a parameter τ∗ uniformly distributed in [0, 2π], independent of {ξj},
• generate the shifted noisy sequence {Y #

j ; j = 0, . . . , Nσ∗
} by adding to {eijτ∗

cj} an i.i.d.

NC(0, σ
2
∗) sequence {ξ#j}, independent of {ξj} and of τ∗,

• compute the three values of the test statistic ∆σ∗
corresponding to the classical shrinkage

weights defined by (9) and compare these values with the threshold for α = 5%.

We denote by pproj
accept(σ∗), pTikh

accept(σ∗) and pPinsk
accept(σ∗) the proportion of experiments (among 103

that have been realized) that have led to a value of the corresponding test statistic lower than

the threshold, i.e., the proportion of experiments leading to the acceptance of the null hypothesis.

We plotted in Fig. 1 the (linearly interpolated) curves k 7→ pproj
accept(σk), k 7→ pTikh

accept(σk) and

k 7→ pPinsk
accept(σk), with σk = 2−k/2. It can be clearly seen that for σ = 2−7 ≈ 8 × 10−3, the

proportion of true negatives is almost equal to the nominal level 0.95. It is also worth noting that

the three curves are quite comparable, with a significant advantage for the curve corresponding

to Pinsker’s and Tikhonov’s weights: this curves converge a faster to the level 1 − α = 95% than

the curve corresponding to the projection weights.

4.2. Power of the test

In the previous experiment, we illustrated the behavior of the penalized likelihood ratio test

under the null hypothesis. The aim of the second experiment is to show what happens under the

alternative. To this end, we still use the HeaviSine function as signal f and define f # = f + γϕ,

where γ is a real parameter. Two cases are considered: ϕ(t) = c cos(4t) and ϕ(t) = c/(1 + t2),

where c is a constant ensuring that φ has an L2 norm equal to 1. For each of these two pairs of

functions (f, f #), we repeated 5000 times the following computations:

• set σ∗ = 1 and Nσ∗
= 50σ

−1/2
∗ ,

• compute the complex Fourier coefficients {cj ; j = 0, . . . , 106} and {c#j ; j = 0, . . . , 106} of f

and f #, respectively,

• generate the noisy sequence {Yj; j = 0, . . . , Nσ∗
} by adding to {cj} an i.i.d. NC(0, σ

2
∗) se-

quence {ξj},
• generate the shifted noisy sequence {Y #

j ; j = 0, . . . , Nσ∗
} by adding to {c#j} an i.i.d. NC(0, σ

2
∗)

sequence {ξ#j}, independent of {ξj},
• compute the value of the test statistic ∆σ∗

corresponding to the projection weights and

compare this value with the threshold for α = 5%.

To demonstrate the behavior of the test under H1 when the distance between the null and the

alternative varies, we computed for each γ the proportion of true positives, also called the empirical

power, among the 5000 random samples we have simulated. The results, plotted in Fig. 2 show

that even for moderately small values of γ, the test succeeds in taking the correct decision. It is a

bit surprising that the result for the case ϕ(t) = c cos(4t) is better than that for ϕ(t) = c/(1+ t2).

3This value of Nσ∗
satisfies the assumptions required by our theoretical results.
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Figure 2. The proportion of true negatives in the experiment described in Section 4.2 as a function of the parameter
γ measuring the distance between the true parameter and the set of parameters characterizing the null hypothesis.
The main observation is that both curves tend to 1 very rapidly.

Indeed, one can observe that the curve at the right panel approaches 1 much faster than the curve

of the left panel.

5. Application to keypoint matching

As mentioned in the introduction, the methodology developed in previous sections may be applied

to the problem of keypoint matching in computer vision. More specifically, for a pair of digital

images I and I# representing the same 3D object, the task of keypoint matching consists in finding

pairs of image points (x0,x
#
0) in images I and I# respectively, corresponding to the same 3D point.

For more details on this and related topics, we refer the interested reader to the book [24]. For our

purposes here, we assume that we are given a pair of points (x0,x
#
0) in images I and I# respectively

and the goal is to decide whether they are the projections of the same 3D point or not. In fact, we

will tackle a slightly simpler4 problem corresponding to deciding whether a neighborhood of x0 in

the image I coincides with a neighborhood of x#
0 in the image I# up to a rotation. Of course, this

problem is made harder by the fact that the images are contaminated by noise.

The plan of this section is as follows. As a first step, we present a new definition of a local

descriptor (termed LoFT for Localized Fourier Transform) of a keypoint x0 in some image I.

This local descriptor is based on the Fourier coefficients of some mapping related to the local

neighborhood of the image I around x0. Therefore, it is particularly well suited for testing for

rotation between two keypoints. In a second step, we define a matching criterion: a {0, 1}-valued

mapping that takes as input pairs (x0, I) and (x#
0, I

#) and outputs 1 if and only x0 and x
#
0 as

classified as matching points (i.e., corresponding to the same 3D point). Finally, as a third step,

we perform several experiments showing the potential of the proposed approach.

5.1. LoFT descriptor

We start by describing the construction of the LoFT descriptor of a point x0 in a digital image

I. For the purpose of illustration we use color images, but all the experiments were conducted on

grayscale images only. As any other construction of local descriptor, it is necessary to choose a

radius r > 0 that specifies the neighborhood around x0. In all our experiments we used r = 32

4It is important to note here that using the state-of-the-art techniques of keypoint detection based, for instance,
on the differences of Gaussians [32], one can recover a rather reliable value of the scale parameter for every keypoint.
Using this scale parameter, the problem of testing for a similarity transform reduces to the problem of testing for
a rotation that we consider in this section.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Illustration of the construction of the LoFT descriptor of a keypoint x0 in an image I. Once a keypoint
is chosen along with the radius of the neighborhood to be considered (a,b), we split the corresponding subimage into
4 rings of equal areas represented in (c). In (d), we plot the pixel intensities as a function of polar coordinates
of the pixel. Each band corresponds to a ring in (c). The four curves in (e) are obtained by averaging the pixel
intensities corresponding to the same angle within each band of (d). Smoothed versions of these curves obtained
by removing high frequencies are plotted in (f).

pixels, which seems to lead to good results. Thus, we restrict the image I to the disc D(x0, r) with

center x0 and radius r, as shown in Fig. 4 (a) and (b). Note that this disc contains approximately

πr2 > 3000 pixels, but we will encode the restriction of I to D(x0, r) by a vector of size 128.

The main idea consists in considering the function X : [0, 2π] → R
4 defined by

X(t) =






X1(t)
...

X4(t)




 , Xi(t) =

∫
√
ir/2

√
i−1r/2

I
(
x0 + u[sin(t), cos(t)]

)
du, i = 1, . . . , 4. (18)

In other terms, each Xi(t) describes the behavior of I on some ring centered at x0, cf. Fig. 3(c)

for an illustration. As shown in Fig. 3(e), because of noise and textures present in the images,

the functions Xi are highly nonsmooth. Since the details are not necessarily very informative

when matching two image regions, we suggest to smooth out the functions Xi by removing high

frequency Fourier coefficients, cf. Fig. 3(f). The resulting descriptor is the vector composed of the

first k Fourier coefficients

Yj =
1√
2π

∫ 2π

0

X(t)eijt dt, j = 1, . . . , k. (19)

To get a descriptor of size 128 (a complex number is encoded as two real numbers corresponding to

its real and imaginary parts), we chose k = 16. The computation of each element of the descriptor

requires thus to evaluate an integral of the form

Yj(i) =
1√
2π

∫ 2π

0

∫
√
ir/2

√
i−1r/2

eijtI
(
x0 + u[sin(t), cos(t)]

)
du dt. (20)
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(a) (b) (c) (d)

Figure 4. Rotated image regions correspond to shifted curves. (a) and (b) are an image region and the correspond-
ing curves used in the definition of the LoFT descriptor. (c) is the image region (a) rotated by the angle π/4, the
corresponding curves are depicted in (d). We clearly see that the four curves in (d) are obtained from those in (b)
by shifting to left (with a shift equal to π/2 ≈ 1.57.

Note that we dispose only a regularly sampled version of the image I in the Cartesian coordi-

nate system. This results in a nonregular sampling in the polar coordinate system, illustrated in

Fig. 3(d). The integrals are then approximated by the corresponding Riemann sums; the rings

being chosen so that they contain approximately the same number of sampled points, the qualities

of these approximations are roughly equivalent.

5.2. Matching criterion

The rationale for using this function X is the following. Assume that x0 and x
#
0 are two true

matches and that the images are observed without noise. That is to say that x0 and x
#
0 are two

points in I and I#, respectively, such that if we rotate I by some angle τ∗ around x0 then in

the neighborhood of x0 of radius r the image I coincides with I# in the neighborhood of x′. Or,

mathematically speaking,

I
(
x0 + u[sin(t− τ∗), cos(t− τ∗)]

)
= I#

(
x
#
0 + u[sin t, cos t]

)
, ∀(u, t) ∈ [0, r]× [0, 2π]. (21)

Then, by simple integration and using (18) one checks that

X(t− τ∗) = X#(t), ∀t ∈ [0, 2π], (22)

where X# is defined in the same manner as X , that is by replacing in (18) I by I# and x0 by

x
#
0. Furthermore, since these two functions are 2π-periodic, relation (22) holds for the smoothed

versions of X and X# as well.

This observation, depicted in Fig. 4, leads to the following criterion for keypoint matching based

on their LoFT descriptors. Given a threshold λ > 0 and a (estimated) noise level σ, we declare

that the LoFT descriptors Y and Y # corresponding to the keypoints x0 and x
#
0 and defined by

(20) match if and only if

∆ :=
1

4σ2
min

τ∈[0,2π]

k∑

j=1

‖Y j − e−ijτY #
j‖22 ≤ λ. (23)

According to the theoretical results established in foregoing sections, under the null hypothesis

(that is when the pair (x0,x
#
0) is a true match) the test statistic ∆ is asymptotically parameter

free and the limiting distribution is Gaussian with zero mean and a variance that can be easily

computed. We carried out some experiments, reported in the next subsection, which seem to show

that this property holds not only for small σ, but also for reasonably high values of it. Furthermore,

substituting the true noise level by an estimated one yields sensibly similar results.
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5.3. Experimental evaluation

To empirically assess the properties of the LoFT descriptor and the matching criterion defined

in (23), we carried out some numerical experiments. All the codes and the images necessary to

reproduce the results and the figures reported in this section can be freely downloaded from the

website http://imagine.enpc.fr/~dalalyan/LoFT.

We chose two grayscale images of resolution 300×450 that coincide up to a rotation by an angle

π/2. We degraded these images by adding two independent white Gaussian noises of variance σ2.

This resulted in two noisy images I and I# depicted in Fig. 5 (left panels). Then we chose at

random L = 104 pairs of truly matching points (xℓ,x
#
ℓ). The only restriction made on these points

is that the distance between two distinct points xℓ and xℓ′ is at least of 5 pixel. Then we chose

points x̃
#
ℓ such that x̃

#
ℓ = x

#
ℓ + (10, 10) which we used as false matches with xℓ’s. We computed

the corresponding LoFT descriptors in each image. This yielded three sets of vectors {Y ℓ}, {Y #
ℓ}

and {Ỹ #

ℓ}. Finally, the values of the test statistic ∆ were computed for the pairs (Y ℓ,Y
#
ℓ) and

(Y ℓ, Ỹ
#

ℓ). We obtained two samples δ1, . . . , δL and δ′1, . . . , δ
′
L. The first sample characterizes the

behavior of the test statistic under the null (i.e., for true matches), whereas the second sample

characterizes the behavior of the test statistic under the alternative (false matches).

The parallel boxplots of these two samples, computed for several values of σ, are plotted in

the right-bottom panel of Fig. 5. Two scenarios were considered: known σ and unknown σ. In the

second scenario the estimator of σ proposed by [26] were used and injected in (23) instead of σ.

The results of the first scenario are plotted in the first row of the right-bottom panel of Fig. 5,

while those of the second scenario are in the second row. One can note that the different values

for the noise level considered in these experiments are σ ∈ {5, 10, 30, 60}.
In the light of these figures, several observations can be made. Perhaps the most striking one

is that even for a noise level as high as5 σ = 30, there is a clear separation between the two

samples. Furthermore, the top-right panel of Fig. 5 shows that the distribution of the test statistic

under the null is extremely close to the Gaussian distribution, as proved in our theoretical results.

Therefore, choosing as λ any reasonable quantile (95%, 99%, 99.9%) of this distribution results

in rejecting all the false matches. In other terms, the p-values associated to the elements of the

second sample, the one of false matches, are all below the level of 0.1%.

A second important observation is that the result is almost not impacted by the substitution

of the true noise variance by its estimated value. This may be very useful for applying LoFT

descriptors to very noisy images such as those encountered in medical imaging and astrophysics.

A last observation is that when σ = 60, the noise is so strong that nearly 5% of false matches

are classified as true matches, when the threshold λ in (23) is chosen equal to 2.22, which is the

99%-quantile of the distribution of the test statistic under the null. This is not so surprising and

shows the limits of the presented approach.

To close this section, let us stress that the primary aim here was to show the applicability and

the potential of the proposed approach. A more comprehensive experimental evaluation of the

discriminative power of the LoFT descriptor comparing it to other state-of-the-art descriptors is

the subject of an ongoing work.

6. Conclusion

In the present work, we provided a methodological and theoretical analysis of the curve registration

problem from a statistical standpoint based on the nonparametric goodness-of-fit testing. In the

case where the noise is white Gaussian and additive with a small variance, we established that the

5Note that the standard deviation of the image intensities in this example being equal to 40.25, the signal-to-noise
ratio is very small.
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penalized log-likelihood ratio statistic is asymptotically distribution free, under the null hypothesis.

This result is valid for the weighted l2-penalization under some mild assumptions on the weights.

Furthermore, we proved that the test based on the Gaussian (or chi-squared) approximation of

the penalized log-likelihood ratio statistic is consistent. These results naturally carry over to other

nonparametric models for which asymptotic equivalence (in the Le Cam sense) with the Gaussian

white noise has been proven. It can be interesting, however, to develop a direct inference in these

models. In particular, the model of spatial Poisson processes (cf. [27]) can be of special interest

because of its applications in image analysis.

Figure 5. Experimental evaluation of the discriminative power of the LoFT descriptor. Top-left and bottom-left:
two noisy images used in our experiments that coincide up to a rotation by angle π/2. Top-right: the histogram
of the test statistic ∆ (cf. (23)) computed for 104 randomly chosen pairs of truly matching points. The true noise
level is equal to 30, for image intensities ranging from 0 to 255. The value of σ used in (23) is the estimated
noise level computed by the procedure described in [26]. One can observe that the distribution is very close to a
Gaussian one. Bottom-right: the boxplots of the logarithm of the test statistic ∆ for true matches and for false
matches computed for different noise levels. In the first (top) row the true σ is used in (23), while in the second
row we used the estimator provided by [26]. A remarkable property is that the boxplots under H0 are almost not
impacted by the change of σ. It is also noteworthy that the boxplots of true matches are well separated from those
of false matches for all values of σ except for σ = 60.

Some important issues closely related to the present work have not been treated here and will

be done in near future. Perhaps the most important one is to determine the minimax rate of
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separation of the null hypothesis from the alternative. The results we have shown tell us that

this rate is not slower than σ
1/2
∗ (log σ−1

∗ )1/4. However, it is very likely that this latter rate is

suboptimal. There is a large body of literature on the topic of minimax rates of separation (cf. the

book by Ingster and Suslina [28] and the references therein), but they mainly concentrate on the

case of a simple null hypothesis. We expect that the composite character of the null hypothesis in

our set-up will slow down the rate of convergence at least by a logarithmic factor. The adaptive

choice of the tuning parameter Nσ∗
is another central issue that has not been answered in the

present paper. We envisage to tackle this issue in a future work.

Finally, we demonstrated that the main ideas introduced in the present work lead to a new

local descriptor for digital images tailored to testing for rotation between two image regions. The

optimization of the implementation of this descriptor and its more systematic evaluation on various

benchmark datasets used in computer vision is another promising direction of future research.

Appendix A: Proofs of the theorems

The proof of Wilks’ phenomenon is divided into several parts. First we assume that H0 is true

and study the convergence of the pseudo-estimator τ̂ (of the shift τ̄∗) defined as the maximizer

of the log-likelihood over the interval [τ̄∗ − π, τ̄∗ + π]. Here, τ̄∗ is an element of [0, 2π[ such that

cj = e−ijτ̄∗

c#j , for all j ≥ 1.

A.1. Maximizer of the log-likelihood

Proposition 1. Let c ∈ F1,L and |c1| > 0. If the shrinkage weights νj satisfy conditions (A) and

(B), then the solution τ̂ to the optimization problem

τ̂ = arg max
τ :|τ−τ̄∗|≤π

M(τ), with M(τ) =
∑

j≥1

νj Re(e
ijτYjY #

j )

satisfies the asymptotic relation

|τ̂ − τ̄∗| = σ∗
√

logNσ∗

(
1 + σ∗N

3/2
σ∗

)
OP (1), as σ∗ → 0.

Proof of Proposition 1. Throughout this proof, we work under the null hypothesis H0. If we set

ηj = e−ijτ̄∗

ǫj and η#j = ǫ#j , we can write the decomposition

M(τ)−E[M(τ)] = σ∗S(τ) + σσ#D(τ + τ̄∗),

where

S(τ) =
∑

j≥1

νj Re
{

eijτ
( σ

σ∗
cjηj +

σ#

σ∗
cjη#j

)}

, D(τ) =
∑

j≥1

νj Re
(
eijτ ηjη#j

)
.

Furthermore, the expectation of M(τ) is given by E[M(τ)] =
∑

j≥1 νj |cj |2 cos[j(τ − τ̄∗)]. In what

follows, for every function f : R → R, we denote by ‖f‖∞ the supremum over R of the function f .

On the one hand, using the assumption |c1| > 0 along with condition (A), we get that for every

τ ∈ [τ̄∗ − π, τ̄∗ + π] it holds

E
[
M(τ)

]
−E

[
M(τ̄∗)

]

(τ − τ̄∗)2
≤ −ν1|c1|2

1− cos(τ − τ̄∗)

(τ − τ̄∗)2
≤ −2|c1|

π2
, C < 0.
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Therefore,

M(τ)−M(τ̄∗) = E[M(τ)]−E[M(τ̄∗)] + σ∗
[
S(τ) − S(τ̄∗)

]
+ σσ#

[
D(τ) −D(τ̄∗)

]

≤ −C |τ − τ̄∗|2 + σ∗|τ − τ̄∗| · ‖S′‖∞ + σ2
∗|τ − τ̄∗| · ‖D′‖∞

= |τ − τ̄∗|
{
σ∗‖S′‖∞ + σ2

∗‖D′‖∞ − C|τ − τ̄∗|
}
.

Replacing in this inequality τ by τ̂ and using that M(τ̂ )−M(τ̄∗) ≥ 0, we get

|τ̂ − τ̄∗| ≤ C−1
{
σ∗‖S′‖∞ + σ2

∗‖D′‖∞
}
. (24)

On the other hand, we have

S′(τ) =

√

σ2 + σ#2

σ∗

∑

j≥1

j|cj |νj Re
(
eijτ ζj

)
,

where ζj are i.i.d. complex valued random variables, whose real and imaginary parts are indepen-

dent standard Gaussian random variables. Therefore, the large deviations of the sup-norm of S′

can be controlled using the following lemma.

Lemma 1. Let s = (s1, . . . , sN ) be a vector from R
N and let {ξj} and {ξ′j} be two independent se-

quences of i.i.d. N (0, 1) random variables. The sup-norm of the function Z(t) =
∑N

j=1 sj{cos(jt)ξj+
sin(jt)ξ′j}, satisfies

P(‖Z‖∞ ≥ ‖s‖2x) ≤ (N + 1)e−x2/2, ∀x > 0.

Proof. See Appendix C.

To apply this result to Z(t) = S′(t), we choose sj =

√
σ2+σ#2

σ∗

j|cj |νj , which leads to a vector

s = (s1, . . . , sNσ∗
) with Euclidean norm

‖s‖22 =
σ2 + σ#2

σ2
∗

Nσ∗∑

j=1

j2|cj |2ν2j ≤ 2L2.

The last inequality follows from the fact that c ∈ F1,L, σ∗ = max(σ, σ#) and νj ∈ [0, 1] for every

j. Using this bound, Lemma 1 and the fact that Nσ∗
≥ 1, we get that the inequality

P

(

‖S′‖∞ ≥ 2L
√

log(4Nσ∗
/α)

)

≤ α

2
(25)

holds true for every α ∈ (0, 1).

Finally, the large deviations of the term ‖D′‖∞ are controlled by the following lemma.

Lemma 2. Let N be some positive integer and let ηj, η
#
j , j = 1, . . . , N be independent complex val-

ued random variables such that their real and imaginary parts are independent standard Gaussian

variables. Let s = (s1, . . . , sN ) be a vector of real numbers. Denote Z(t) =
∑N

j=1 sj Re
(
eijtηjη

#
j

)

for every t in [0, 2π] and ‖Z‖∞ = supt∈[0,2π] |Z(t)|. Then,

P

{

‖Z‖∞ >
√
2x

(
‖s‖2 + y‖s‖∞

)}

≤ (N + 1)e−x2/2 + e−y2/2, ∀x, y > 0.

Proof. See Appendix C.

In order to bound the sup-norm of D′(·) using Lemma 2, we set N = Nσ∗
and sj = jνj for all

j = 1, . . . , Nσ∗
. This yields ‖s‖2 ≤ N

3/2
σ∗

and ‖s‖∞ ≤ Nσ∗
. Therefore,

P

{

‖D′‖∞ >
√
2xNσ∗

(√

Nσ∗
+ y

)}

≤ (Nσ∗
+ 1)e−x2/2 + e−y2/2, ∀x, y > 0. (26)
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For any α ∈ (0, 1), choosing x =
√

2 log(8Nσ∗
/α) and y =

√

2 log(4/α), we arrive at

P

{

‖D′‖∞ > 2Nσ∗

√

log(8Nσ∗
/α)

(√

Nσ∗
+
√

log(4/α)
)}

≤ α

2
. (27)

Inequalities (24), (25) and (27) imply that |τ̂ − τ̄∗| is, in probability, at most of the order

σ∗
√
logNσ∗

(
1 + σ∗N

3/2
σ∗

)
.

A.2. Proof of Theorem 1

One can check that, under H0,

∆σ∗
(Y •,#) =

1

2(σ2 + (σ#)2)
min

τ∈[0,2π[

[
+∞∑

j=1

νj
∣
∣Yj − e−ijτY #

j

∣
∣
2

]

(28)

=
1

2(σ2 + (σ#)2)
min

|τ−τ̄∗|≤π

{
Dσ∗

(τ) + 2Cσ∗
(τ) + Pσ∗

(τ)
}
, (29)

where we have used the notation:

Dσ∗
(τ) =

+∞∑

j=1

νj |cj|2
∣
∣1− e−ij(τ−τ̄∗)

∣
∣
2
, (deterministic term)

Cσ∗
(τ) =

+∞∑

j=1

νj Re
[
cj
(
1− e−ij(τ−τ̄∗)

)(
σǫj − e−ijτσ#ǫ#j

)]
, (cross term)

Pσ∗
(τ) =

+∞∑

j=1

νj
∣
∣σǫj − e−ijτσ#ǫ#j

∣
∣
2
. (principal term)

(Since H0 is assumed satisfied, there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#j for all j ≥ 1.) We

denote by τ̂ the pseudo-estimator of τ̄∗ defined as the minimizer of the right-hand side of (28)

over the interval [τ̄∗ − π, τ̄∗ + π] and study the asymptotic behavior of the terms Dσ∗
, Cσ∗

and

Pσ∗
separately.

For the deterministic term, in view of Proposition 1, it holds that

|Dσ∗
(τ̂ )| ≤

+∞∑

j=1

j2νj |cj |2(τ̂ − τ̄∗)2 ≤ (τ̂ − τ̄∗)2
+∞∑

j=1

j2|cj |2 ≤ L2(τ̂ − τ̄∗)2

= {σ2
∗(1 + σ2

∗N
3
σ∗
) logNσ∗

}Op(1). (30)

Let us turn now to the cross term. As Cσ∗
(τ̄∗) = 0, we have

|Cσ∗
(τ̂ )| ≤ |τ̂ − τ̄∗| · ‖C′

σ∗
‖∞.

Furthermore, if we define ξj and ξ′j as respectively the real and the imaginary parts of the random

variable
cj

|cj |
√
σ2+σ#2

(
σǭj − eijτ̄∗

σ# ǭ#j
)
, we get

C′
σ∗
(τ̄∗ + t) =

√

σ2 + σ#2

+∞∑

j=1

jνj |cj |
[
sin(jt)ξj + cos(jt)ξ′j

]
, ∀t ∈ R.

Using Lemma 1, we check that ‖C′
σ∗
‖∞ is, in probability, of the order {σ∗

√
logNσ∗

}. Therefore,

in view of Proposition 1, it holds that

|Cσ∗
(τ̂ )| = {σ2

∗(1 + σ∗N
3/2
σ∗

) logNσ∗
}Op(1).
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Let us study the last term, Pσ∗
(τ) =

∑+∞
j=1 νj

∣
∣σǫj − e−ijτσ#ǫ#j

∣
∣
2
, which will determine the

asymptotic behavior of the test statistic. Denoting ηj = eijτ̄∗

ǫj and η#j = ǫ#j , we can rewrite this

term as Pσ∗
(τ) =

∑+∞
j=1 νj

∣
∣σηj − e−ij(τ−τ̄∗)σ#η#j

∣
∣
2
. We wish to prove that under the null hypothesis

H0, if conditions (A), (B), Nσ∗
→ +∞ and σ2

∗N
5/2
σ∗

log(Nσ∗
) = oP (1) are fulfilled, then

Tσ∗
(τ̂ ) =

Pσ∗
(τ̂ )− 2(σ2 + (σ#)2)

∑

k≥1 νk

2(σ2 + (σ#)2)(
∑

k≥1 ν
2
k)

1/2

D−−−−→
σ∗→0

N (0, 1).

To check this property, we decompose the principal term as follows:

Tσ∗
(τ̂ ) = Tσ∗

(τ̄∗) +
Pσ∗

(τ̂ )− Pσ∗
(τ̄∗)

2(σ2 + (σ#)2)(
∑

k≥1 ν
2
k)

1

2

︸ ︷︷ ︸

Rσ∗
(τ̂)

.

We start by writing Tσ∗
(τ̄∗) as

Tσ∗
(τ̄∗) =

Nσ∗∑

j=1

Xj,σ∗
, with Xj,σ∗

=
νj

2‖ν‖2

(∣
∣
∣

σηj − σ#η#j
(σ2 + (σ#)2)1/2

∣
∣
∣

2

− 2
)

,

and by applying the Berry-Esseen inequality [34, Theorem 5.4], which is valid since the Xj,σ∗
’s

are independent random variables with mean 0 and finite third moment. Furthermore, we have

Bσ∗
=

Nσ∗∑

j=1

Var
(
Xj,σ∗

)
= 1, and Lσ∗

= B
− 3

2

σ∗

Nσ∗∑

j=1

E|Xj,σ∗
|3 ≤ C N

− 1

2

σ∗
.

Therefore, the Berry-Esseen inequality yields

sup
x

|Fσ∗
(x)− Φ(x)| ≤ K Lσ∗

,

where Fσ∗
(x) = P

(
B

− 1

2

σ∗

∑Nσ∗

j=1 Xj,σ∗
< x

)
, Φ is the c.d.f. of the standard Gaussian distribution

and K is an absolute constant. Hence

Tσ∗
(τ̄∗)

D−−−−→
σ∗→0

N (0, 1).

It remains to prove that Rσ∗
(τ̂ ) tends to 0 in probability, which—in view of Slutski’s lemma—

will be sufficient for completing the proof. By the mean value theorem, there exists some real

number t between τ̂ and τ̄∗ such that

Rσ∗
(τ̂ ) =

σσ#

σ2 + (σ#)2

+∞∑

j=1

νj
‖ν‖2

Re
(
ηjη#j (e

ij(τ̂−τ̄∗) − 1)
)

=
σσ#

σ2 + (σ#)2

Nσ∗∑

j=1

jνj(τ̂ − τ̄∗)

‖ν‖2
Re

(
eijtηjη#j

)
.

Then, by virtue of Lemma 2,

|Rσ∗
(τ̂ )| ≤ σσ#|τ̂ − τ̄∗|

(σ2 + (σ#)2)‖ν‖2
sup

t∈[0,2π]

∣
∣
∣

Nσ∗∑

j=1

jνj Re
(
eijtηjη#j

)
∣
∣
∣

= {σ∗(1 + σ∗N
3/2
σ∗

)Nσ∗
logNσ∗

} · OP (1).

Hence, Rσ∗
(τ̂ ) = oP (1) and the desired result follows.
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A.3. Power of the test

The aim of this section is to present a proof of Theorem 2. To this end, we study the test statistic

Tσ∗
= (∆σ∗

(Y •,#)− ‖ν‖1)/‖ν‖2, and show that it tends to +∞ in probability under H1. Actually,

the hypothesis H1 will be supposed to be satisfied throughout this section. It holds true that:

∆σ∗
(Y •,#) =

1

σ2
∗

min
τ∈[0,2π]

∑

j≥1

νj
∣
∣Yj − e−ijτY #

j

∣
∣
2

=
1

σ2
∗

min
τ∈[0,2π]

∑

j≥1

νj

∣
∣
∣

(
cj − e−ijτ c#j) + (σǫj − e−ijτσ#ǫ#j

)
∣
∣
∣

2

≥ 1

σ2
∗

min
τ∈[0,2π]

{∑

j≥1

νj |cj − e−ijτ c#j |2
}

− 2

σ∗
max

τ∈[0,2π]

{∑

j≥1

νj|cj − e−ijτ c#j | · (|ǫj |+ |ǫ#j |)
}

.

Let us focus on the first term. Denoting δσ∗
= min{j ≥ 1, νj < c}, we get by condition (C) that

δσ∗
→ +∞, which implies

min
τ∈[0,2π]

∑

j≥1

νj |cj − e−ijτ c#j |2 ≥ c min
τ∈[0,2π]

δσ∗∑

j=1

|cj − e−ijτ c#j |2

≥ c
(

min
τ∈[0,2π]

+∞∑

j=1

|cj − e−ijτ c#j |2 − 4L2δ−2
σ∗

)

≥ c
(
ρ− 4L2δ−2

σ∗

)
.

For the second term, we use that for every τ it holds that

∑

j≥1

νj
∣
∣cj − e−ijτ c#j

∣
∣ ·

∣
∣ǫj − e−ijτ ǫ#j

∣
∣ ≤ max

j=1,...,Nσ∗

(|ǫj | ∨ |ǫ#j |)
Nσ∗∑

j=1

(

|cj |+ |c#j |
)

= OP (
√

logNσ∗
)

Nσ∗∑

j=1

(

|cj |+ |c#j |
)

.

Furthermore, using the Cauchy-Schwarz inequality, we get

Nσ∗∑

j=1

(

|cj |+ |c#j |
)

≤
(Nσ∗∑

j=1

j−2

)1/2(Nσ∗∑

j=1

j2
(

|cj |+ |c#j |
)2

)1/2

≤ 3L.

Therefore,

max
τ∈[0,2π]

∑

j≥1

νj
∣
∣cj − e−ijτ c#j

∣
∣ ·

∣
∣ǫj − e−ijτ ǫ#j

∣
∣ = OP (

√

logNσ∗
).

Combining all these estimates, we get

Tσ∗
=

∆σ∗
(Y •,#)− ‖ν‖1

‖ν‖2
≥

cρ− 4Lcδ−2
σ∗

−OP

(

σ∗
√
logNσ∗

)

− σ2
∗Nσ∗

σ2
∗
√
Nσ∗

P−→ +∞

in view of the convergences δσ∗
→ ∞, Nσ∗

→ ∞ and σ2
∗Nσ∗

→ 0 as σ∗ → 0.
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Appendix B: Proof of Theorem 3

Throughout this proof, we assume that H0 is fulfilled, that is for some τ̄∗ ∈ [0, 2π[, the relation

cj = e−ijτ̄∗

c#j holds for every j ∈ N. One easily checks that

min
τ∈[0,2π[

‖Y − e(τ) ◦ Y #‖22,ν
2(σ2 + σ#2)

≤ ‖Y − e(τ̄∗) ◦ Y #‖22,ν
2(σ2 + σ#2)

= ‖ν‖1 +
1

2

p
∑

j=1

νj(|ξj |2 − 2). (31)

where ξj = (σǫj − σ#e−ijτ̄∗

ǫ#j)/(σ
2 + σ#2)1/2 for every j ∈ N. Therefore, using the notation

Ûσ,σ# = 2(σ2+σ#2)‖1−ν‖1

‖Y ‖2

2,1−ν
+‖Y #‖2

2,1−ν

and Zσ,σ# =
∑p

j=1
νj

2‖ν‖2

(|ξj |2 − 2), we get

T (Y •,#) =
Ûσ,σ#

‖ν‖2
min

τ∈[0,2π[

‖Y − e(τ) ◦ Y #‖22,ν
2(σ2 + σ#2)

− ‖ν‖1
‖ν‖2

≤ Ûσ,σ#

(‖ν‖1
‖ν‖2

+

p
∑

j=1

νj
2‖ν‖2

(|ξj |2 − 2)

)

− ‖ν‖1
‖ν‖2

= Zσ,σ# +
(
Ûσ,σ# − 1

)
(‖ν‖1
‖ν‖2

+ Zσ,σ#

)

. (32)

Since the random variables Zσ,σ# tend in distribution to N (0, 1) as σ∗ → 0, and ‖ν‖2

‖ν‖1

≤ ‖ν‖2

‖ν‖2

2

≤
(cNσ∗

)−1/2, we arrive at

T (Y •,#) ≤ Zσ,σ# +
(
Ûσ,σ# − 1

)‖ν‖1
‖ν‖2

(
1 +OP (N

−1/2
σ∗

)
)
. (33)

To complete the proof, we study the behavior of Ûσ,σ# as σ∗ → 0. To this end, we define

Z ′
σ,σ# =

σ2(2‖1− ν‖1 − ‖ǫ‖22,1−ν) + σ#2(2‖1− ν‖1 − ‖ǫ#‖22,1−ν)

2(σ2 + σ#2)‖1− ν‖2
,

Z ′′
σ,σ# =

〈c, σǫ+ σ#e(τ̄∗) ◦ ǫ#〉1−ν

‖c‖2,(1−ν)2(σ2 + σ#2)1/2
.

We have

Û−1
σ,σ# = 1 +

‖Y ‖22,1−ν
+ ‖Y #‖22,1−ν

− 2(σ2 + σ#2)‖1− ν‖1
2(σ2 + σ#2)‖1− ν‖1

= 1− ‖1− ν‖2
‖1− ν‖1

Z ′
σ,σ# +

2‖c‖22,1−ν
+ 2‖c‖2,(1−ν)2(σ

2 + σ#2)1/2Z ′′
σ,σ#

2(σ2 + σ#2)‖1− ν‖1
. (34)

To evaluate the last term, we use the inequality ‖c‖22,1−ν =
∑

j(1 − νj)|cj |2 ≤
[
maxj≥1 j

−2(1 −
νj)

]∑

j j
2|cj |2 ≤ c′LN−2

σ∗
. Taking into account the facts that σ∗Nσ∗

→ 0, Z ′′
σ,σ# ∼ N (0, 2) and

‖c‖22,(1−ν)2 =
∑

j(1− νj)
2|cj |2 ≤ ‖c‖22,1−ν ≤ c′LN−2

σ∗
, we get

Û−1
σ,σ# = 1− ‖1− ν‖2

‖1− ν‖1
Z ′
σ,σ# +

O((σ∗Nσ∗
)−2) +OP ((σ∗Nσ∗

)−1)

‖1− ν‖1

= 1− ‖1− ν‖2
‖1− ν‖1

Z ′
σ,σ# +

OP (1)

(σ∗Nσ∗
)2‖1− ν‖1

= 1− ‖1− ν‖2
‖1− ν‖1

(

Z ′
σ,σ# +

OP (1)

(σ∗Nσ∗
)2‖1− ν‖2

)

.

Finally, using the inequality ‖1− ν‖1 ≥ p−Nσ∗
, we get that

Û−1
σ,σ# = 1− ‖1− ν‖2

‖1− ν‖1
Z ′
σ,σ# +

OP (1)

(p−Nσ∗
)(σ∗Nσ∗

)2
. (35)
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On the other hand, since νj ∈ [0, 1] for every j and νj = 0 for j ≥ Nσ∗
, we have ‖1 − ν‖2 ≤

‖1 − ν‖1/21 = ‖1−ν‖1

‖1−ν‖1/2
1

≤ ‖1 − ν‖1/(p − Nσ∗
)1/2. In particular, relation (35) in conjunction with

the condition (p−Nσ∗
)1/2(σ∗Nσ∗

)2 → +∞ implies that |Û−1
σ,σ# − 1| ≤ ‖1−ν‖2

‖1−ν‖1

(|Z ′
σ,σ# |+ oP (1)) =

(p−Nσ∗
)−1/2OP (1) and, therefore, Ûσ,σ# = 1+(p−Nσ∗

)−1/2OP (1) = 1+OP (N
−1/2
σ∗

). Combining

this with (35) and (33), we arrive at

T (Y •,#) ≤ Zσ,σ# − Ûσ,σ#

(
Û−1
σ,σ# − 1

)‖ν‖1
‖ν‖2

(
1 +OP (N

−1/2
σ∗

)
)

= Zσ,σ# +
(
1− Û−1

σ,σ#

)‖ν‖1
‖ν‖2

(
1 +OP (N

−1/2
σ∗

)
)

= Zσ,σ# +

(‖1− ν‖2
‖1− ν‖1

Z ′
σ,σ# +

OP (1)

(p−Nσ∗
)(σ∗Nσ∗

)2

)‖ν‖1
‖ν‖2

(
1 +OP (N

−1/2
σ∗

)
)

= Zσ,σ# +

(‖1− ν‖2
‖1− ν‖1

Z ′
σ,σ# +

OP (1)

(p−Nσ∗
)(σ∗Nσ∗

)2
+

OP (1)
(
(p−Nσ∗

)Nσ∗
)
)1/2

)‖ν‖1
‖ν‖2

= Zσ,σ# +
‖ν‖1‖1− ν‖2
‖ν‖2‖1− ν‖1

Z ′
σ,σ# +

OP (1)

(p−Nσ∗
)σ2

∗N
3/2
σ∗

+
OP (1)

(p−Nσ∗
)1/2

.

This result, combined with the obvious identity |ǫj |2+|ǫ#j|2 = 1
2 |ǫj + e−ijτ̄∗

ǫ#j|2+ 1
2 |ǫj − e−ijτ̄∗

ǫ#j |2 =

|ξj |2 + |ξ#j |2, completes the proof of the theorem in the homoscedastic case σ = σ#. In the het-

eroscedastic case, one simply applies the inequality

Z ′
σ,σ# ≤

(2‖1− ν‖1 − ‖ǫ‖22,1−ν
) ∨ (2‖1− ν‖1 − ‖ǫ#‖22,1−ν

)

2‖1− ν‖2
and the claim follows.

Appendix C: Bounds for the maxima of random sums

In this section, we will gather some useful technical lemmas. They essentially characterize the

stochastic behavior of the maximum of the sum of independent random quantities, which are

either “simple” Gaussian processes [3] or scaled chi-squared random variables.

Proposition 2 (Berman [3]). Suppose that gj are continuously differentiable functions satisfying
∑n

j=1 gj(t)
2 = 1 for all t, and ξj

iid∼ N (0, 1). Then, for every x > 0, we have

P

(

sup
[a,b]

n∑

j=1

gj(t)ξj ≥ x

)

≤ L0

2π
e−

x2

2 +

∫ +∞

x

e−
t2

2√
2π

dt, with L0 =

∫ b

a

[ n∑

j=1

g′j(t)
2

]1/2

dt.

We will also use the following fact about moderate deviations of the random variables that can

be written as the sum of squares of independent centered Gaussian random variables.

Lemma 3. Let N be some positive integer and let η#j , j = 1, . . . , N be independent complex valued

random variables such that their real and imaginary parts are independent standard Gaussian

variables. Let s = (s1, . . . , sN ) be a vector of real numbers. For any y ≥ 0, it holds that

P

{ N∑

j=1

s2j |η#j |2 ≥ 2‖s‖22 + 2
√
2‖s‖24y + 2‖s‖2∞y2

}

≤ e−y2/2,

with the standard notations ‖s‖∞ = max
j=1,...,N

|sj | and ‖s‖qq =
∑N

j=1 |sj |q.
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Proof. This is a direct consequence of [30, Lemma 1].

Proof of Lemma 1. We apply Proposition 2 to the functions {gj(t)}j=1,...,2N defined on the interval

[a, b] = [0, 2π] by gj(t) = [sj cos(jt)1(j ≤ N) + sj sin(jt)1(j > N)]/‖s‖2. One easily checks that

for every t ∈ [0, 2π], we have
∑2N

j=1 g
2
j (t) = 1. Therefore, applying Berman’s result we get

P
(
‖Z‖∞ ≥ ‖s‖2x

)
= P

(

sup
t∈[0,2π]

∑

j≤N

gj(t)ξj +
∑

j>N

gj(t)ξ
′
j ≥ x

)

≤
(L0

2π
+ 1

)

e−x2/2.

In the present context, the constant L0 admits the following simple upper bound:

L0 =

∫ 2π

0

[ N∑

j=1

j2s2j/‖s‖22
]1/2

dt ≤ 2πN,

which yields the desired result.

Proof of Lemma 2. First note that we can not directly use Berman’s formula, since the summands

are not Gaussian. However, they are conditionally Gaussian if the conditioning is done, for ex-

ample, with respect to the sequence {η#j}j=1,...,N . Indeed, one easily checks that conditionally to

{η#j}j=1,...,N , the random processes

τ 7→
N∑

j=1

sj Re
(
eijτ ηjη

#
j

)

and

τ 7→
N∑

j=1

sj|η#j |
(
cos(jτ)ξj − sin(jτ)ξ′j

)
with ξj , ξ

′
j

iid∼ N (0, 1)

have the same distributions. Therefore, it follows from Lemma 1 that

P

(

sup
[0,2π]

∣
∣
∣

N∑

j=1

sj Re
(
eijτηjη

#
j

)
∣
∣
∣ ≥ x

( N∑

j=1

s2j |η#j |2
) 1

2

∣
∣
∣{η#j}j=1,...,N

)

≤ (N + 1)e−x2/2.

Let us now denote by ζ the square root of the random variable
∑N

j=1 s
2
j |η#j |2. It is clear that for

all a > 0,

P
(
‖Z‖∞ ≥ ax

)
= P

(
‖Z‖∞ ≥ ax; ζ ≤ a

)
+P

(
‖Z‖∞ ≥ ax; ζ > a

)

≤ P
(
‖Z‖∞ ≥ xζ

)
+P

(
ζ > a

)

≤ (N + 1)e−x2/2 +P
(
ζ > a

)
.

To complete the proof, it suffices to replace a by
√
2(‖s‖2 + y‖s‖∞) and to apply Lemma 3 along

with the inequalities ‖s‖2 + ‖s‖∞y = (‖s‖22 + 2‖s‖∞‖s‖2y + ‖s‖2∞y2)1/2 ≥ (‖s‖22 +
√
2‖s‖24y +

‖s‖2∞y2)1/2.
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