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Curve registration by nonparametric goodness-of-fit testing

Arnak Dalalyan, Olivier Collier

IMAGINE, LIGM, Université Paris Est, Ecole des Ponts ParisTech, FRANCE

Abstract: : The problem of curve registration appears in many different areas of applications
ranging from neuroscience to road traffic modeling. In the present work, we propose a nonpara-
metric testing framework in which we develop a generalized likelihood ratio test to perform
curve registration. We first prove that, under the null hypothesis, the resulting test statistic
is asymptotically distributed as a chi-squared random variable. This result, often referred to
as Wilks’ phenomenon, provides a natural threshold for the test of a prescribed asymptotic
significance level and a natural measure of lack-of-fit in terms of the p-value of the χ2-test.
We also prove that the proposed test is consistent, i.e., its power is asymptotically equal to
1. Some numerical experiments on synthetic datasets are reported as well.

Introduction

Boosted by applications in different areas such as biology, medicine, computer vision and road
traffic forecasting, the problem of curve registration and, more particularly, some aspects of
this problem related to nonparametric and semiparametric estimation, have been explored in
a number of recent statistical studies. In this context, the model used for deriving statistical
inference assumes that the input data consist of a finite collection of noisy signals possessing
the following feature: Each input signal is obtained from a given signal, termed mean template
or structural pattern, by a parametric deformation and by adding a white noise. In what follows,
we will refer to this as the “deformed mean template” model. The main difficulties for developing
statistical inference in this problem are caused by the nonlinearity of the deformations and the
fact that not only the deformations but also the mean template that was used to generate the
observed data are unknown.

While the problems of estimating the mean template, the deformations and some other re-
lated objects have been thoroughly investigated in recent years, the question of the adequacy
of modeling the available data by the aforementioned semiparametric model has received lit-
tle attention. By the present work, we intend to fill this gap by introducing a nonparametric
goodness-of-fit testing framework that allows us to propose a measure of appropriateness of a
deformed mean template model. To this end, we focus our attention on the case where the only
allowed deformations are translations and propose a measure of goodness-of-fit based on the
p-value of a chi-squared test.

In full generality, the mathematical formulation of the “deformed mean template” model is the
following. We are given a sample of size n of noisy signals {Ym; m = 1, . . . , n} having common
structural pattern f , that is

dYm(x) = f(φ(x, τm)) dx + σm dWm(x), x ∈ [0, 1]d, m = 1, . . . , n, (1)

1
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where φ is a known function determining the type of the deformation and τm is a finite-
dimensional parameter allowing to instantiate the deformation. Typical examples are:

(a) Shifted curve model φ(x, τ) = x − τ , where τ ∈ R
d is the shift parameter,

(b) Periodic signal model φ(x, τ) = τx, where the signal f is a 1-periodic univariate function,
x is one-dimensional and τ ∈ R is the period of the noise-free signal,

(c) Rigid deformation model φ(x, τ) = s(Rx + t), where τ = (s, R, t) with s > 0 being the scale,
R being the rotation and t ∈ R

d being the translation.

Starting from Golubev [23] and Kneip and Gasser [30], semiparametric and nonparametric es-
timation in different instances of problem (1) have been intensively investigated, see for in-
stance [4, 11, 13–15, 19, 40, 42] for the shifted curve model and [9, 25, 43] for a slightly extended
case of affine transforms of shifted curves, [10, 12] for the periodic signal model and [6] for the
rigid deformation model. More general deformations have been considered in [7, 21, 29, 37, 38]
with applications to image warping [5, 22].

Let us assume now that a collection of sample curves {Ym; m = 1, . . . , n} is available. Prior to
estimating the common template, the deformations or any other object involved in (1), it is natural
to check the appropriateness of model (1). The aim of the present work is to develop a theoretically
justified approach for carrying out such kind of tests. To achieve this goal, we consider the
particular case of shifted curve model or the slightly more general affinely transformed shifted
curve model with n = 2, i.e., the case where two functions Y and Y # are observed such that

dY (x) = f(x)dx + σdW (x), dY #(x) = f#(x)dx + σ#dW #(x), ∀x ∈ [0, 1], (2)

where W and W # are two independent Brownian motions, f and f# are two unknown 1-periodic
signals and σ, σ# > 0 are positive parameters representing the noise magnitude. The hypothesis
we wish to test is that the curves f and f# coincide, up to a scale change, a shift of the argument
and to a vertical translation:

H0 : there exists some (a∗, b∗, τ∗) ∈ R
2 × [0, 1] s. t. f(x) = a∗f#(x + τ∗) + b∗, ∀x ∈ [0, 1]. (3)

If the null hypothesis H0 is accepted, then we are in the setting of model (1) for the particular
case of deformation given by a shift. Even if the shifted curve model seems to be a very narrow
subclass of models given by (1), it plays a central role in several applications. To cite a few of
them:

ECG interpretation: An electro-cardiogram (ECG) can be seen as a collection of replica of nearly
the same signal, up to a time shift. Significant informations about heart malformations or
diseases can be extracted from the mean signal if we are able to align the available curves,
while the deflections would not be so correctly identified if we simply consider the mean of
the shifted curves. For more details we refer to [42], where random shifts are considered, and
they are estimated along with their common distribution in the asymptotics of a growing
number of curves.

Road traffic forecast: In [32], a road traffic forecasting procedure is introduced. For this, archetypes
of the different types of road trafficking behavior on the Parisian highway network are built,
using a hierarchical classification method. In each obtained cluster, the curves all represent
the same events, only randomly shifted in time. The mean of the unshifted curves is more
significant of a given behavior than the mean of the shifted ones, and hence provides more
efficient predictions.

Keypoint matching: An important problem in computer vision is to decide whether two points
in a same image or in two different images correspond to the same real-world point. The
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points in images are then usually described by their local neighborhoods. More precisely,
the regression function of the magnitude of the gradient over the direction of the gradient
of the image restricted to a given neighborhood is considered as a local descriptor (cf. the
SIFT descriptor [33]). The methodology we shall develop in the present paper allows to
test whether two points in images coincide, up to a rotation and an illumination change,
since a rotation corresponds to shifting the argument of the regression function by the
angle of the rotation.

The problem of estimating the parameters of the deformation is a semiparametric one, since the
deformation involves a finite number of parameters that have to be estimated by assuming that the
unknown mean template is merely a nuisance parameter. In contrast, the testing problem we are
concerned with is clearly nonparametric. Indeed, both the null hypothesis and the alternative in
the context of the present study are nonparametric, i.e., the parameter describing the probability
distribution of the observations is infinite-dimensional not only under the alternative but also
under the null hypothesis. Surprisingly, the statistical literature on this type of testing problems
is very scarce. Indeed, while [36] and [26] analyze the optimality and the adaptivity of testing
procedures in the setting of a parametric null hypothesis against a nonparametric alternative,
to the best of our knowledge, the only papers concerned with nonparametric null hypotheses
are [1, 2] and [20]. Unfortunately, the results derived in [1, 2] are inapplicable in our set-up
since the null hypothesis in our problem is neither linear nor convex. The set-up of [20] is
closer to ours. However, they only investigate the minimax rates of separation without providing
the asymptotic distribution of the proposed test statistic, which generally results in an overly
conservative testing procedure. Furthermore, their theoretical framework comprises a condition
on the sup-norm-entropy of the null hypothesis, which is irrelevant in our set-up and may be
violated.

We adopt, in this work, the approach based on the Generalized Likelihood Ratio (GLR) tests,
cf. [17] for a comprehensive account on the topic. The advantage of this approach is that it
provides a general framework for constructing testing procedures which asymptotically achieve
the prescribed significance level for the first kind error and, under mild conditions, have a power
that tends to one. It is worth mentioning that in the context of nonparametric testing, the use of
the generalized likelihood ratio leads to a substantial improvement upon the likelihood ratio, very
popular in parametric statistics. In simple words, the generalized likelihood allows to incorporate
some prior information on the unknown signal in the test statistic which introduces more flexibility
and turns out to be crucial both in theory and in practice [18].

We prove that under the null hypothesis the GLR test statistic is asymptotically distributed as
a χ2-random variable. This allows us to choose a threshold that makes it possible to asymptoti-
cally control the test significance level without being excessively conservative. Such results are
referred to as Wilks’ phenomena. In this relation, let us quote [17]: “While we have observed the
Wilks’ phenomenon and demonstrated it for a few useful cases, it is impossible for us to verify the
phenomenon for all nonparametric hypothesis testing problems. The Wilks’ phenomenon needs
to be checked for other problems that have not been covered in this paper. In addition, most of
the topics outlined in the above discussion remains open and are technically and intellectually
challenging. More developments are needed, which will push the core of statistical theory and
methods forward.”

The rest of the paper is organized as follows. After a brief presentation of the model, we
introduce the GLR framework in Section 1. The main results characterizing the asymptotic be-
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havior of the proposed testing procedure, based on GLR testing for a large variety of shrinkage
weights, are stated in Section 3. Some numerical examples illustrating the theoretical results
are included in Section 4. The proofs of the lemmas and of the theorems are postponed to the
Appendix.

1. Model and notation

In the following, we consider the curve registration problem in which the data {Y (x) : x ∈ [0, 1]}
and {Y #(x) : x ∈ [0, 1]} are available, generated by the Gaussian white noise model

dY (x) = f(x) dx + σdW (x), dY #(x) = f#(x) dx + σ#dW #(x), (4)

where (W , W #) is a two-dimensional Brownian motion. (It is implicitly assumed that f and f#

are squared integrable, which makes model (4) sensible.) This model is often seen as a prototype
of nonparametric statistical model, since it is asymptotically equivalent to many other statistical
models [8, 16, 24, 34, 39] and it captures main theoretical difficulties of the statistical inference.
Let us consider, for the moment, that the noise magnitudes σ and σ# are known and focus on the
hypotheses testing problem stemming from the curve registration set-up. Prior to switching to
the definition of the generalized likelihood ratio tests, let us recall that model (4) is equivalent
to the Gaussian sequence model obtained by projecting the processes Y (·) and Y #(·) onto the
Fourier basis:

Yj = cj + σεj , Y #

j = c#j + σ#ε#j , j = 0, 1, 2, . . . , (5)

where cj =
∫ 1

0 f(x) e2ijπx dx and c#j =
∫ 1

0 f#(x) e2ijπx dx are the complex Fourier coefficients. The

complex valued random variables εj , ε#j are i.i.d. standard Gaussian: εj , ε#j ∼ NC(0, 1), which
means that their real and imaginary parts are independent N (0, 1) random variables. In what
follows, we will use boldface letters for denoting vectors or infinite sequences so that, for example,
c and c# refer to {cj ; j = 1, 2, . . .} and {c#j ; j = 1, 2, . . .}, respectively.

We are interested in testing the hypothesis (3), which translates in the Fourier domain to

H0 : ∃ (a∗, τ̄∗) ∈ R × [0, 2π[ s. t. cj = a∗e−ijτ̄∗
c#j ∀j = 1, 2, . . . . (6)

Indeed, one easily checks that the projection onto the functions e2ijπx cancels the term b∗ in
(3), resulting in (6) with τ̄∗ = 2πτ∗. Furthermore, if (6) is verified, then b∗ can be recovered by
the formula b∗ = c0 − a∗c#

0 . If no additional assumptions are imposed on the functions f and
f#, or equivalently on their Fourier coefficients c and c#, the nonparametric testing problem
has no consistent solution. A natural assumption widely used in nonparametric statistics is that
c = (c0, c1, . . .) and c# = (c#0 , c#1 , . . .) belong to some Sobolev ball

Fs,L =
{

u = (u0, u1, . . .) :

+∞∑

j=1

j2s|uj |
2 ≤ L2

}
,

where the positive real numbers s and L stand for the smoothness and the radius of the class
Fs,L. It is also possible to consider other smoothness classes, as for instance Besov bodies, in
which case it would be more appropriate to project not onto the Fourier basis but onto the
wavelet basis, as it is done in [41].
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2. Penalized Likelihood Ratio Test

In order to convey the main ideas underlying the GLR test analyzed in the present work, we
focus on the case where the null hypothesis corresponds to the spatially shifted curve model.
This means that in the rest of this section we assume that{

H0 : ∃ (b∗, τ̄∗) ∈ R × [0, 2π[ s. t. cj = e−ijτ̄∗
c#j + b∗ ∀j = 1, 2, . . . .

H1 : infb,τ
∑+∞

j=1 |cj − e−ijτc#
j − b|2 ≥ ρ

(7)

for some ρ > 0. In other terms, under H0 the graph of the function f# is obtained from that of f
by a translation.

Because of the Gaussian nature of the noise, the negative log-likelihood of the parameters
u•,# = (u, u#) given the data Y •,# = (Y , Y #) is

ℓ(Y •,#, u•,#) =
1

2σ2
‖Y − u‖2

2 +
1

2(σ#)2
‖Y # − u#‖2

2. (8)

To present the penalized likelihood ratio test, which is a variant of the GLR test, we introduce
a penalization in terms of weighted ℓ2-norm of u•,#. In this context, the choice of the ℓ2-norm
penalization is mainly motivated by the fact that Sobolev regularity assumptions are made on
the functions f and f#. For a sequence of non-negative real numbers, ω, we set

pℓ(Y •,#, u•,#) =
1

2σ2

(
‖Y − u‖2

2 +
∑

j≥1

ωj |uj |
2
)

+
1

2(σ#)2

(
‖Y # − u#‖2

2 +
∑

j≥1

ωj |u
#
j |2

)
. (9)

The penalized likelihood ratio test is based on the test statistic

∆(Y •,#) = min
u•,#:H0 is true

pℓ(Y •,#, u•,#) − min
u•,#

pℓ(Y •,#, u•,#). (10)

It is clear that ∆(Y •,#) is always non-negative. Furthermore, it is small when H0 is satisfied and
is large if H0 is violated. The minimization of the quadratic functional (9) is an easy exercise
and leads to

min
u•,#

pℓ(Y •,#, u•,#) =
1

2σ2

∑

j≥1

ωj
1 + ωj

|Yj |
2 +

1

2(σ#)2

∑

j≥1

ωj
1 + ωj

|Y #
j |2.

Similar but a bit more involved computations lead to the following simple expression:

∆(Y •,#) =
σ2 + (σ#)2

2(σσ#)2
min

τ∈[0,2π]

+∞∑

j=1

|Yj − e−ijτY #
j |2

1 + ωj
. (11)

From now on, it will be more convenient to use the notation νj = 1/(1 + ωj ). The elements of the
sequence ν = {νj ; j ≥ 1} are hereafter referred to as shrinkage weights. They are allowed to
take any value between 0 and 1. Even the value 0 will be authorized, corresponding to the limit
case when wj = +∞, or equivalently to our belief that the corresponding Fourier coefficient is
0. To ease notation, we will use the symbol ◦ to denote coefficient-by-coefficient multiplication,
also known as the Hadamard product, and e(τ) will stand for the sequence (e−iτ , e−2iτ , . . .). The
test statistic can then be written as:

∆(Y •,#) =
σ2 + (σ#)2

2(σσ#)2
min

τ∈[0,2π]
‖Y − e(τ) ◦ Y #‖2

2,ν , (12)

and the goal is to find the asymptotic distribution of this quantity under the null hypothesis.
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3. Main results

The test based on the generalized likelihood ratio statistic involves a sequence ν, which is
completely modulable by the user. However, we are able to provide theoretical guarantees only
under some conditions on these weights. To state these conditions, we focus on the case σ = σ#

and choose a positive integer N = Nσ ≥ 2, which represents the number of Fourier coefficients
involved in our testing procedure. In addition to requiring that 0 ≤ νj ≤ 1 for every j, we assume
that:

(A) ν1 = 1, and νj = 0, ∀j > Nσ ,

(B) for some positive constant c, it holds that
∑

j≥1

ν2
j ≥ cNσ .

Moreover, we will use the following condition in the proof of the consistency of the test:

(C) ∃ c > 0, such that min{j ≥ 0, νj < c} → +∞, as σ → 0.

In simple words, this condition implies that the number of terms νj that are above a given
strictly positive level goes to +∞ as σ converges to 0. If Nσ → +∞ as σ → 0, then all the
aforementioned conditions are satisfied for the shrinkage weights ν of the form νj+1 = h(j/Nσ ),
where h : R → [0, 1] is an integrable function, supported on [0, 1], continuous in 0 and satisfying
h(0) = 1. The classical examples of shrinkage weights include:

νj =





1{j≤Nσ }, (projection weight)

{
1 +

( j
κNσ

)µ}−1
1{j≤Nσ }, κ > 0, µ > 1, (Tikhonov weight)

{
1 −

( j
Nσ

)µ}
+

, µ > 0. (Pinsker weight)

(13)

Note that condition (C) is satisfied in all these examples with c = 0.5, or any other value in
(0, 1). Here on, we write ∆σ (Y •,#) instead of ∆(Y •,#) in order to stress its dependence on σ .

Theorem 1. Let c ∈ F1,L and |c1| > 0. Assume that the shrinkage weights νj are chosen to satisfy

conditions (A), (B), Nσ → +∞ and σ2N5/2
σ log(Nσ ) = o(1). Then, under the null hypothesis, the

test statistic ∆σ (Y •,#) is asymptotically distributed as a Gaussian random variable:

∆σ (Y •,#) − 4‖ν‖1

4‖ν‖2

D
−−→
σ→0

N (0, 1). (14)

The main outcome of this result is a test of hypothesis H0 that is asymptotically of a prescribed
significance level α ∈ (0, 1). Indeed, let us define the test that rejects H0 if and only if

∆σ (Y •,#) ≥ 4‖ν‖1 + 4z1−α‖ν‖2, (15)

where z1−α is the (1 − α)-quantile of the standard Gaussian distribution.

Corollary 1. The test of hypothesis H0 defined by the critical region (15) is asymptotically of
significance level α.
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Remark 1. Let us consider the case of projection weights νj = 1(j ≤ Nσ ). One can reformu-

late the asymptotic relation stated in Theorem 1 by claiming that 1
2∆σ (Y •,#) is approximately

N (2Nσ , 4Nσ ) distributed. Since the latter distribution approaches the chi-squared distribution,
we get:

1

2
∆σ (Y •,#)

D
≈ χ2

2Nσ
, as σ → 0.

In the case of general shrinkage weights satisfying the assumptions stated in the beginning of
this section, an analogous relation holds as well:

‖ν‖1

2‖ν‖2
2

∆σ (Y •,#)
D
≈ χ2

2‖ν‖2
1/‖ν‖2

2
, as σ → 0.

This type of results are often referred to as Wilks’ phenomenon.

Remark 2. The p-value of the aforementioned test based on the Gaussian or chi-squared ap-
proximation can be used as a measure of the goodness-of-fit or, in other terms, as a measure
of alignment for the pair of curves under consideration. If the observed two noisy curves lead to
the data y•,#, then the (asymptotic) p-value is defined as

α∗ = Φ
(∆σ (y•,#) − 4‖ν‖1

4‖ν‖2

)
,

where Φ stands for the c.d.f. of the standard Gaussian distribution.

So far, we have only focused on the behavior of the test under the null without paying
attention on what happens under the alternative. The next theorem fills this gap by establishing
the consistency of the test defined by the critical region (15).

Theorem 2. Let condition (C) be satisfied and let σ4Nσ tend to 0 as σ → 0. Then the test

statistic Tσ = ∆σ (Y •,#)−4‖ν‖1

4‖ν‖2
diverges under H1, i.e.,

Tσ
P
−→ +∞, as σ → 0.

In other words, the result above claims that the power of the test defined via (15) is asymp-
totically equal to one as the noise level σ decreases to 0.

Remark 3. The previous theorem tells us nothing about the (minimax) rate of separation of
the null hypothesis from the alternative. In other words, Theorem 2 does not provide the rate
of divergence of Tσ . However, a rate is present in the proof (cf. Section 4.2). In fact, in most
situations min{j ≥ 1; j < c̄} is on the order Nσ , in which case we prove that

Tσ ≥ c̄ρ + O(N−2
σ ) + OP (σ

√
log Nσ )

4σ2
√

Nσ

as σ → 0. This implies that, for instance, if Nσ → +∞ and satisfies σ
√

Nσ = O(1) then Tσ tends
to infinity if and only if ρ/(σ

√
log Nσ ) → ∞. This argument can be made rigorous to establish

that the minimax rate of separation is at least σ1/2(log σ−1)1/4. However, we will not go into the
details here since we believe that this rate is not optimal and intend to develop the minimax
approach in a future work.
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4. Numerical experiments

We have implemented the proposed testing procedure (15) in Matlab and carried out a certain
number of numerical experiments on synthetic data. The aim of these experiments is merely
to show that the methodology developed in the present paper is applicable and to give an
illustration of how the different characteristics of the testing procedure, such as the significance
level, the power, etc, depend on the noise variance σ2 and on the shrinkage weights ν. Following
the philosophy of reproducible research, we intend to make our code available for free download
on the authors homepages.

4.1. Convergence of the test under H0 and the influence of the shrinkage weights

In order to illustrate the convergence of the test (15) when σ tends to zero, we made the following
experiment. We chose the function HeaviSine, considered as a benchmark in the signal processing
community, and computed its complex Fourier coefficients {cj ; j = 0, . . . , 106}. For each value of
σ taken from the set {2−k/2, k = 1, . . . , 15}, we repeated 5000 times the following computations:

� set1 Nσ = 50σ−1/2,
� generate the noisy sequence {Yj ; j = 0, . . . , Nσ} by adding to {cj} an i.i.d. NC(0, σ2)

sequence {ξj},
� randomly choose a parameter τ∗ uniformly distributed in [0, 2π], independent of {ξj},
� generate the shifted noisy sequence {Y #

j ; j = 0, . . . , Nσ} by adding to {eijτ∗
cj} an i.i.d.

NC(0, σ2) sequence {ξ#
j }, independent of {ξj} and of τ∗,

� compute the three values of the test statistic ∆σ corresponding to the classical shrinkage
weights defined by (13) and compare these values with the threshold for α = 5%.

We denote by p
proj
accept(σ ), pTikh

accept(σ ) and pPinsk
accept(σ ) the proportion of experiments (among 103 that

have been realized) leaded to a value of the corresponding test statistic lower than the threshold,
i.e., the proportion of experiments leading to the acceptance of the null hypothesis. We plotted in

Figure 1 the (linearly interpolated) curves k 7→ p
proj
accept(σk ), k 7→ pTikh

accept(σk ) and k 7→ pPinsk
accept(σk ),

with σk = 2−k/2. It can be clearly seen that for σ = 2−7 ≈ 8 × 10−3, the proportion of true
negatives is almost equal to the nominal level 0.95. It is also worth noting that the three curves
are quite comparable, with a significant advantage for the curve corresponding to Pinsker’s
and Tikhonov’s weights: this curves converge a faster to the level 1 − α = 95% than the curve
corresponding to the projection weights.

4.2. Power of the test

In the previous experiment, we illustrated the behavior of the penalized likelihood ratio test
under the null hypothesis. The aim of the second experiment is to show what happens under the
alternative. To this end, we still use the HeaviSine function as signal f and define f# = f + γφ,
where γ is a real parameter. Two cases are considered: φ(t) = c cos(4t) and φ(t) = c/(1 + t2),

1This value of Nσ satisfies the assumptions required by our theoretical results.
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FIGURE 1. The proportion of true negatives in the experiment described in Section 4.1 as a function of log2 σ−2 for

three different shrinkage weights: projection (Left), Tikhonov (Middle) and Pinsker (Right). One can observe that for

σ = 2−15/2 ≈ 5 × 10−3 , the proportion of true negatives is almost equal to the nominal level 0.95. Another observation

is that the Pinsker and the Tikhonov weights lead to a faster convergence to the nominal significance level.

where c is a constant ensuring that φ has an L2 norm equal to 1. For each of these two pairs of
functions (f, f#), we repeated 5000 times the following computations:

� set σ = 1 and Nσ = 50σ−1/2,
� compute the complex Fourier coefficients {cj ; j = 0, . . . , 106} and {c#

j ; j = 0, . . . , 106} of f

and f#, respectively,
� generate the noisy sequence {Yj ; j = 0, . . . , Nσ} by adding to {cj} an i.i.d. NC(0, σ2)

sequence {ξj},
� generate the shifted noisy sequence {Y #

j ; j = 0, . . . , Nσ} by adding to {c#
j } an i.i.d.

NC(0, σ2) sequence {ξ#
j }, independent of {ξj},

� compute the value of the test statistic ∆σ corresponding to the projection weights and
compare this value with the threshold for α = 5%.

To show the dependence of the behavior of the test under H1 when the distance between the null
and the alternative varies, we computed for each γ the proportion of true positives, also called
the empirical power, among the 5000 random samples we have simulated. The results, plotted in
Figure 2 show that even for moderately small values of γ, the test succeeds in taking the correct
decision. It is a bit surprising that the result for the case φ(t) = c cos(4t) is better than that for
φ(t) = c/(1 + t2). Indeed, one can observe that the curve at the right panel approaches 1 much
faster than the curve of the left panel.
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FIGURE 2. The proportion of true positives in the experiment described in Section 4.2 as a function of the parameter

γ measuring the distance between the true parameter and the set of parameters characterizing the null hypothesis.

The main observation is that both curves tend to 1 very rapidly.

5. Conclusion

In the present work, we provided a methodological and theoretical analysis of the curve regis-
tration problem from a statistical standpoint based on the nonparametric goodness-of-fit testing.
In the case where the noise is white Gaussian and additive with a small variance, we estab-
lished that the penalized log-likelihood ratio (PLR) statistic is asymptotically distribution free,
under the null hypothesis. This result is valid for the weighted l2-penalization under some mild
assumptions on the weights. Furthermore, we proved that the test based on the Gaussian (or
chi-squared) approximation of the PLR statistic is consistent. These results naturally carry over
to other nonparametric models for which asymptotic equivalence (in the Le Cam sense) with
the Gaussian white noise has been proven. It can be interesting, however, to develop a direct
inference in these models. In particular, the model of spatial Poisson processes (cf. [27]) can be
of special interest because of its applications in image analysis.

Some important issues closely related to the present work have not been treated here and
will be done in near future. Perhaps the most important one is to determine the minimax rate of
separation of the null hypothesis from the alternative. The results we have shown tell us that
this rate is not slower than σ1/2(log σ−1)1/4. However, it is very likely that this latter rate is
suboptimal. There is a large body of literature on the topic of minimax rates of separation (cf. the
book by Ingster and Suslina [28] and the references therein), but they mainly concentrate on the
case of a simple null hypothesis. We expect that the composite character of the null hypothesis in
our set-up will slow down the rate of convergence at least by a logarithmic factor. The adaptive
choice of the tuning parameter Nσ is another central issue that has not been answered in the
present paper. We envisage to tackle this issue in a future work.

Appendix A: Proofs of the theorems

The proof of Wilks’ phenomenon is divided into several parts. First we assume that H0 is true and study
the convergence of the pseudo-estimator τ̂ (of the shift τ̄∗) defined as the maximizer of the log-likelihood
over the interval [τ̄∗ − π, τ̄∗ + π]. Here, τ̄∗ is an element of [0, 2π[ such that cj = e−ijτ̄∗

c#
j , for all j ≥ 1.
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A.1. Maximizer of the log-likelihood

Proposition 1. Let c ∈ F1,L and |c1| > 0. If the shrinkage weights νj satisfy conditions (A) and (B) , then
the solution τ̂ to the optimization problem

τ̂ = arg max
τ:|τ−τ̄∗ |≤π

M(τ), with M(τ) =
∑

j≥1

νj Re(eijτYjY
#

j )

satisfies the asymptotic relation

|τ̂ − τ̄∗| = σ
√

log Nσ

(
1 + σN3/2

σ

)
OP(1), as σ → 0.

Proof of Proposition 1. Throughout this proof, we work under the null hypothesis H0. If we set ηj = e−ijτ̄∗

εj

and η#j = ε#j , we can write the decomposition

M(τ) = E[M(τ)] + σS(τ) + σ2D(τ + τ̄∗),

where

E[M(τ)] =
∑

j≥1

νj |cj |
2 cos[j(τ − τ̄∗)],

S(τ) =
∑

j≥1

νj Re
(

eijτ(cjηj + cjη
#

j )
)

,

D(τ) =
∑

j≥1

νj Re
(
eijτηjη

#

j

)
.

On the one hand, using the assumption |c1| > 0 along with condition (A), we get that

E
[
M(τ)

]
− E

[
M(τ̄∗)

]

(τ − τ̄∗)2
≤ −ν1|c1|2

1 − cos(τ − τ̄∗)

(τ − τ̄∗)2
≤ −

2|c1|

π2
, C < 0.

Therefore,

M(τ) − M(τ̄∗) = E[M(τ)] − E[M(τ̄∗)] + σ
[
S(τ) − S(τ̄∗)

]
+ σ2

[
D(τ) − D(τ̄∗)

]

≤ −C |τ − τ̄∗|2 + σ |τ − τ̄∗| · ‖S′‖∞ + σ2|τ − τ̄∗| · ‖D′‖∞

= |τ − τ̄∗|
{

σ‖S′‖∞ + σ2‖D′‖∞ − C |τ − τ̄∗|
}

.

Using this result, for every a > 0, we get

P
(
|τ̂ − τ̄∗| > a

)
≤ P

{
sup

|τ−τ̄∗|>a

M(τ) − M(τ̄∗) ≥ 0
}

≤ P
{

sup
|τ−τ̄∗|>a

[
σ‖S′‖∞ + σ2‖D′‖∞ − C |τ − τ̄∗|

]
≥ 0

}

≤ P
{

σ‖S′‖∞ + σ2‖D′‖∞ ≥ Ca
}

.

Choosing a = σ
√

log Nσ

(
2 + σN3/2

σ

)
z, we get

P
(
|τ̂ − τ̄∗| > σ

√
log Nσ

(
1 + σN3/2

σ

)
z
)

≤ P
(
‖S′‖∞ ≥ 2Cz

√
log Nσ

)
+ P

(
‖D′‖∞ ≥ Cz

√
N3

σ log Nσ

)
.

On the other hand, since
S′(t) =

∑

j≥1

j|cj |νj Re
(
eijτζj

)
,

where ζj are i.i.d. complex valued random variable, whose real and imaginary parts are independent
N (0, 2) variables, the large deviations of the sup-norm of S′ can be controlled by using the following
lemma.
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Lemma 1. The sup-norm of the function S(t) =
∑K

j=0 sj{cos(jt)ξj + sin(jt)ξ′
j}, where {ξj} and {ξ′

j} are

two independent sequences of i.i.d. N (0, 1) random variables, satisfies

P(‖S‖∞ ≥ ‖s‖2x) ≤ (K + 1)e−x2/2, ∀x > 0.

Proof. This results is a direct consequence of Berman’s inequality that we recall in Section B for the
reader’s convenience.

Using this lemma and the fact that Nσ ≥ 2, we get that P
(
‖S′‖∞ ≥ 2LC

√
2y log Nσ

)
≤ 2N

1−y
σ ≤ 22−y

for every y > 1. Finally, the large deviations of the term ‖D′‖∞ are controlled by using Lemma 3 below.
Putting these inequalities together, we find that for any α ∈ (0, 1), there exists z > 0 such that

P
(
|τ̂ − τ̄∗| > σ

√
log Nσ

(
1 + σN3/2

σ

)
z
)

≤ α.

In conclusion, we get that τ̂ − τ̄∗ is, in probability, at most on the order σ
√

log Nσ

(
1 + σN3/2

σ

)
.

A.2. Proof of Theorem 1

One can check that, under H0,

∆σ (Y •,#) =
1

σ2
min

τ∈[0,2π[

[
+∞∑

j=1

νj

∣∣Yj − e−ijτY #

j

∣∣2

]
=

1

σ2
min
|τ|≤π

{
Dσ (τ) + 2Cσ (τ) + Pσ (τ)

}
, (16)

where we have used the notation:

Dσ (τ) =
+∞∑

j=1

νj |cj |
2
∣∣1 − e−ij(τ−τ̄∗)

∣∣2
, (deterministic term)

Cσ (τ) = σ

+∞∑

j=1

νj Re
[
cj

(
1 − e−ij(τ−τ̄∗)

)(
εj − e−ijτε#j

)]
, (cross term)

Pσ (τ) = σ2
+∞∑

j=1

νj

∣∣εj − e−ijτε#j
∣∣2

. (principal term)

(Since H0 is assumed satisfied, there exists τ̄∗ ∈ [0, 2π[ such that cj = e−ijτ̄∗

c#
j for all j ≥ 1.) We denote

by τ̂ the pseudo-estimator of τ̄∗ defined as the minimizer of the RHS of (16) and study the asymptotic
behavior of the terms Dσ , Cσ and Pσ separately.

� For the deterministic term, it holds that

|Dσ (τ̂)| ≤
+∞∑

j=1

j2νj |cj |
2(τ̂ − τ̄∗)2 ≤ (τ̂ − τ̄∗)2

+∞∑

j=1

j2|cj |
2 ≤ L(τ̂ − τ̄∗)2

= {σ2(1 + σ2N3
σ ) log Nσ } Op(1). (17)

� Let us turn now to the cross term. It holds that:

Cσ (τ) = σ

+∞∑

j=1

νj

{
(1 − cos[j(τ − τ̄∗)]) Re

[
cj

(
εj − e−ijτ̄∗

ε#j
)]

+ sin[j(τ̄∗ − τ)] Im
[

cj

(
εj + e−ijτ̄∗

ε#j
)]}

.

Thus, as Cσ (τ̄∗) = 0, we have
|Cσ (τ̂)| ≤ |τ̂ − τ̄∗| · ‖C ′

σ‖∞.

By arguments similar to those used in the proof of Proposition 1, we check that ‖C ′
σ‖∞ is on the

order {σ
√

log Nσ} in probability. Therefore, it holds that

|Cσ (τ̂)| = {σ2(1 + σN3/2
σ ) log Nσ } Op(1)

imsart-generic ver. 2011/01/24 file: Hal_final.hyper4475.tex date: April 21, 2011



A. Dalalyan and O. Collier/Curve registration by nonparametric testing 13

� Let us now study the last term, Pσ (τ) = σ2
∑+∞

j=1 νj

∣
∣εj − e−ijτε#j

∣
∣
2
, which will determine the asymp-

totic behavior of the test statistic. Now denoting ηj = eijτ̄∗

εj and η#j = ε#j , we can rewrite this term

as Pσ (τ) = σ2
∑+∞

j=1 νj

∣
∣ηj − e−ij(τ−τ̄∗)η#j

∣
∣
2
. We wish to prove that under H0, if conditions (A), (B),

Nσ → +∞ and σ2N5/2
σ log(Nσ ) = oP(1) are fulfilled, then

Tσ (τ̂) =
Pσ (τ̂) − 4σ2

∑

k≥1 νk

4σ2(
∑

k≥1 ν2
k )1/2

D−−→
σ→0

N (0, 1).

To check this property, we decompose the principal term as follows:

Tσ (τ̂) = Tσ (τ̄∗) +
Pσ (τ̂) − Pσ (τ̄∗)

4σ2(
∑

k≥1 ν2
k )

1
2

︸ ︷︷ ︸

Rσ (τ̂)

.

� We start by witting Tσ (τ̄∗) as

Tσ (τ̄∗) =

Nσ∑

j=1

Xj,σ , with Xj,σ =
νj (|ηj − η#j |2 − 4)

4(
∑

k≥1 ν2
k )

1
2

,

and applying the Berry-Esseen inequality [35, Theorem 5.4], which is possible since the Xj,σ ’s
are independent random variables with mean 0 and finite third moment. Furthermore, we have

Bσ =
∑Nσ

j=1 Var
(
Xj,σ

)
= 1 and Lσ = B

− 3
2

σ

∑Nσ

j=1 E|Xj,σ |3 ≤ C N
− 1

2
σ . Therefore, the Berry-Esseen

inequality yields
sup

x
|Fσ (x) − Φ(x)| ≤ K Lσ ,

where Fσ (x) = P
(

B
− 1

2
σ

∑Nσ

j=1 Xj,σ < x
)

, Φ is the c.d.f. of the standard Gaussian distribution and K
is an absolute constant. Hence

Tσ (τ̄∗)
D

−−→
σ→0

N (0, 1).

� It remains now to prove that Rσ tends to 0 in probability, whichin view of Slutski’s lemmawill
be sufficient for completing the proof. It holds that

Rσ (τ) =

+∞∑

j=1

νj

2(
∑+∞

j=1 ν2
j )

1
2

Re ηjη
#

j (eij(τ−τ̄∗) − 1) =

Nσ∑

j=1

jνj (τ − τ̄∗)

2(
∑+∞

j=1 ν2
j )

1
2

Re
(
eijtηjη

#

j

)
,

with t some real number between τ and τ̄∗. Then, by virtue of Lemma 3,

|Rσ (τ̂)| ≤
|τ̂ − τ̄∗|

2(
∑+∞

j=1 ν2
j )

1
2

sup
t∈[0,2π]

∣
∣
∣

Nσ∑

j=1

jνj Re
(

eijtηjη
#

j

)
∣
∣
∣ = {σ (1 + σN3/2

σ )Nσ log Nσ } · OP(1).

Hence, Rσ (τ̂) = oP(1) and the desired result follows.

A.3. Power of the test

The aim of this section is to present a proof of Theorem 2. To this end, we study the test statistic
Tσ = (∆σ (Y •,#) − 4‖ν‖1)/4‖ν‖2, and show that it tends to +∞ in probability under H1. Actually, the
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hypothesis H1 will be supposed to be satisfied throughout this section. It holds true that:

∆σ (Y •,#) =
1

σ2
min

τ∈[0,2π]

+∞∑

j=1

νj

∣
∣Yj − e−ijτY #

j

∣
∣
2

=
1

σ2
min

τ∈[0,2π]

∑

j≥1

νj

∣
∣
∣

(
cj − e−ijτc#j ) + σ (εj − e−ijτε#j

)
∣
∣
∣

2

≥ 1

σ2
min

τ∈[0,2π]

{ ∑

j≥1

νj |cj − e−ijτc#j |2
}

−
2

σ
max

τ∈[0,2π]

{ ∑

j≥1

νj |cj − e−ijτc#j | · |εj − e−ijτε#j |
}

.

Let us focus on the first term. Denoting δσ = min{j ≥ 1, νj < c}, we get by condition (C) that δσ → +∞,
which implies

min
τ∈[0,2π]

∑

j≥1

νj |cj − e−ijτc#j |2 ≥ c min
τ∈[0,2π]

δσ∑

j=1

|cj − e−ijτc#j |2

≥ c
(

min
τ∈[0,2π]

+∞∑

j=1

|cj − e−ijτc#j |2 − 4Lδ−2
σ

)

≥ c
(

ρ − 4Lδ−2
σ

)

.

Now, the second term satisfies

max
τ∈[0,2π]

∑

j≥1

νj

∣
∣cj − e−ijτc#j

∣
∣ ·

∣
∣εj − e−ijτε#j

∣
∣ ≤ max

j=1,...,Nσ

(|εj | ∨ |ε#
j |)

Nσ∑

j≥1

(

|cj | + |c#
j |

)

= OP(
√

log Nσ )

Nσ∑

j≥1

(

|cj | + |c#
j |

)

≤ OP(
√

log Nσ )

( Nσ∑

j≥1

j−2

)1/2( Nσ∑

j≥1

j2
(

|cj | + |c#
j |

)2
)1/2

. = OP(
√

log Nσ ).

Putting it all together, we get

Tσ =
∆σ (Y •,#) − 4‖ν‖1

4‖ν‖2
≥

cρ − 4Lcδ−2
σ + OP

(

σ
√

log Nσ

)

4σ2
√

Nσ

P−→ +∞.

Appendix B: Bounds for the maxima of random sums

In this section, we will give some technical lemmas which will be useful in the proofs of this paper. We
are looking forward to bounding the maximum of the sum of a growing number of terms, so that the
non-asymptotic result given in [3] will be useful:

Proposition 2 (Berman [3]). Suppose that gj are continuously differentiable functions satisfying
∑n

j=1 gj (t)
2 =

1 for all t, and ξj
iid∼ N (0, 1). Then, for every x > 0, we have

P

(

sup
[a,b]

n∑

j=1

gj (t)ξj ≥ x

)

≤ L0

2π
e− x2

2 +

∫ +∞

x

e− t2
2√

2π
dt, with L0 =

∫ b

a

[ n∑

j=1

g′
j (t)

2

]1/2

dt.
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We will also use the following fact about moderate deviations of the random variables that can be
written as the sum of squares of independent centered Gaussian random variables.

Lemma 2. Let N be some positive integer and let η#j , j = 1, . . . , N be independent complex valued
random variables such that their real and imaginary parts are independent standard Gaussian variables.

Let s = (s1, . . . , sN) be a vector of real numbers. For any y ≥ 0, it holds that

P
{ N∑

j=1

s2
j |η

#

j |2 ≥ 2‖s‖2
2 + 2

√
2‖s‖2

4y + 2‖s‖2
∞y2

}

≤ e−y2/2,

with the standard notations ‖s‖∞ = max
j=1,...,N

|sj | and ‖s‖
q
q =

∑N
j=1 |sj |q.

Proof. This is a direct consequence of [31, Lemma 1].

Lemma 3. Let N be some positive integer and let ηj , η#j , j = 1, . . . , N be independent complex valued
random variables such that their real and imaginary parts are independent standard Gaussian variables.

Let s = (s1, . . . , sN) be a vector of real numbers. Denote S(t) =
∑N

j=1 sj Re
(
eijtηjη

#

j

)
for every t in [0, 2π]

and ‖S‖∞ = supt∈[0,2π] |S(t)|. Then,

P
{

‖S‖∞ >
√

2x
(
‖s‖2 + y‖s‖∞

)}

≤ (N + 1)e−x2/2 + e−y2/2, ∀x, y > 0.

Proof. First note that we can not directly use Berman’s formula, since the summands are not Gaussian.
However, they are conditionally Gaussian if the conditioning is done, for example, with respect to the
sequence (η#j ). Indeed,

N∑

j=1

sj Re
(
eijτηjη

#

j

)
∣
∣
∣ (η#j ) ∼

N∑

j=1

sj |η
#

j |
(

cos(jτ)ξj − sin(jτ)ξ′
j

)
with ξj , ξ′

j
iid
∼ N (0, 1).

It follows by Lemma 1 that

P

(

sup
[0,2π]

∣
∣
∣

N∑

j=1

sj Re
(
eijτηjη

#

j

)
∣
∣
∣ ≥ x

( N∑

j=1

s2
j |η

#

j |2
) 1

2
∣
∣
∣(η#j )

)

≤ (N + 1) exp
(

−
x2

2

)

.

Let us now denote by ζ the square root of the random variable
∑N

j=1 s2
j |η

#

j |2. It is clear that for all a > 0,

P(‖S‖∞ ≥ ax) = P(‖S‖∞ ≥ ax; ζ ≤ a) + P(‖S‖∞ ≥ ax; ζ > a)

≤ P(‖S‖∞ ≥ xζ) + P(ζ > a)

≤ (N + 1)e−x2/2 + P(ζ > a).

To complete the proof, it suffices to replace a by
√

2(‖s‖2 + y‖s‖∞) and to apply Lemma 2 along with the
inequalities ‖s‖2 + ‖s‖∞y = (‖s‖2

2 + 2‖s‖∞‖s‖2y + ‖s‖2
∞y2)1/2 ≥ (‖s‖2

2 +
√

2‖s‖2
4y + ‖s‖2

∞y2)1/2.
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