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1. introduction

Approximation theory covers some important topics in applied analysis, and its appli-

cation serves many fields in science and engineering such as fluid mechanics, electromag-

netism, diffraction theory, statistics and economics. Although it is an old subject, dating

back to Laplace, new methods and applications continue to appear in various publications.

There is now a need to provide new methods in the other main area of asymptotic the-

ory, namely, the asymptotic approximation of integrals. In fact, complicated integrals are

difficult to solve, and cannot be expressed in terms of elementary functions or analytical

formulae. The purpose of this paper is to fulfil this need.

The application of the homotopy perturbation method (HPM) in mathematical prob-

lems is highly considered by scientists, because without demanding a small parameter in

equations, HPM continuously transforms a complex problem which is not easy to solve

into a simple problem. The homotopy perturbation method [12] was first proposed by

He in 1998. It is in fact a coupling of the traditional perturbation method and homotopy

in topology. The HPM was further developed and improved by He [12]-[20] and applied

to asymptotology [17], bifurcation for non-linear problems [18], strongly non-linear equa-

tions [19] and many other subjects. The method yields a very rapid convergence of the

solution series in most cases, and usually only a few iterations lead to very accurate solu-

tions. Although the goal of He’ s homotopy perturbation method was to find a technique
1
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to unify linear and nonlinear, ordinary or partial differential equations for solving initial

and boundary value problems, here we deal only with the simple first-order differential

equation.

Generally, the solutions of the first-order differential equations can be transformed into

integrals. In the case where such integrals are difficult to estimate numerically or an-

alytically, new methods are welcome. For example, Hardar et al.[8] applied Adomian’s

decomposition method to calculate certain integrals. In Bobolian et al.[5], the so-called

Adomian decomposition method is used for the computation of the Laplace transform.

The shortcoming of Adomian’s method [4], [26] is a complicated calculation of the so-

called Adomian polynomials. Even if Momani et al.[24] showed that the variational iter-

ation method [21, 22] would allow the overcoming of this difficulty, a serious alternative

approach to overcoming the shortcoming arising in the Adomian method is the homo-

topy perturbation method. Note that, [19] and some references therein found that the

shortcomings arising in Adomian method can be completely eliminated by the variational

iteration method. Recently, Abbasbandy [1]-[3] suggested the application of HPM in order

to compute the Laplace transform .

In this paper, we use He’s homotopy perturbation method to compute the general

integral transform

(1.1) I(z, x) =

∫ x

0

f(t) exp

(∫ x

t

g(s, z) ds

)
dt.

Note that many important integral transforms, including the Esscher, Fourier, Hankel,

Hilbert, Laplace, Mellin and Stieljes transforms, can be put in the form of (1.1). Indeed,

consider the first-order differential equation

(1.2)

{
v′(x) = g(x, z) v(x) + f(x), x > 0

v(0) = 0,

where the function f(t) on (0,∞) is locally integrable and the function g(x, z) is defined

in (0,∞) × D and D ⊂ C. After solving the homogeneous equation of (1.2) and using

the ”method of variation of parameters”, the analytic solution of (1.2) is given by

v(x) =

∫ x

0

f(t) exp

(∫ x

t

g(s, z)ds

)
dt(1.3)

= exp

(∫ x

0

g(s, z)ds

) ∫ x

0

f(t) exp

(
−
∫ t

0

g(s, z)ds

)
dt,

and therefore

v(x) exp

(
−
∫ x

0

g(s, z) ds

)
=

∫ x

0

f(t) exp

(
−
∫ t

0

g(s, z)ds

)
dt.



INTEGRAL TRANSFORMS WITH THE HPM AND SOME APPLICATIONS 3

2. Homotopy perturbation method

The homotopy perturbation method provides an alternative approach to introducing

an expanding parameter.

To illustrate the basic ideas of He’s homotopy perturbation method, He [12] considers

the following differential equation

(2.4) A(v) = F (r), r ∈ Ω

with boundary conditions

B(v) = B

(
v,

∂v

∂n

)
, r ∈ Γ

where A is a general differential operator, B is a boundary operator, F (r) is a known

analytic function, Γ is the boundary of the domain Ω and ∂v
∂n

denotes the differentiation

along the normal vector drawn outwards from Ω. The operator A can be divided into two

parts L and N , where L is a linear operator, while N is a linear or non-linear operator.

Therefore (2.4) can be rewritten as follows:

(2.5) L(v) + N(v)− F (r) = 0.

He [12], [13] constructed a homotopy w(r, p) : Ω× [0, 1] → R which satisfies

(2.6) H(w, p) = (1− p) [L(w)− L(v0)] + p [A(w)− F (r)] = 0

where v0 is the initial value of (2.4) and p ∈ [0, 1] is an embedding parameter. Hence, it

is obvious that

H(w, 0) = L(w)− L(v0)

and

H(w, 1) = A(w)− F (r).

The changing process of p from zero to unity is simply that of w(r, p) from v0 to F (r).

In topology, this is called deformation, and L(w) − L(v0), A(w) − F (r) are homotopic.

Applying the perturbation technique, due to the fact that 0 ≤ p ≤ 1 can be considered as

a small parameter, we can assume that the solution of (2.6) can be expressed as a series

in p, as follows:

(2.7) w =
∞∑
i=0

piwi,

when p → 1 and since A := L + N , (2.7) becomes the approximate solution of (2.5),

therefore

(2.8) v = lim
p→1

∞∑
i=0

piwi.
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The convergence of the series in eq. (2.8) is discussed by He [12, 13].

3. Integral Transforms with the HPM

In this section, we consider the homotopy perturbation method with

L(v(x, z)) = −g(x, z) v(x, z)

and

N(v(x, z)) =
∂v

∂x
(x, z).

Following (2.5) and (2.6), we construct the simple homotopy

(3.9) (1− p) [−g(x, z)[w(x, z)− v0(x)]] + p

[
∂w

∂x
(x, z)− g(x, z)w(x, z)− f(x)

]
= 0,

or

(3.10) −g(x, z)[w(x, z)− v0(x)] + p

[
∂w

∂x
(x, z)− g(x, z) v0(x)− f(x)

]
= 0.

Substituting (2.7) into (3.10), and equating the terms with the identical powers of p, we

have

(3.11)

−g(x, z)

[
∞∑
i=0

piwi(x, z)− v0(x)

]
− p g(x, z)v0(x) + p

[
∞∑
i=0

pi ∂wi

∂x
(x, z)− f(x)

]
= 0

p0 : L(w0 − v0) = 0

p1 : L(w1 + v0) + N(w0)− f(x) = 0

p2 L(w2) + N(w1) = 0

p3 L(w3) + N(w2) = 0
...

...

pn+1 L(wn+1) + N(wn) = 0.

In other words

p0 : −g(x, z) [w0(x, z)− v0(x)] = 0

p1 : −g(x, z) (w1(x, z) + v0(x)) + ∂w0

∂x
(x, z)− f(x) = 0

p2 −g(x, z) w2(x, z) + ∂w1

∂x
(x, z) = 0

p3 −g(x, z) w3(x, z) + ∂w2

∂x
(x, z) = 0

...
...

pn+1 −g(x, z) wn+1(x, z) + ∂wn

∂x
(x, z) = 0.
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Theorem 3.1. The solution provided by the HPM is

v(x) =

∫ x

0

f(t) exp

(∫ x

t

g(s, z) ds

)
dt

= lim
p→1

∞∑
i=0

pi wi(x, z).(3.12)

Since

exp

(
−
∫ x

0

g(s, z)ds

)∫ x

0

f(t) exp

(∫ x

t

g(s, z) ds

)
dt =

∫ x

0

exp

(
−
∫ t

0

g(s, z)ds

)
f(t) dt,

therefore, according to (1.4) and (2.8), we introduce the following definition theorem:

Definition 3.2. If f is a locally integrable function on [0,∞(, the so-called incomplete

Sadefo transform ISg of f is the function of z defined by

ISg(z) =

∫ x

0

exp

(
−
∫ t

0

g(s, z)ds

)
f(t)dt(3.13)

= exp

(
−
∫ x

0

g(s, z)ds

)
lim
p→1

∞∑
i=0

pi wi(x, z)

and the so-called Sadefo transform Sg of f is the function of z defined by

Sg(z) =

∫ ∞

0

exp

(∫ t

0

g(s, z) ds

)
f(t) dt(3.14)

= lim
x→∞

[
exp

(
−
∫ x

t

g(s, z)ds

)
lim
p→1

∞∑
i=0

pi wi(x, z)

]
,

where g is given such that the integrals SX
g (z) and ISg(z) converge, and the approximation

of ISg(z) and Sg(z) are obtained via the application of the homotopy perturbation method

to the equation (1.2).

Example 3.3. In the calculation of flux integrals associated with double-scattering waves,

Servadio [25] has investigated the asymptotic behavior of the integral

IF (z) =

∫ ∞

0

f(t) F (z t) dt(3.15)

where

(3.16) F (t) =

∫ ∞

t

e−i τ2

dτ.

For a given f , the estimation of IF (z) is reduced to the estimation of (1.1) where

g(s, z) = z
e−i s2z2∫∞

sz
e−i t2 dt

,

and the components wi(x, z) are given by (3.9). In fact
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IF (z) =

∫ ∞

0

f(t) F (z t) dt(3.17)

= F (0)

∫ ∞

0

f(t) exp (ln(F (z t)/F (0))) dt

= F (0)

∫ ∞

0

f(t) exp

(
−
∫ t

0

−z
F

′
(z s)

F (z s)
ds

)
dt

= F (0)

∫ ∞

0

f(t) exp

(
−
∫ t

0

g(s, z) ds ds

)
dt(3.18)

where

g(s, z) = −z
F

′
(z s)

F (z s)
= z

e−i s2z2∫∞
sz

e−i t2 dt
.

Corollary 3.4. Following the example that precedes, it is easy to see that the convolution

integral

(3.19) Ih(z) =

∫ ∞

0

f(t) h(z t) dt,

and the more symmetric convolution integral

(3.20) f ∗ g(z) =

∫ ∞

0

f(t) g(z t−1) t−1 dt

can be obtained via the HPM, when Ih(z) and f ∗ g(z) converge.

3.1. The case where g(x, z) is homogeneous. Here we consider the particular case

where the function g doesn’t depend of x, namely

(3.21) g(x, z) = h(z).

So the integral (1.4) becomes

v(x) =

∫ x

0

f(t) exp(−h(z) (t− x)) dt(3.22)

= exp(h(z) x)

∫ x

0

f(t) exp(−h(z) t) dt.

If f is an homogeneous function of order 1 (ie: ∀u ∈ R, h(u z)= u h(z)), then (3.22)

becomes

(3.23) v(x) exp(−h(z x)) =

∫ x

0

f(t) exp(−h(z t)) dt.
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We then have the n-th approximation of the integral (3.23) denoted by I1(z) as follows

I1(z) =

∫ ∞

0

f(t) exp(−h(z t)) dt(3.24)

= lim
x→∞

lim
p→1

∞∑
i=0

piwi(x, z) exp(−h(z x)).

Example 3.5. Let h(z) = z and f(x) = e−xν
, where x ≥ 0 and the parameter ν ∈ R∗

+.

By choosing v0(x) = 0, we have

w0(x, z) = 0

w1(x, z) = −f(x)
z

w2(x, z) = −f
′
(x)
z2

w3(x, z) = −f
′′
(x)

z3

...

wn(x, z) = −f (n−1)(x)
zn .

with f (n) is the n-derivative of the function f(x). So for Re(z) > 0,∫ ∞

0

exp(z t− tν) dt = − lim
x→∞

lim
p→1

∞∑
i=0

pi bi,ν(x)

zi
exp(−z x− xν))

≈ − lim
x→∞

n∑
i=0

bi,ν(x)

zi
exp(−z x− xν))(3.25)

where

b0,ν(x) = 0, b1,ν(x) = ν x−1+ν , b2,ν(x) = (1− ν + ν xν)x−2+νν,

b3,ν(x) = x−3+ν (−2+ν)(−1+ν) ν +x−3+2 ν (−1+ν) ν2−x−3+3 ν ν3 +x−3+2 ν ν2 (−2+2 ν),

b4,ν(x) =
(
6− 11ν (1− xν) + (6− 18xν + 6x2ν)ν2 + (−1 + 7xν − 6x2ν)ν3 + x3ν

)
x−4+ν ν,

...

4. Application for the Esscher, Fourier, Hankel, Mellin and Stieljes

transforms

In this section, with a change of suitable variables, we show how to compute the Esscher,

Fourier, Hankel, Laplace, Mellin and Stieljes transforms.
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4.1. Computation of the Fourier Transform. Chosing

(4.26) g(s, z) = i z

for all s ∈ [t, x], the Fourier transform of f is

(4.27) F [f, z] = e−i x z

[∫ ∞

0

f(−t)ei t zdt +

∫ ∞

0

f(t) e−i t z dt

]
4.2. Computation of the Laplace Transform. In the case where we consider h(z) = z

which is homogeneous of the order 1, in the integral (3.15), the Laplace transform of the

function f(x), denoted by L[f, z], is defined by the integral

L[f, z] =

∫ ∞

0

f(t) exp(−z t) dt(4.28)

= lim
x→∞

lim
p→1

∞∑
i=0

piwi(x, z) exp(−z x),

where Re(z) > 0. The functions f(x) and L[f, z] are called a Laplace transform pair.

Even though the approximation of the Laplace transform has been the subject of [1], we

proposed the following theorem:

Definition 4.1. For all x ∈ (0,∞), the incomplete Laplace transform of f as

IL[f, z](x) =

∫ x

0

f(t) exp(−z t) dt(4.29)

= exp(−z x) lim
p→1

∞∑
i=0

pi wi(x, z),

where Re(z) > 1.

Theorem 4.2. Using some properties of the Laplace transform, we introduce the following

results:

(1) If an integrer n > 0 and limx→∞ f(x)e−sx = 0, then, for x > 0,

L[f (n), s] = sn lim
x→∞

[
exp(−s x) lim

p→1

∞∑
i=0

pi wi(x, z)

]
−

n−1∑
i=0

sn−1−if (i)(0),

where f (0) ≡ f and f (j) is the j-th derivative of f .

(2) If limx→∞
[
e−sx

∫ x

0
f(ξ) dξ

]
= 0, then

L
[∫ x

0

f(ξ)dξ), s

]
=

1

s
lim

x→∞

[
exp(−s x) lim

p→1

∞∑
i=0

pi wi(x, z)

]
,
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(3)

L
[
e−axf(x), s

]
= lim

x→∞

[
exp(−(s + a) x) lim

p→1

∞∑
i=0

pi wi(x, z)

]
,

(4) The Laplace transform of the convolution f ∗ g = g ∗ f of two functions f(x) and

g(x), has the following approximation

(4.30) L [f ∗ g(x), s] = lim
x→∞

[
lim
p→1

∞∑
i=0

pi wi(x, z)
∞∑

j=0

pj vj(x, z)

]
exp(−2z x)

where

L[f, z] = lim
x→∞

lim
p→1

∞∑
i=0

pi wi(x, z) exp(−z x),

L[g, z] = lim
x→∞

lim
p→1

∞∑
j=0

pj vj(x, z) exp(−z x),

and where the convolution function f ∗ g is defined by the integral

f ∗ g(x) =

∫ x

0

(f(x− ξ)g(ξ) dξ.

(5) If f is a summable function over all finite intervals, and there is a constant c for

which ∫ ∞

0

|f(x)| e−c x dx

is finite, then the Laplace transform is accomplished for the analytic function

L[f, z] of order O(z−k), with k > 1, by means of the inverse integral

f(x) =
1

2 π i

∫ γ+i∞

γ−i∞
L[f, z]ex zdz(4.31)

=
1

2 π i

∫ γ+i∞

γ−i∞
exp(z x)

[
lim

x→∞
lim
p→1

∞∑
i=0

pi wi(x, z) exp(−z x)

]
dz

where γ is a real constant that exceeds the real parts of all the singularities of

L[f, z].

Example 4.3. Consider the integral

S(x) =

∫ ∞

0

t1/2

1 + t
sin(x t) dt = Im

(∫ ∞

0

t1/2

1 + t
exp(ı x t) dt

)
,

where ı2 = −1 and Im(z) denotes the imaginary part of the complex z. To approximate

the integral ∫ ∞

0

√
t

1 + t
exp(ı z t) dt
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via the HPM, it suffices to replace in (1.2), g by

g(s, z) = −ı z, f(t) =

√
t

1 + t
.

4.3. Computation of the Mellin Transform. To get the Mellin transform, we choose

the function

g(s, z) =
1− z

s
.

If we replace g in (3.22), we get

M[f, z] =

∫ ∞

0

f(t) tz−1 dt(4.32)

= lim
x→∞

lim
p→1

∞∑
i=0

pi wi(x, z) xz−1.(4.33)

Note that a < Re(z) < b is an infinite strip such that the Mellin transform of f(t) denoted

by M[f, z] converges (See [28] for more details).

Proposition 4.4. For all x ∈ (0,∞), the incomplete Mellin transform of f is defined as

IM[f, z](x) =

∫ x

0

f(t) tz−1 dt(4.34)

= xz−1 lim
p→1

∞∑
i=0

pi wi(x, z),

where Re(z) > 1.

Theorem 4.5. In using the basic properties of the Mellin transform, we get the following

results:

(1) If limx→∞ xs−r−1f (r)(x) = 0, r = 0, 1, . . . , n− 1

•

M[f (n), z] = (−1)n Γ(z)

Γ(z − n)
lim

x→∞
lim
p→1

∞∑
i=0

pi wi(x, z − n) xz−n−1,

•

M[xn f (n), z] = (−1)n Γ(z + n)

Γ(z)
lim

x→∞
lim
p→1

∞∑
i=0

piwi(x, z) xz−1,
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(2) Denoting the nth repeated integral of f(x) by In(f(x)], where

In[f(x)] =

∫ x

0

In−1[f(u)] du,

(4.35) M[In[f(x)], z] = (−1)n Γ(z)

Γ(z + n)
lim

x→∞
lim
p→1

∞∑
i=0

piwi(x, z + n) xz+n−1

(3) The transform exists provided the integral∫ ∞

0

|f(x)|xk−1 dx

is bounded for some k > 0, and then the inversion of the Mellin transform is

accomplished by means of the inversion integral

f(x) =
1

2 π i

∫ γ+i∞

γ−i∞
M[f, z]x−zdz

=
1

2 π i

∫ γ+i∞

γ−i∞
x−z

[
lim

x→∞
lim
p→1

∞∑
i=0

piwi(x, z) xz−1

]
dz(4.36)

where c > k.

Proposition 4.6. The inversion formula for the Mellin transform is given by

f(t) =
1

2π i

∫ c+i∞

c−i∞
t−z M[f, z] dz(4.37)

=
1

2π i
lim

x→∞
lim
p→1

∞∑
i=0

pi

∫ c+i∞

c−i∞
wi(x, z) xz−1 t−z dz.

where a < c < b.

Remark 4.7. Note that one of the two convolution integral transforms, including the

Laplace, Fourier, Hankel and Stieljes transforms, can be put in the form of

(4.38) I(x) =

∫ ∞

0

f(t) h(x t) dt.

Since M[I, z] = M[f, 1− z]M[h, z], then by inversion we obtain

I(x) =
1

2π i

∫ c+i∞

c−i∞
x−z M[h, z]M[f, 1− z] dz(4.39)

where c > k and the Mellin transform in the integral (4.39) can be expressed as in (4.32).
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4.4. Computation of the Hankel Transform. The Hankel transform (of order zero)

is an integral transform equivalent to a two-dimensional Fourier transform with a radially

symmetric integral kernel and is also called the Fourier-Bessel transform. It is defined as

g(u, v) = F [f(r)](u, v)

=

∫ ∞

−∞
f(r)e−2π i(ux+vy) dx dy,(4.40)

where r =
√

x2 + y2.

Let x = rcos(θ), y = rsin(θ), q =
√

u2 + v2, u = q cos(φ) and v = q sin(φ), then

g(q) =

∫ ∞

0

∫ 2π

0

f(r)e−2π i(cos(θ)cos(φ)+sin(θ)sin(φ))r dr dθ

=

∫ ∞

0

[∫ 2π

0

f(r)e−2π icos(θ)) dθ

]
r dr

= 2π

∫ ∞

0

f(r)J0(2πqr)rdr,(4.41)

where J0 is a zero-order Bessel function of the first kind. Therefore, the Hankel transform

pairs are

g(q) = 2π

∫ ∞

0

f(r)J0(2πqr)r dr

f(r) = 2π

∫ ∞

0

g(q)J0(2πqr)q dq.

The Hankel transform of n-th order is defined by

(4.42) Hn[f(t), φ] =

∫ ∞

0

t Jn(φ t) f(t) dt

where Jn is a Bessel function of the first kind (Bronshtein et al.[6], p. 706).

We continue and propose the following definition

Definition 4.8. For all u ∈ (0,∞) and for a given function f , the incomplete Hankel

transform of order n is

IHn[f, z](u) =

∫ u

0

t Jn(z t) f(t) dt(4.43)

where the Bessel function of the first kind Jn(x) is defined as the solution of the Bessel

differential equation

(4.44) x2 ∂2y

∂x2
+ x

∂y

∂x
+ (x2 − n2)y = 0

which is non-singular at the origin and n is a fix real or complex number.
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Remark 4.9. If we replace the function g(x, z) in (1.4) by

(4.45) g(x, z) = −1

s
− s

J
′
n(s z)

Jn(s z)
,

we get

v(x) =
1

x Jn(x z)

[∫ u

0

t Jn(z t) f(t) dt

]
=

1

x Jn(x z)
IHn[f, z](x).(4.46)

Since the solution v of (1.2) has been approximate via the homotopy perturbation

method, we then propose the following theorem:

Theorem 4.10. For a given function f and ∀x ∈)0,∞(, the incomplete Hankel transform

is given by

(4.47) IHn[f, z](x) =
1

x Jn(x z)
lim
p→1

∞∑
i=0

pi wi(x, z),

where the Bessel function of the first kind Jn(x) is defined as the solution of (4.44).

We also propose the following corollary

Corollary 4.11. For a given function f , the Hankel transform is given by

Hn[f, z] = lim
x→∞

[
1

x Jn(x z)
lim
p→1

∞∑
i=0

pi wi(x, z)

]
(4.48)

=

∫ ∞

0

t Jn(z t) f(t) dt

where the Bessel function of the first kind Jn(x) is defined as the solution of (4.44).

Example 4.12. There are some problems of high energy nuclear physics (see Glauber

[10] and Gabutti et al.[9]) that involve integrals of the form

(4.49) Ig(x) =

∫ ∞

0

e−t2J0(xt) g(t2) t dt,

where J0(t) is the Bessel function of order zero and g is a continuous function in (0,∞).

Clearly these integrals are special cases of the Hankel transform formula (4.48), where

f(t) = e−t2g(t2)

and n = 0.
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4.5. Computation of the Stieljes Transform. We need to approximate the following

integral

(4.50) GSm,p[f, z](u) =

∫ u

0

(tm + zm)−pf(t) dt

where u ∈ (0,∞), m > 0 and p ≥ 1. Note that in the case where p = 1, m = 1 and

u →∞, we have the Stieljes transform of f .

Remark 4.13. If we replace the function g(x, z) in (1.4) by

(4.51) g(x, z) = p m
tm−1

xm + zm
,

we get

v(x) = (xm + zm) GSm,p[f, z, u].(4.52)

We therefore obtain the following definition theorem:

Definition 4.14. For all x ∈ [0,∞), the incomplete generalized Stieljes transform of a

locally integrable function f on [0,∞) is defined by

IGSm,p[f, z](x) =

∫ x

0

f(t) (tm + zm)−p dt

= (xm + zm) lim
p→1

∞∑
i=0

pi wi(x, z),(4.53)

where z is a complex variable in the cut plane | arg z| < π.

The generalized Stieljes transform of a locally integrable function f is defined by

GSm,p[f, z] =

∫ ∞

0

f(t) (tm + zm)−p dt

= lim
x→∞

[
(xm + zm) lim

p→1

∞∑
i=0

pi wi(x, z)

]
,(4.54)

where m > 0, p ≥ 1 and z is a complex variable in the cut plane | arg z| < π.

4.6. Computation of the Esscher Transform. The Esscher transform was developed

to approximate the aggregate claim amount distribution around a point of interest x0, by

applying Edgeworth series to the transformed distribution with the parameter h chosen

such that the mean is equal to x0.

We defined the generalized Esscher transform of an appropriate chosen function f :

)0,∞(→ R by
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Proposition 4.15.

Es[f, z] =
1

Mz

∫ ∞

0

x exp(z x) f(x)dx(4.55)

=
1

Mz

L[g,−z]

=
1

Mz

lim
x→∞

lim
p→1

∞∑
i=0

piwi(x,−z) exp(z x)(4.56)

where Mz =
∫∞

0
exp(z t) f(t)dt = L[f,−z], g(x) = x f(x), L denotes the Laplace trans-

form defined in (4.28), and the real constant Re(z) > 0.

Example 4.16. In the following example we choose

f(x) = e−x3

where x ∈ R+. Using Gradshteyn and Ryzhik [11], we get

Mz =

∫ ∞

0

exp(z t) exp(−t3) dt

=

√
z

18

(
4π

(
J− 1

3

(
2z3/2

3
√

3

)
− J 1

3

(
2z3/2

3
√

3

))
+ 3z3/2

1F2

[
1;

4

3
,
5

3
;− z3

27

])
,(4.57)

∫ ∞

0

xez x e−x3

dx =
z

27

(
2π
√

3

(
J− 2

3

(
2z3/2

3
√

3

)
− J 2

3

(
2z3/2

3
√

3

))
− 9 1F2

[
1;

2

3
,
4

3
;− z3

27

])
,

and

(4.58) Es[f, z] =
18
√

z
(
2π
√

3
(
J− 2

3

(
2z3/2

3
√

3

)
− J 2

3

(
2z3/2

3
√

3

))
− 9 1F2

[
1; 2

3
, 4

3
;− z3

27

])
27
(
4π
(
J− 1

3

(
2z3/2

3
√

3

)
− J 1

3

(
2z3/2

3
√

3

))
+ 3z3/2

1F2

[
1; 4

3
, 5

3
;− z3

27

]) .

We then deduce that

lim
x−>∞

lim
p→1

∞∑
i=0

piwi(x,−z) ez x =
z

27

(
2π
√

3

(
J− 2

3

(
2z3/2

3
√

3

)
− J 2

3

(
2z3/2

3
√

3

))
− 9 1F2

[
1;

2

3
,
4

3
;− z3

27

])
where, for n = 0, 1, . . ., we set

wn(x,−z) = e−x3 an(x)

zn
,

where an(x) is a polynomial function of order 2(n− 1) that admits the following ten first

terms, obtained via Mathematica software:

a0(x) = 0, a1(x) = 1, a2(x) = 3x2, a3(x) = (6x− 9x4), a4(x) = (6x− 54x3 + 27x6),

a5(x) = −180x2 + 324x5 − 81x8, a6(x) = −360x + 2160x4 − 1620x7 + 243x10,

a7(x) = −360 + 9720x3 − 1780x6 + 243x10 + 7290x9 − 729x12,
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a8(x) = 30240x2 − 136080x5 + 119070x8 − 30618x11x10 + 2187x14

a9(x) = 640480x− 771120x4 + 1360800x7 − 694008x10 + 122472x13 − 6561x16

Example 4.17. It is very difficult to get the exact analytic Esscher transform of the

function

f(x) = e−xν

,

where the parameter ν ∈ R∗
+. In this example we propose to find the Esscher transform

of f . Since Mz = L[f,−z], by using (4.28), we have

(4.59) Mz =

∫ ∞

0

es z e−sν

ds = lim
x→∞

lim
p→1

∞∑
i=0

piwi(x,−z) exp(z x),

where, for n = 0, 1, . . ., we set

wn(x,−z) = e−xν bν
n(x)

zn
,

where bν
n(x) is a polynomial function that admits the following five first terms, obtained

via Mathematica software:

bν
0(x) = 0, bν

1(x) = ν x−1+ν , bν
2(x) = (1− ν + ν xν)x−2+νν,

bν
3 = x−3+ν (−2 + ν)(−1 + ν) ν + x−3+2 ν (−1 + ν) ν2 − x−3+3 ν ν3 + x−3+2 ν ν2 (−2 + 2 ν),

bν
4(x) =

(
6− 11ν (1− xν) + (6− 18xν + 6x2ν)ν2 + (−1 + 7xν − 6x2ν)ν3 + x3ν

)
x−4+ν ν,

...

5. Some applications for probability

5.1. Approximation of type G and spherical distributions. The Type G family of

processes is a subclass of the Lévy processes, which allows retaining some of the Gaussian

properties of the Wiener process and makes it possible to incorporate processes with

jumps and infinite variance. Marcus [23] initially introduced the concept of Type G

random variables and processes. Following the theorem 1 of Fotopoulos [7], we propose

the following corollary:

Corollary 5.1. Let ν0 be a σ-finite measure on B0(Rd) and X ∈ Rd a random vector of

type G with no Gaussian component such that

(5.60) E (i(x,X)) = exp

(∫
Rd

(exp(−x, Σ1/2y >2 /2)− 1

)
ν0(dy) = exp(−~Φ(|x|Σ)),
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where |x|Σ =< x, Σx > with Σ being the positive definite symmetric matrix, and ~Φ :

Rd → R+ is a continuous function such that Φ(0) = 0. Then there exists a positive

σ-finite measure on B0(R+) denoted by µ such that the cumulant transform of X ∈ Rd is

~Φ(|x|Σ) = C
1

Γ
(

d
2

) (Γ
(

d−1
2

)
2π

d−1
4

)2 ∫ ∞

0

[
1− 1F 1

(
1

2
,
d

2
;−1

2
|x|2Σ r2

)]
µ(dr)(5.61)

where C =
∫

Sd−1
λ(ds)and λ is a σ-finite measure on B0(Sd−1).

Proof. Theorem 1 of Fotopoulos [7] proposes

~Φ(|x|Σ) = C
Γ
(

d−1
2

)
4πd/2

∫ ∞

0

µ(dr)

∫ 1

0

(1− et |x|2Σ r2/2t−1/2(1− t)
d−1
2
−1 dt.(5.62)

Since, after some calculations, we have∫ 1

0

(1− et |x|2Σ r2/2t−1/2(1− t)
d−1
2
−1 dt =

√
π

Γ
(

d−1
2

)
Γ
(

d
2

) [1− 1F 1

(
1

2
,
d

2
;−1

2
|x|2Σ r2

)]
,

if we replace the preceded integral in (5.62), we have proved corollary (5.61). QED

Example 5.2. Consider the polar decomposition of the measure ν0 is expressed as

ν0(dy) = r−1−α λ(ds) dr,

where 0 < α < 2 and λ is the Borel measure on Sd−1, the unit sphere of Rd. Substituting

ν0 in (5.61) gives

~Φ(|x|Σ) = C
1

Γ
(

d
2

) (Γ
(

d−1
2

)
2π

d−1
4

)2 ∫ ∞

0

r−1−α

[
1− 1F 1

(
1

2
,
d

2
;−1

2
|x|2Σ r2

)]
dr

=
1√
π
M
[
f(u),−α

2

]
(5.63)

= lim
y→∞

y−
α
2
−1

[
lim
p→1

∞∑
i=0

piwi(y)

]
(5.64)

=
2−2−α

2

√
π

Γ
(

d
2
− 1
)
Γ
(
−α

2

)
Γ
(

1+α
2

)
Γ
(

d+α
2

) |x|αΣ(5.65)

where

f(u) = 1− 1F 1

(
1

2
,
d

2
;−1

2
|x|2Σ u

)
,

λ(ds) = 2π
d
2

Γ( d
2)

and M is the Mellin transform as defined in (4.32) .
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Theorem 5.3. Suppose that the characteristic function of the random vector X ∈ Rd

satisfies the

E(exp(i < x,X >)) = exp(−Φ(|x|Σ))

where |x|2Σ =< x, Σx >, exp(−Φ(·)) ∈ L(Rd), and Φ satisfies the same conditions as in

theorem 1. Then, the joint probability distribution function f of X ∈ Rd has the following

expression

f(x) =
|x|−

d−2
2

Σ

(2π)d/2
H d−2

2
[h, |x|Σ](5.66)

=
|x|−

d−2
2

Σ

(2π)d/2
lim
y→∞

[
1

y Jn(y |x|Σ)
lim
p→1

∞∑
i=0

piwi(x, y)

]
(5.67)

where

h(z) = z
d
2
−1e−Φ(z)

and H d−2
2

is the Hankel transform as defined in (4.48).

Proof. Under the conditions of (5.4),we have the joint probability distribution of the

random vector X ∈ Rd as follows

f(x) =
|x|−

d−2
2

Σ

(2π)d/2

∫ ∞

0

ρ
d
2 e−Φ(ρ)J d−2

2
(|x|Σ ρ) dρ.

Following (4.48), we have

H d−2
2

[h, |x|Σ] =

∫ ∞

0

ρ
d
2 e−Φ(ρ)J d−2

2
(|x|Σ ρ) dρ,

where

h(z) = z
d
2
−1e−Φ(z).

Therefore

f(x) =
|x|−

d−2
2

Σ

(2π)d/2
H d−2

2
[h, |x|Σ]

=
|x|−

d−2
2

Σ

(2π)d/2
lim
y→∞

[
1

y Jn(y |x|Σ)
lim
p→1

∞∑
i=0

piwi(x, y)

]
.(5.68)

We have then proved theorem (5.4). QED
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Example 5.4. When the characteristic function has the form (5.63), in view of theorem

(5.4), [7] proposes the following joint probability density function of X ∈ Rd :

f(x) =
|x|−

d−2
2

Σ

(2π)d/2

∫ ∞

0

ρ
d
2 e−c ρα

J d−2
2

(|x|Σ ρ) dρ

=
|x|−

d−2
2

Σ

(2π)d/2
H d−2

2
[f, |x|Σ].(5.69)

where

f(u) = u
d
2
−1e−c uα

,

and the positive constant

c =
2−2−α

2

√
π

Γ
(

d
2
− 1
)
Γ
(
−α

2

)
Γ
(

1+α
2

)
Γ
(

d+α
2

) .

Because it is difficult to get the explicit expression of the joint density probability

function, we propose to write this as a series, by using He’s homotopy perturbation

method. Since the density function can be estimated via the Hankel transform, it suffices

to find wi as indicated in (2.7), as the term of the series that approximate the solution of

(1.2), with the function g given in (4.51) and f(u) = u
d
2
−1e−c uα

.

5.2. Integral transform of random variable.

Definition 5.5. If F is a proper or defective probability distribution concentrated on

[0,∞(, for a given function g, the so-called incomplete Sadefo transform ISg of F is the

function defined by

ISg(z, x) =

∫ x

0

exp

(∫ x

t

g(s, z)ds

)
dF (t)(5.70)

and the so-called Sadefo transform Sg of F is the function defined by

Sg(z) =

∫ ∞

0

exp

(∫ ∞

t

g(s, z)ds

)
dF (t).(5.71)

Definition 5.6. The Sadefo transform SX
g of a non-negative random variable X ≥ 0 with

the probability density function f(x) is defined as

SX
g (z) = E

(
exp

(∫ ∞

X

g(s, z) ds

))
(5.72)

=

∫ ∞

0

exp

(∫ ∞

t

g(s, z)ds

)
f(t) dt,

where E denotes the expectation probability of X. We assume that g is given such that

the integral SX
g (z) converges.
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Example 5.7. Consider a random variable X with the probability density function

f(x) =

{
C(ν) exp(−xν), if;x ≥ 0

0, if x ≤ 0

Remark 5.8. Here it is understood that the interval is closed and may be replaced by

)−∞,∞(. Whenever, without loss of generality, we speak of the integral transforms (e.g.

the Mellin transform of a distribution F , it is tacitly understood that F is concentrated

on [0,∞(.

Remark 5.9. To estimate the n-th moment E (Xn) of the random variable X with the

distribution function F , where the integer n > 1, it suffices to choose the function g as

follows

g(s, t) = −n

s
,

where s > 0. If the and the n-th moment exists, its expression is given by

(5.73) E (Xn) = lim
x→∞

lim
p→1

∞∑
i=0

piwi(x) xn.

6. Conclusion

In this work, we apply HPM to estimate a large variety of integral transforms (e.g. so

called incomplete Sadefo transform). We also show that some known integral transforms

such as the Esscher transform, the Fourier transform, the Hankel transform, the Mellin

transform and the Stieljes transform are particular cases of our integral transforms family.

The method is interesting in order to derive new integration formulae to approximate

certain difficult integrals, to calculate the expectation of certain nonlinear functions of

random variables and to approximation of type G and spherical distributions. The HPM

requires only simple differentiation in order to deduce the integral formulae. In the next

paper, we will suggest an application of the HPM in order to serve probability, statistics

and mathematical finance.
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