
HAL Id: hal-00579993
https://hal.science/hal-00579993v1

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DAMS: Distributed Adaptive Metaheuristic Selection
Bilel Derbel, Sébastien Verel

To cite this version:
Bilel Derbel, Sébastien Verel. DAMS: Distributed Adaptive Metaheuristic Selection. Ge-
netic And Evolutionary Computation Conference, Jun 2011, Dublin, Ireland. pp.1955–1962,
�10.1145/2001576.2001839�. �hal-00579993�

https://hal.science/hal-00579993v1
https://hal.archives-ouvertes.fr

DAMS: Distributed Adaptive Metaheuristic Selection

Bilel Derbel
Université Lille 1

LIFL – CNRS – INRIA Lille
bilel.derbel@lifl.fr

Sébastien Verel
Univ. Nice Sophia-Antipolis

INRIA Lille
verel@i3s.unice.fr

ABSTRACT

We present a distributed algorithm, Select Best and Mutate (SBM),
in the Distributed Adaptive Metaheuristic Selection (DAMS) frame-
work. DAMS is dedicated to adaptive optimization in distributed
environments. Given a set of metaheuristics, the goal of DAMS is
to coordinate their local execution on distributed nodes in order to
optimize the global performance of the distributed system. DAMS
is based on three-layer architecture allowing nodes to decide dis-
tributively what local information to communicate, and what meta-
heuristic to apply while the optimization process is in progress.
SBM is a simple, yet efficient, adaptive distributed algorithm us-
ing an exploitation component allowing nodes to select the meta-
heuristic with the best locally observed performance, and an explo-
ration component allowing nodes to detect the metaheuristic with
the actual best performance. SBM features are analyzed from both
a parallel and an adaptive point of view, and its efficiency is demon-
strated through experimentations and comparisons with other adap-
tive strategies (sequential and distributed).

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods

General Terms

Algorithms

Keywords

metaheurististics, distributed algorithms, adaptative algorithms, pa-
rameter control

1. INTRODUCTION
Motivation: Evolutionary algorithms or metaheuristics are effi-

cient stochastic methods for solving a wide range of optimization
problems. Their performances are often subject to a correct set-
ting of their parameters including the representation of solution, the
stochastic operators such as mutation, or crossover, the selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

operators, the rate of application of those operators, the stopping
criterium, or the population size, etc. From the metaheuristics-user
point of view, it could be a real challenge to choose the parameters,
and understand this choice. Moreover, when the algorithms evolve
in a distributed environment, comes additional possible designs, or
parameters such as the communication between distributed nodes,
the migration policy, the distribution of the metaheuristics execu-
tion, or when different metaheuristics are used together, their dis-
tribution over the environement, etc. The aim of this paper is the
parameter setting in a fully distributed environment.

Background and related work: Following the taxonomy of
Eiben et al. [4], we distinguish two types of parameter setting: the
first one is off-line, before the actual run, often called parameter

tuning, and the second one is on-line, during the run, called param-

eter control. Usually, parameter tuning is done by testing all or a
subset of possible parameters, and select the combination of param-
eters which gives the best performances. Obviously, this method is
time consuming. Besides, a parameters setting at the beginning of
the optimization process could be inappropriate at the end. Sev-
eral approaches are used for the parameters control. Determinist
ones choose an a-priori policy of modification. But, the choice of
this policy gets more complicated compared to the static setting as
the complexity of design increases. Self-adaptive techniques en-
code the parameters into the solution and evolve them together.
This approach is successfully applied in continuous optimization
[6]. Nevertheless, in combinatorial optimization it often creates
a larger search space leading to efficiency loss. Finally, adaptive
methods use the information from the history of the search to mod-
ify the parameters. The hyperheuristics are one example [2]. They
are heuristics that adaptively control (select, combine, generate, or
adapt) other heuristics. Another example is the Adaptive Operator
Selection (AOS) which controls the application of the variation op-
erator, using probability matching, adaptive pursuit [12], or multi-
armed bandit [3] techniques. In this work, we focus on parameters
control methods in a distributed setting.

In fact, the increasing number of CPU cores, parallel machines
like GPGPU, grids, etc. makes more and more the distributed en-
vironments the natural framework to design effective optimization
algorithms. Parallel Evolutionary Algorithms (EA) are well suited
to distributed environments, and have a long history with many suc-
cess [13]. In parallel EA, the population is structured: the individu-
als interact only with their neighbor individuals. Two main parallel
EA models can be identified. In the island (or multi-population)
one, the whole population is divided into several ones. In the cel-
lular model, the population is embedded on a regular toroidal grid.
Of course, between this coarse grained to fined grained, many vari-
ant exist. This field of research received more and more attention.
Recent theoretical and experimental works study the influence of

parallelism [9, 10], or study the fined grained population structure
on performances [8].

Previous works control the specific parameters of parallel EA, or
others parameters. In [1], the architecture of workers with a global
controller is used to self-adapt the population size in each island.
Population size, and number of crossover points is controlled us-
ing the average value in the whole population in [11]. Those two
examples of works use a parallel environment where a global in-
formation can be shared. In the work of Tongchim et al. [14], a
distributed environment is considered for the parameters control.
Each island embeds two parameters settings. Each parameters is
evaluated on half the population, and the best parameter setting is
communicated to the other islands which is used to produce new
parameters. So, parameters are controlled in a self-adaptive way
using local comparison between two settings only. Laredo et al. [7]
propose the gossiping protocol newcast for P2P distributed popula-
tion EA. The communication between individuals evolves towards
small-world networks. Thus, the selection pressure behaves like in
panmictic population, but population diversity and system scalabil-
ity outperform the fully connected population structure.

In summary, four main issues has been studied in parameter con-
trol in parallel EA: static strategies where the parameters can be dif-
ferent for each island but does not change during the search; strate-
gies that use a global controller; self-adaptive strategies where each
node compares possible parameter settings; and distributed strate-
gies that evolve the communication between nodes. In this work,
we propose a new and intuitive way to control the parameters in
distributed environment: during the search, from a set of meta-
heuristics which correspond to possible parameter settings, each
node select one metaheuristic to execute according to local infor-
mation (e.g. a performance measure) given by the other nodes.

Contributions and outline: In this paper, we define a new adap-
tive parameters control method called distributed adaptive meta-
heuristic selection (DAMS) dedicated to distributed environments.
DAMS is designed in the manner of heterogeneous island model
EAs where different metaheuristics live together. In this context,
the distributed strategy (Select Best and Mutate strategy) which se-
lects either the best metaheuristic identified locally, or one random
metaheuristic is defined and studied. For more simplicity, but also
to enlighten the main features of this strategy, the SBM is given
in the framework of DAMS. Generally speaking, from an exter-
nal observer, a distributed environment can be viewed as a unique
global system which can be optimized in order to perform effi-
ciently. However, the existence of such a global observer is not
possible in practice nor mandatory. From DAMS point of view, the
optimization process in such a distributed environment is though in
a very local manner using only local information to coordinate the
global distributed search and guide the optimization process. The
issue of metaheuristic selection in distributed environments is intro-
duced in Section 2. From that issue, the DAMS framework is given
in Section 3 bringing out three levels of design. The select Best
and Mutate strategy (SBM) is then addressed in Section 4. Dif-
ferent SBM properties are studied in Section 5 through extensive
experimentations using the oneMax problem. Finally, in Section 6
we conclude with some open issues raised by DAMS.

2. SELECTION OF METAHEURISTIC IN DIS-

TRIBUTED ENVIRONMENTS

2.1 Position
Let us assume that to solve a given optimization problem, we

can use a set M of atomic function that we can apply in an it-

erative way on a solution or a population of solutions. By atomic
function we mean a black-box having well defined input and output
specifications corresponding to the problem being solved. In other
words, we do not have any control on an atomic function once its
is executed on some input population of solutions. To give a con-
crete example, an atomic function could be a simple (determinis-
tic or stochastic) move according to a well defined neighborhood.
It could also consist in applying the execution of a metaheuristic
for fixed number of iterations. Hence, an atomic function can be
viewed from a very general perspective as a undividable, fixed and
fully defined metaheuristic. So, in the following we call an atomic
metaheuristic, or shorter a metaheuristic, the atomic functions.

In this context, where the atomic metaheuristics can be used in a
sequential way, designing a strategy to solve an optimization prob-
lem turns out to design an iterative algorithm that carefully com-
bines the atomic functions (metaheuristics) in a specific order. In
this paper, we additionally assume that we are given a set of com-
putational resources that can be used to run the atomic metaheuris-
tics. These computational resources could be for instance a set of
physical machines distributed over a network and exchanging mes-
sages, or some parallel processors having some shared memory to
communicate.

Having such a distributed environment and the set of atomic
metaheuristic at hand, the question we are trying to study in this
paper is as following: how can we design an efficient distributed

strategy to solve the optimization problem? Obviously, the per-
formance of the designed strategy depends on how the distributed

combination of the atomic operations is done. In particular, one
have to adapt the search at runtime and decide distributively which
atomic function should be applied at which time by which com-
putational entity. The concept of DAMS introduced in this paper
aims at defining in a simple way a general algorithmic framework
allowing us to tackle the latter question.

2.2 Example of an optimal strategy
To give an algorithm following the DAMS framework, let us con-

sider the following simple example. Assume we have a network of
4 nodes denoted by: {n1, . . . , n4}. Any two nodes, but nodes n1

and n4 (see Fig 1), can communicate together by sending and re-
ceiving messages throughout the network. Assume that the atomic
operations we are given are actually composed of four population-
solution based metaheuristics denoted by: {n1, . . . , n4}, i.e., each
metaheuristic accepts as input a population of solutions and outputs
a new one. Then, starting with a randomly generated population,
our goal is to design a distributed strategy that decides how to dis-
tribute the execution of our metaheuristics on the network and what
kind of information should be exchanged by computational nodes
to obtain the best possible solution. To make it simple, assume
that the best strategy, which can be considered as a distributed or-
acle strategy, is actually given by distributed algorithm 1 (See also
Fig. 1 for an illustration). In other words, any other distributed
strategy cannot outperforms Algorithm 1.

Having this example in mind, the question we are trying to an-
swer is then: How can we design a distributed strategy which is
competitive compared to the oracle of algorithm 1? Finding such a
strategy is obviously a difficult task. In fact, finding the best map-
ping of our metaheuristics into the distributed environment is in
itself an optimization problem which could be even harder than the
initial optimization problem we are trying to solve. In this con-
text, one possible solution is to map the metaheuristics into the
distributed environment in an adaptive way in order to guide the
distributed search and operate as close as possible of the oracle
strategy (Algorithm 1 in our example). This is exactly the ultimate

Algorithm 1: Oracle strategy of distributed adaptive meta-
heuristic selection

Generate a random solution on each node ni with
i ∈ {1, . . . , 4};
Run M3 in parallel on each ni with i ∈ {1, . . . , 4};
Exchange best found solution;
Run M1 in parallel on each ni with i ∈ {1, 2};
Run M2 in parallel on each ni with i ∈ {3, 4};
Exchange best found solution;
Run M4 in parallel on each ni with i ∈ {1, . . . , 4};
Return best found solution;

M3

M3 M3

M3

M2 M4M1

M4 M4

M4

M1 M2

Figure 1: Illustration of the distributed oracle strategy of algo-

rithm 1. At the beginning all nodes {n1, . . . , n4} run M3, then

M1 and M2 are used, and finally M4 concludes the distributed

search.

goal of the adaptive metaheuristic selection in distributed environ-
ments. In the following section, we introduce a general algorithm,
DAMS, and discuss its different components.

3. DAMS: A GENERIC FRAMEWORK
Generally speaking, a Distributed Adaptive Metaheuristic Se-

lection (DAMS) is an adaptive strategy that allows computational
nodes to coordinate their actions distributively by exchanging lo-
cal information. Based only on a local information, computational
nodes should be able to make efficient local decisions that allows
them to guide the global search efficiently (i.e., to be as efficient as
possible compared to a distributed oracle strategy).

Before going into further details and for the sake of simplicity,
we shall abstract away the nature of the distributed environment
under which a DAMS will be effectively implemented. For that
purpose, we use a simple unweighted graph G = (V,E) to model
the distributed environment. A node v ∈ V models a computa-
tional node (e.g., a machine, a processor, a process, etc). An edge
(u, v) ∈ E models a bidirectional direct link allowing neighboring
nodes u and v to communicate together (e.g., by sending a message
through a physical network, by writing in a shared local/distant
memory, etc).

A high level overview of DAMS is given in distributed algo-
rithm 2. Notice that the high level code given in algorithm 2 is
executed (in parallel) by each node v ∈ V . The input of each node
v is a setM of atomic metaheuristics.

Each node v participating into the computations has three local

variables: A population P which encodes a set of individuals. A
set S which encodes the local state of node v. The local state S of
node v is updated at each computation step and allows node v to
make local decisions. Finally, each node has a current metaheuris-
tic denoted by M .

As depicted in algorithm 2, a DAMS operates in many rounds
until some stopping condition is satisfied. Each round is organized
in three levels.

The Distributed Level: This level allows nodes to communicate

Algorithm 2: DAMS: high level code for node v ∈ V

Input: A set of metaheuristicsM
M ← INIT_META();
P ← INIT_POP();
S ← INIT_STATE();
I ← {M,P,S}; /∗v’s initial local

information
∗
/

repeat
/
∗∗

Distributed Level
∗∗
/

c← LOCAL_COMMUNICATION(I);
P ← UPDATE_POPULATION(I,c);
S ← UPDATE_LOCAL_STATE(I,c);
/
∗∗

Metaheuristic Selection Level
∗∗
/

M ← SELECT_META(I);
/
∗∗

Atomic Low Level
∗∗
/

(P,S)← APPLY_META(M,P);
until STOPPING_CONDITION(I) ;

together according to some distributed scheme and to update their
local information. This step is guided by the current local infor-
mation I = {M,P,S} which encodes the experience of node v
during the distributed search. Typically, a node can sends and/or
receives a message to one or many of its neighbors to share some
information about the ongoing optimization process. According to
its own local information (variable I) and the local information ex-
changed with neighbors (variable c), node v can both update its
local state S and its local population P . Updating local state S is
intended to allow node v to record the experience of its neighbors
for future rounds and make local decisions accordingly. Updating
local population P aims typically at allowing neighboring nodes to
share some representative solutions found so far during the search,
e.g. best individuals. This is the standard migration stage of parallel
EA. Finally, we remark that since at each round local information
I of node v is updated with the experience of its neighbors, then
after some rounds of execution, we may end with a local informa-
tion I that reflects the search experience of not only v’s neighbors
but of other nodes being farther away in the network graph G, e.g.,
the best found solution or the best metaheuristic could be spread
through the network with a broadcast communication process.

The Metaheuristic Selection Level: This level allows a node to
locally select a specific metaheuristic M to apply from set M of
available metaheuristics. First, we remark that this level may not

be independent of the distributed level. In fact, the decision of se-
lecting a metaheuristic is guided by local information I which is
updated at the distributed level. Although the metaheuristic choice
is executed locally and independently by each node v, it may not

be independent of other nodes choices. In fact, the local commu-
nication step shall allow nodes to coordinate their decisions and
define distributively a cooperative strategy. Second, since at the
distributed level, local information I of a a given node v could store
information about the experience of other nodes in the network, the
metaheuristic choice can clearly be adapted accordingly. There-
fore, the main challenge when designing an efficient DAMS is to
coordinate the Metaheuristic Selection level and the Distributed
Level in order to define the best distributed optimization strategy.

The Atomic Low Level: At this level a node simply executes
the selected metaheuristic M using its population P as input. No-
tice that ’atomic’ refers to the fact that a node cannot control the
sequential metaheuristic execution in any way. However, after ap-
plying a given metaheuristic, the population and the local state of
each node may be updated. For instance, one can decide to move to

the new population following a given criterion or to simply record
some information about the quality of the outputted population us-
ing local state S .

4. SELECT BEST AND MUTATE STRATEGY
The originality of DAMS framework is to introduce a metaheuris-

tic selection level which adaptively select a metaheuristic according
to local information shared by the other neighboring nodes. In this
section, we give a metaheuristic selection strategy, the Select Best
and Mutate strategy (SBM), which specify the DAMS.

For the sake of clarity, we consider the classical message passing
model: We consider an n-node simple graph G = (V,E) to model
a distributed network. Two nodes u and v, such that (u, v) ∈ E,
can communicate together by sending and receiving messages to-
ward edge (u, v). A high level description of SBM is given in
algorithm 3 and is discussed in next paragraphs. Note that the
code of algorihtm 3 is to be executed (in parallel) on every node
v ∈ V . The algorithm accepts as input a finite set of metaheuristics
M = ∪m

k=1{Mk} and a probability parameter pmut.

Algorithm 3: SBM code for every node v ∈ V

Inputs: A set of metaheuristicsM = ∪m

k=1{Mk};
A metaheuristic mutation rate pmut ∈ [0, 1] ;

r ← 0;
k ← INIT_META(M);
P ← INIT_POP();
repeat

/
∗
Distributed Level

∗
/

Send Msg(r, k, P) to each neighbor;
P ← {P}; S ← {(r, k)};
for each neighbor w do

Receive Msg(r′, k′, P ′) from w;
P ← P ∪ P ′;
S ← S ∪ {(r′, k′)};

P ← UPDATE_POPULATION(P);
/
∗
Metaheuristic Selection Level

∗
/

kbest ← SELECT_BEST_META(S);
if RND(0, 1) < pmut then

k ← RND(M\Mkbest
)

else k ← kbest;
/
∗
Atomic Low Level

∗
/

Find a new population Pnew by applying metaheuristic
Mk with P as an initial population;
r ← REWARD(P, Pnew);
P ← Pnew;

until Stopping condition is satisfied ;

Clearly, SBM follows the general scheme of a DAMS defined
previously in Algorithm 2. One can distinguish the three basic lev-
els of a DAMS and remark their inter-dependency.

SBM Distributed level: The local information defined by a DAMS
is encoded implicitly in SBM using variables r, k and P . For every
node v, variable k refers to metaheuristic Mk considered currently
by v. Variable r (reward) refers to the quality of metaheuristic Mk.
Variable P denotes the current population of node v. SBM oper-
ates in many rounds until a stopping condition is satisfied. At each
round, the distributed level consist in sending a message contain-
ing triple (r, k, P) to neighbors and symmetrically receiving the
respective triples (r′, k′, P ′) sent by neighbors. Then after, node
v constructs two sets P and S . Set P contains information about

neighbors populations. Node v can then update its current popula-
tion P according to set P . For instance, one may selects the best
received individuals, or even apply some adaptive strategy taking
into account the search history. As for set S , it gathers information
about the quality of other metaheuristics considered by neighbors.
This set is used at the next DAMS level to decide on the new cur-
rent metaheuristic to be chosen by node v.

SBM Metaheuristic Selection Level: choosing a new meta-
heuristic is guided by two ingredients. Firstly, using set S , node
v selects a metaheuristic according to neighbors information. One
can imagine many strategies for selecting a metaheuristic possibly
depending not only on S but also on received populations P . In
SBM, we simply select metaheuristic kbest corresponding to the
best received reward r. Notice that defining what is the best ob-
served metaheuristic could be guided by different policies. From
an exploitation point of view, function SELECT_BEST_META has
the effect of pushing nodes to execute the metaheuristic with the
best observed performance during the search process. Obviously, a
metaheuristic with good performance at some round could quickly
becomes inefficient as the search progresses. To control this is-
sue, we introduce a exploration component in the selection level.
In SBM, this component is simply guided by a metaheuristic mu-
tation operator. In fact, every node decides to select at random
another metaheuristic different from Mkbest

with rate pmut. Intu-
itively, these two ingredients in SBM selection level shall allow dis-
tributed nodes to obtain a good tradeoff between exploitation and
exploration of metaheuristics, and adapt their decisions according
to the search.

SBM Atomic Low Level: Once a new metaheuristic Mk is se-
lected, it is used to compute a new population. To evaluate the
performance of metaheuristic Mk , SBM simply compares the pre-
vious population P with the new population Pnew using a generic
REWARD function. For instance, a simple evaluation strategy could
be by comparing the best individual fitness, the average population
fitness, or even more sophisticated adaptive strategies taking into
account the performances observed in previous rounds.

5. EXPERIMENTAL STUDY OF SBM
In this section, we study a specific SBM-DAMS by fully speci-

fying its different levels. We report the results we have obtained by
conducting experimental campaigns using the oneMax problem.

5.1 SBM setting
To conduct experimental study of the SBM-DAMS, we test the

algorithm on a classical problem in EA, the OneMax problem. This
problem was used in recent works of Fialho et al. [5] which propose
a (sequential) Adaptive Operator Selection (AOS) method based on
the Multi-Armed Bandits, and a credit assignment method which
uses the fitness comparison. The oneMax problem, the "drosophila"
of evolutionary computation, is a unimodal problem defined on bi-
nary strings of size l. The fitness is the number of "1" in the bit-
string. Within the AOS framework, the authors in [5] considered
(1+λ)−EA and four mutation operators to validate their approach:
The standard 1/l bit-flip operator (every bit is flipped with the bi-
nomial distribution of parameter 1/l where l is the length of the
bit-strings), and the 1−bit, 3−bit, and 5−bit mutation operators
(the b−bit mutation flips exactly b bits, uniformly selected in the
parents). In the rest of the paper, we shall also consider the same
four atomic metaheuristics to study DAMS. Each atomic function
is one iteration of (1 + λ)-EA using one of the four mutation op-
erators. Unless stated explicitly, parameter λ is set to 50 as in [5].

Notice also by studying SBM-DAMS with these well-understood
operators does not undergo any major weakness of our approach
since these operators mainly exhibits different exploration degrees
that one can encounter in other settings when using other operators.

In all reported experiments, the length of the bit strings is set to
l = 104 as in [5]. Population P of SBM-DAMS is reduced to a
single solution x. The initial solution is set to (0, . . . , 0). The re-
wards r is the fitness gain between parent and offspring solutions:
f(xnew) − f(x). The migration policy (UPDATE_POPULATION)
is elitist, it replaces the current solution by one of the best received
solutions if its fitness is strictly higher. The algorithm stops when
the maximal fitness l is reached. This allows us to compare the per-
formances of SBM-DAMS according to the number of evaluations
as used in sequential algorithms; but also in terms of rounds (total
number of migration exchange) as used in parallel frameworks, and
in terms of messages cost that is the total number of local commu-
nications made through the distributed environment.

In the remainder, the oneMax experimental protocol is used to
first compare the efficiency of SBM-DAMS to some oracle and
naive strategies, then the parallel properties are analyzed with a
comparison to the sequential AOS method.

5.2 Experimental setup
Three network topologies are studied: complete, grid, and cy-

cle. In the complete one, the graph is a clique, i.e., every node is
linked to all other nodes. In the grid topology, every node can com-
municate with four other neighbors except at the edge of the grid
(non-toroidal grid). In the circle topology, nodes are linked to two
others nodes to form a circle.

Since there exist no previous distributed approaches addressing
the same issues than DAMS, we shall compare SBM-DAMS to the
state-of-the-art sequential adaptive approaches (Section 5.4) and
also to two simple distributed strategies (Section 5.3) called rnd-
DAMS and seqOracle-DAMS. (i) In rnd-DAMS, each node selects
at random (independently of node states) at each round a meta-
heuristic to be executed. It allows us to evaluate the efficiency of
SBM selection method based on the best instant rewards. (ii) In
seqOracle-DAMS, each node executes the sequential oracle which
gives the operator with the maximum fitness gain according to the
fitness of node current solution. The sequential oracle is taken
from the paper [3]. It is used independently by each node with-
out taking into account rewards, or observed performances of oth-
ers nodes. Notice that that seqOracle-DAMS outperforms a static
strategy which use only one metaheuristic, but it is different from a
pure distributed oracle which could lead to better performances for
the whole distributed system, by taking take into account all nodes
to select the metaheuristic of each node.

For the latter two based-line strategies, we use the same elitism
migration policy as SBM-DAMS and evaluate their performances
using the same three topologies. For each topology, network size is
n ∈ {4, 8, 16, 36, 64}, and the performance measures are reported
over 20 independent runs. Notice that for this particular study, the
number of evaluations is λ.n times the number of rounds. The
number of exchanged messages is |E| times the number of rounds
where |E| is the number of communication links in the considered
topology.

5.3 Adaptation properties
To tune off-line, the metaheuristics mutation rate of SBM-DAMS,

we perform a design of experiments campain with pmut ∈ {0.0005,
0.005, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3}. Fig. 2 shows the average
number of rounds to reach the optimum according to mutation rate
pmut for different topologies and network sizes. Except for small

size n = 4, the range of performances is small according to the
mutation rate.

 2500

 3000

 3500

 4000

 4500

 0.0001 0.001 0.01 0.1 1

R
ou

nd
s

Mutation Rate

n=4
n=8

n=16
n=36
n=64

 2500

 3000

 3500

 4000

 4500

 0.0001 0.001 0.01 0.1 1

R
ou

nd
s

Mutation Rate

n=4
n=8

n=16
n=36
n=64

 2500

 3000

 3500

 4000

 4500

 0.0001 0.001 0.01 0.1 1

R
ou

nd
s

Mutation Rate

n=4
n=8

n=16
n=36
n=64

Figure 2: Average number of rounds according to metaheuris-

tic mutation rate for different sizes n and different topologies

(from top to bottom: complete, grid, and circle).

Fig. 3 shows the average number of rounds to reach the optimum
for different DAMS as a function of network size and according to
the three different topologies. The metaheuristic mutation rate is set
to pmut = 10−3 for SBM-DAMS. SBM-DAMS outperforms the
based-line strategies regardless to topology, except for small net-
works with only 4 nodes. The difference is statistically significant
according to the non-parametric test of Mann-Whitney at 1% level
of confidence. This shows that the selection best-mutation scheme
of SBM-DAMS is efficient against other naive strategies.

From Fig 3, it could be surprising, at a first look, that SBM-
DAMS outperforms seqOracle-DAMS, or even more the random
strategy rnd-DAMS for complete topology with network size over
16. To explain this result, Fig. 4 shows the frequency of the number
of nodes selecting each metaheuristic all along SBM-DAMS execu-
tion. Left figures display particular runs which obtain the median
performances for different network sizes. Right figures displays
corresponding average frequencies.

In left figures, we observe that nearly all nodes execute the same
metaheuristic at the same time. One metaheuristic always floods
the network. Only few tries of other metaheuristics appear with the
rate of the metaheuristic mutation rate. Nevertheless, the popula-
tion of nodes is able to switch very quickly from one operator to
another one. In addition, we observe that as the number of nodes

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

R
ou

nd

Size

SBM-DAMS
rnd-DAMS

seqOracle-DAMS

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

R
ou

nd

Size

SBM-DAMS
rnd-DAMS

seqOracle-DAMS

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

R
ou

nd

Size

SBM-DAMS
rnd-DAMS

seqOracle-DAMS

Figure 3: Average number of rounds according to size of the

network for different topologies (from top to bottom: complete,

grid, and circle)

grows, the 1/l bit-flip mutation dominates the 5 bits mutation at
the very beginning of the runs. This is confirmed by the average
frequencies as a function of rounds (right figures) where SBM-
DAMS selects bit-flip operator more frequently than 5 bits in first
rounds. At the opposite, the sequential oracle seqOracle-DAMS
always chooses the 5 bits mutation operator regardless to network
size. In fact, this oracle does not care about the joint/distributed
performances of other nodes and chooses the best operator from a
pure sequential/selfish point of view. Hence, it always choses the
5 bit operators since it has a better performance (in average) com-
pared to bit-flip for low fitness. However, this selfish strategy is not
optimal from the distributed point of view. In fact, let us consider
n nodes with initial solution 0l. When they all use the same 5 bits
mutation, the maximal fitness gain over the network after one round
is always 5. In that case, the fitness always increases by exactly 5.
When all nodes use the same 1/l bit-flip mutation, the probability
that the fitness gain is strictly over 5 is 1 − αλ·n where α is the
probability that at most 5 bits are flipped1 in one iteration. This
probability increases fast with the number of nodes. Hence, when
considering the whole distributed system, the most efficient muta-
tion operator is the bit-flip which can not be predicted by a selfish
oracle. This difference between an optimal local independent deci-
sion, and an optimal local distributed decision, is naturally captured
by SBM-DAMS which clearly grants more bit-flip as the number

1More precisely, α =
∑

5

i=0

(

l

i

)

(1/l)i(1− 1/l)l−i

of nodes increases. Note that this property is captured by SBM-
DAMS without any global centralized control. In fact, while being
very local and independent of the topology or any global knowl-
edge of the network, the simple local communication policy used
SBM-DAMS seems to be very efficient.

Notice also that the idea of optimal distributed decision, which
is clearly demonstrated at the beginning of a run, could also appear
later in the run. However, it is difficult to compare our SBM-DAMS
with a global distributed oracle strategy as the possible of different
of the system (for example here at most ln), and the number of
possible metaheuristics distribution (here 4n) is huge. This issue is
left as an open question and addressed in the conclusion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

F
re

qu
en

cy
Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
re

qu
en

cy

Rounds

fitness
5 bits

3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

F
re

qu
en

cy

Rounds

fitness
5 bits

3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

F
re

qu
en

cy

Rounds

fitness
5 bits

3 bits
1 bit

bit-flip

Figure 4: Evolution of the frequency of each mutation oper-

ator for the complete network for different sizes (from top to

bottom: n = 4, 16, and 36) and pmut = 10−3. Left figures

are particular runs which give the median performances, and

right figures are the average performances, as a function of the

number of rounds.

5.4 Parallelism properties
In this section, we study the performance of SBM-DAMS com-

pared to a pure sequential adaptive strategy. Our goal is to evaluate
the impact of parallelism and distributed coordination introduced
by SBM-DAMS compared to a sequential setting. Let us first re-
mark that at each round of SBM-DAMS, each node is allowed to
run an iteration of a (1 + λ)-EA (among four operators). Thus,
over all nodes, SBM-DAMS performs λ · n evaluations in parallel.
Therefore, to be fair, SBM-DAMS should be compared to a pure
sequential strategy which is allowed to run a (1 + λ · n)-EA at

each iteration. This, exactly what we report in the following exper-
iments, where the performance of SBM-DAMS is studied for fixed
λ · n = 50.

In Fig 5, we report the performance of SBM-DAMS according
to the metaheuristic mutation rate pmut using a complete graph
with n = 50 nodes and λ = 1, i.e., each node is allowed to
run an iteration of a (1 + 1)-EA at each round. First, we observe
as previously that SBM performs better for a mutation probability
around 10−3. More importantly, for mutation rate pmut = 10−3,
the average number of rounds before SBM finds the best solution
is 5441 (standard deviation is 593). As depicted in Fig 5, SBM-
DAMS is thus slightly better (in average) than the adaptive multi-
armed bandit strategy (DMAB) from [3], but worse than the oracle
strategy and the best existing multi-armed bandit strategy from [5].
However, we remark that DMAB algorithms are different in nature
from SBM. In fact, DMAB is allowed to update the information
about mutation operators each time a new individual (among λ) is
generated during the (1 + λ)-EA iteration, whereas SBM is not
since the (1 + 1)-EA in SBM-DAMS is executed in parallel by
all nodes. Overall, we can yet reasonably state that SBM is com-
petitive compared to other sequential strategies in terms of number
of rounds needed to reach to optimal solution. More importantly,
since SBM is distributed/parallel in nature, an effective implemen-
tation of SBM on a physical network can lead to better running
time compared to DMAB which is inherently sequential2. In other
words, the effective running time of SBM-DAMS could be divided
by λ = 50 (compared to DMAB) which is the best one can hope to
obtain when using (1 + λ)-EAs.

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0.0001 0.001 0.01

R
ou

nd
s

Mutation Rate

SBM-DAMS
DMAB (5467)

ex-DMAB (5088)
Oracle (4970)

Figure 5: Average of number of rounds of SBM (complete

topology, n = 50 and λ = 1) according to metaheuristic muta-

tion rate Vs DMAB, ex-DMAB and the sequential Oracle.

In Fig 6, we report the adaptation properties of SBM-DAMS
compared to the sequential oracle strategy. Top left figure shows
that nodes act globally in average closely to the sequential oracle
illustrated by bottom figure. In particular, one can see that nodes
switch (in average) to the 3-bit and the rate-bit mutation operators
around the same round than the sequential oracle. This is an inter-
esting property especially for these two operators which should be
used during a small window of rounds to speed up the search. Top
right figure displays one particular run which obtains the median
performance over all runs. Again, one can clearly see that all nodes
can switch from a mutation operator to a better one very quickly at
runtime.

Finally, in Fig 7, we report the performance of SBM-DAMS for
different topologies using different sizes n such that λ · n = 50,
namely (λ, n) ∈ {(10, 5), (5, 10), (2, 25), (1, 50)}. Left figures

2Each time an individual (over λ) is generated by DMAB, the re-
ward information about mutation operators needs to be updated.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

F
re

qu
en

cy

Rounds

fitness
5 bits
3 bits
1 bit

bit-flip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
re

qu
en

cy

Rounds

fitness
5 bits

3 bits
1 bit

bit-flip

Figure 6: Top left (resp. right): Evolution of the average num-

ber of nodes (resp. number of nodes for the median run) of

each mutation operator using a complete topology with n = 50,

λ = 1, and pmut = 10−3. Bottom: Evolution of the mutation

operator in average according the the sequential oracle with

λ = 50.

reports the robustness of SBM-DAMS according to mutation prob-
ability pmut. Right figures displays the evolution of the number
of rounds for a mutation parameter pmut = 10−3 as a function
of n. One can see that for the complete topology, SBM-DAMS is
robust and its performances is almost constant for all l · n = 50.
However, it is without surprise that for the grid and the cycle, SBM-
DAMS performances degrade as the size of the network goes higher
(equivalently as λ goes smaller). This can be intuitively explained
as following: (i) for smaller λ the probability that a given mutation
operator produces a better solution is smaller and (ii) the probabil-
ity that a node, which has mutated from one operator to a better
one, informs all other nodes gets smaller as the network diameter
gets higher. Hence, from a pure parallel point of view, the con-
sidered topology could have a non negligible impact on the overall
speedup of SBM-DAMS as previously suggested by Fig. 3.

6. CONCLUSION AND OPEN QUESTIONS
In this paper, we have proposed a new distributed adaptive method,

the select best and mutate strategy (SBM), in the generic framework
of distributed adaptive metaheuristic selection (DAMS) based on
a three-layer architecture. SBM strategy selects locally the meta-
heuristic with the best instant reward and mutates it according to a
mutation rate parameter. The conducted experimental study shows
SBM robustness and efficiency compared to naive distributed and
sequential strategies. Many futures studies and open question are
suggested by DAMS. Firstly, it would be interesting to study DAMS
for other problems and using other EAs. For instance, when con-
sidering population-based metaheuristics many issues could be ad-
dressed for population migration and population update. In par-
ticular, one can use some distributed adaptive policies to guide
population evolution. Adaptive migration taking into account the
performance of crossover operators should also be introduced and
studied. DAMS could also be particularly accurate to derive new

 6000

 8000

 10000

 12000

 14000

 0.0001 0.001 0.01 0.1 1

R
ou

nd
s

Mutation Rate

l=10, n=5
l=5, n=10
l=2, n=25
l=1,n=50

 6000

 8000

 10000

 12000

 14000

 5 10 15 20 25 30 35 40 45 50

R
ou

nd

Size

 6000

 8000

 10000

 12000

 14000

 0.0001 0.001 0.01 0.1 1

R
ou

nd
s

Mutation Rate

l=10, n=5
l=5, n=10
l=2, n=25
l=1,n=50

 6000

 8000

 10000

 12000

 14000

 5 10 15 20 25 30 35 40 45 50

R
ou

nd

Size

 6000

 8000

 10000

 12000

 14000

 0.0001 0.001 0.01 0.1 1

R
ou

nd
s

Mutation Rate

l=10, n=5
l=5, n=10
l=2, n=25
l=1,n=50

 6000

 8000

 10000

 12000

 14000

 5 10 15 20 25 30 35 40 45 50

R
ou

nd

Size

Figure 7: From top to down: complete, grid, cycle topologies.

Left: Average number of rounds according to metaheuristic

mutation rate. Right: Average number of rounds according

to size n verifying λ · n = 50.

algorithms to tackle multi-objective optimization problems, since,
for instance, one can use the parallelism properties of DAMS to
explore different regions of the search space by adapting the search
process according to different objectives.

For SBM-DAMS, many questions remain open. For instance,
one may ask at what extent one can design a distributed strategy
based on multi-armed bandits techniques to select metaheuristics,
compute metaheuristic rewards, and adapt the search accordingly.
Further work needs also to be conducted to study the impact of the
distributed environment. For instance, asynchrony and low level
distributed issues on concrete high performance and large scale
computing platforms, such as grid and parallel machines, should
be conducted. Another challenging issue is to adapt local commu-
nications between nodes, for instance, to use the minimum number
of messages and obtain the maximum performances. In particular,
it is not clear how to tune the number of nodes and the topology
in a dynamic way in order to balance the communication cost and
the computation time, i.e., parallel efficiency. From the theoretical
side, we also plan to study the parallelism of SBM analytically and
its relation to a fully distributed oracle that still needs to be defined.

7. REFERENCES
[1] X. Bonnaire and M.-C. Riff. Using self-adaptable probes for

dynamic parameter control of parallel evolutionary
algorithms. In Foundations of Intelligent Systems, volume
3488 of LNCS, pages 237–261. 2005.

[2] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and
S. Schulenburg. Hyper-Heuristics: An Emerging Direction in
Modern Search Technology. In Handbook of Metaheuristics,
chapter 16, pages 457–474. 2003.

[3] L. Da Costa, A. Fialho, M. Schoenauer, and M. Sebag.
Adaptive operator selection with dynamic multi-armed
bandits. In 10th ACM conf. on Genetic and Evolutionary

Computation (GECCO’08), pages 913–920, 2008.

[4] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E.
Smith. Parameter control in evolutionary algorithms. In
Parameter Setting in Evolutionary Algorithms, pages 19–46.
2007.

[5] A. Fialho, M. Schoenauer, and M. Sebag. Toward
comparison-based adaptive operator selection. In 12th ACM

conf. on Genetic and Evolutionary Computation

(GECCO’10), pages 767–774, 2010.

[6] N. Hansen and A. Ostermeier. Completely derandomized
self-adaptation in evolution strategies. Evolutionary

Computation, 9(2):159–195, 2001.

[7] J. L. Laredo, A. E. Eiben, M. Steen, and J. J. Merelo. Evag: a
scalable peer-to-peer evolutionary algorithm. Genetic

Programming and Evolvable Machines, 11:227–246, 2010.

[8] J. L. J. Laredo, J. J. Merelo, C. Fernandes, A. Mora, M. I. G.
Arenas, P. Castillo, and P. G. Sanchez. Analysing the
performance of different population structures for an
agent-based evolutionary algorithm. In Learning and

Intelligent Optimization (LION’05), pages 50–54, 2011.

[9] J. Lässig and D. Sudholt. The benefit of migration in parallel
evolutionary algorithms. In 12th ACM conf. on Genetic and

evolutionary computation (GECCO’10), pages 1105–1112,
2010.

[10] J. Lässig and D. Sudholt. General scheme for analyzing
running times of parallel evolutionary algorithms. In Parallel

Problem Solving from Nature PPSN - XI, volume 6238 of
LNCS, pages 234–243. 2011.

[11] K. G. Srinivasa, K. R. Venugopal, and L. M. Patnaik. A
self-adaptive migration model genetic algorithm for data
mining applications. Inf. Sci., 177:4295–4313, 2007.

[12] D. Thierens. An adaptive pursuit strategy for allocating
operator probabilities. In 7th conf. on Genetic and

evolutionary computation (GECCO’05), pages 1539–1546,
2005.

[13] M. Tomassini. Spatially Structured Evolutionary Algorithms:

Artificial Evolution in Space and Time (Natural Computing

Series). 2005.

[14] S. Tongchim and P. Chongstitvatana. Parallel genetic
algorithm with parameter adaptation. Inf. Process. Lett.,
82:47–54, 2002.

