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GENERIC CONTROLLABILITY OF 3D SWIMMERS IN A PERFECT FLUID

THOMAS CHAMBRION∗ AND ALEXANDRE MUNNIER∗†

Abstract. We address the problem of controlling a dynamical system governing the motion of a 3D weighted
shape changing body swimming in a perfect fluid. The rigid displacement of the swimmer results from the
exchange of momentum between prescribed shape changes and the flow, the total impulse of the fluid-swimmer
system being constant for all times. We prove the following tracking results: (i) Synchronized swimming: Maybe
up to an arbitrarily small change of its density, any swimmer can approximately follow any given trajectory
while, in addition, undergoing approximately any given shape changes. In this statement, the control consists in
arbitrarily small superimposed deformations; (ii) Freestyle swimming: Maybe up to an arbitrarily small change of
its density, any swimmer can approximately tracks any given trajectory by combining suitably at most five basic
movements that can be generically chosen (no macro shape changes are prescribed in this statement).

Key words. Locomotion, Biomechanics, Ideal fluid, Geometric control theory

AMS subject classifications. 74F10, 70S05, 76B03, 93B27

1. Introduction.

1.1. Context. Researches on bio-inspired locomotion in fluid have now a long history.
Focusing on the area of Mathematical Physics, the modeling leads to a system of PDEs (governing
the fluid flow) coupled with a system of ODEs (driving the rigid motion of the immersed body).
The first difficulty mathematicians came up against was to prove the well-posedness of such
systems. This task was carried out in [16] (where the fluid is assumed to be viscous and governed
by Navier Stokes equations), in [13] (for an inviscid fluid with potential flow) and in [5] (for low
Reynolds numbers swimmers, the flow being governed by the stationary Stokes equations).

After the well-posedness of the fluid-swimmer dynamics were established, the following step
was to investigate its controllability. On this topic, still few theoretical results are available: In
[2], the authors prove that a 3D three-sphere mechanism, swimming along a straight line in a
viscous fluid is controllable. In [4], we prove that a generic 2D example of shape changing body
swimming in a potential flow can track approximately any given trajectory.

Some authors are rather interested in describing the dynamics of swimming in terms of
Geometric Mechanics (within the general framework presented for instance in [12]). We refer to
[7] and the very recent paper [8] for references in this area.

In this article, we consider a 3D shape changing body swimming in a potential flow. Under
some symmetry assumptions (the swimmer is alone in the fluid and the fluid-swimmer system
fills the whole space) we prove generic controllability results, generalizing and improving what
has been obtained for a particular 2D model in [4].

1.2. Modeling.

Kinematics. We assume that the swimmer is the only immersed body in the fluid and that
the fluid-swimmer system fills the whole space, identified with R3. Two frames are required
in the modeling, the first one E := (E1,E2,E3) is fixed and Galilean and the second one e :=
(e1, e2, e3) is moving with its origin lying at any time at the center of mass of the swimming
body. At any moment, there exist a rotation matrix R ∈ SO(3) and a vector r ∈ R3 such that, if
X := (X1, X2, X3)

t and x := (x1, x2, x3)
t are the coordinates of a same vector in respectively E
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and e, then the equality X = Rx+r holds. The matrix R is supposed to give also the orientation
of the swimmer. The rigid displacement of the swimmer, on a time interval [0, T ] (T > 0), is
thoroughly described by the functions t : [0, T ] 7→ R(t) ∈ SO(3) and t : [0, T ] 7→ r(t) ∈ R3, which
are the unknowns of our problem. Denoting their time derivatives by Ṙ and ṙ, we can define the
linear velocity v := (v1, v2, v3)

t ∈ R3 and angular velocity vector Ω := (Ω1,Ω2,Ω3)
t ∈ R3 (both

in e) by respectively v := Rtṙ and Ω̂ := RtṘ, where for every vector u := (u1, u2, u3)
t ∈ R3, û

is the unique skew-symmetric matrix satisfying ûx := u × x for every x ∈ R3. Vectors of R6

will sometimes be decomposed in the form f := (f1, f2)t ∈ R3×R3. For every f := (f1, f2) ∈ R6

and g := (g1,g2) ∈ R6, we can define f ⋆ g := (f1 × f2, f1 × g2 − g1 × f2)t ∈ R6.

Shape Changes. Unless otherwise indicated, from now on all of the quantities will be
expressed in the moving frame e. In our modeling, the domains occupied by the swimmer are
images of the closed unit ball B̄ by C1 diffeomorphisms, isotopic the the identity, and tending to
the identity at infinity, i.e. having the form Id+ϑ where ϑ belongs to D1

0(R
3) (definitions of the

function spaces are given in the appendix, Section A). With these settings, the shape changes
over a time interval [0, T ] can be simply prescribed by means of an absolutely continuous function
t ∈ [0, T ] 7→ ϑt ∈ D1

0(R
3). Then, denoting Θt = Id + ϑt, the domain occupied by the swimmer

at the time t ≥ 0 is the closed, bounded, connected set B̄t := Θt(B̄) (do not forget that we are
working in the frame e). We still require some notation: the unit ball’s boundary is Σ := ∂B,
Σt := Θt(Σ) stands for the body-fluid interface, nt is the unit normal vector to Σt directed
toward the interior of Bt and the fluid fills the exterior open set Ft := R3 \ B̄t.

So-called self-propelled constraints are necessary to ensure that the deformations result from
the work of internal forces (they avoid for instance translations to be considered as allowable
shape changes). Let a function ̺ ∈ C0(B̄)+ be given. The density of the deformed body at the
instant t, denoted by ̺t ∈ C0(B̄t), is defined by:

̺t(x) := ̺(Θ−1
t (x))/Jt(Θ

−1
t (x)), (x ∈ B̄t, t ≥ 0), (1.1)

where Jt := | det∇Θt| = det∇Θt (we can drop the absolute values here because Θt(x) → x as
‖x‖R3 → +∞ and det∇Θt(x) 6= 0 for all x ∈ R3 and t ≥ 0). The self-propelled constraints read:

∫

Bt

̺t(x)xdx = 0 and

∫

Bt

̺t(x)∂tΘt(Θ
−1
t (x)) × xdx = 0 (t ≥ 0). (1.2a)

The former identity means that, as already mentioned before, the center of mass of the swimmer
lies at any time at the origin of the moving frame. The latter relation tells us that the angular
momentum (in e) has to remain constant as the swimmer undergoes shape changes. Equivalent
formulations can be obtained up to a change of variables:

∫

B

̺(x)Θt(x) dx = 0 and

∫

B

̺(x)∂tΘt(x)× Θt(x) dx = 0 (t ≥ 0). (1.2b)

The Flow. The fluid is assumed to be inviscid and incompressible. We denote by ̺f > 0
its constant density. The flow is governed by Euler equations. According to Helmholtz’s third
theorem, if the flow is irrotational at the initial time, it remains irrotational for all times. In this
case, the Eulerian velocity is equal at any time to the gradient of a potential function. According
to Kirchhoff’s law, the potential can be decomposed into a linear combination of elementary
potentials, each one connected to a degree of freedom of the system (they consist here in the 6
degrees of freedom of the rigid motion of the body plus those connecting to the deformations).
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Fig. 1.1. Kinematics of the model: The Galilean frame E := (Ej)1≤j≤3 and the moving frame e := (ej)1≤j≤3

with ej = REj (R ∈ SO(3)). Quantities are usually expressed in the moving frame. The domain of the body is
B̄t at the time t and Bt is the image of the unit ball B by a diffeomorphism Θt. The open set Ft := R3 \ B̄t is
the domain of the fluid. The center of mass of the body is denoted r (in E), v := Rt ṙ is its translational velocity
(in e) and Ω its angular velocity.

These ideas have been thoroughly described in a series of papers [7, 13, 14, 4], to which we refer
for further explanations.

The elementary potentials ψi
t, (i = 1, . . . , 6) corresponding to the rigid motion of the swimmer

are harmonic in Ft, tend to zero as infinity and satisfy the Neumann boundary conditions
∂nψ

i
t = (ei × x) ·nt (i = 1, 2, 3) and ∂nψ

i
t = ei−3 ·nt (i = 4, 5, 6) on Σt. They are well defined in

the weighted Sobolev space W 1(Ft) (defined in the appendix, Section A; see also [3] for details).

The overall potential connecting to the rigid displacement is ψt :=
∑3

i=1 Ωiψ
i
t +

∑5
i=4 vi−3ψ

i
t

(t ≥ 0). On the other hand, the elementary potential ϕt associated to the shape changes,
harmonic as well in Ft, satisfies the boundary condition ∂nϕt = wt · nt on Σt (i = 1, . . . , n),
where wt(x) := ∂tΘt(Θ

−1
t (x)) (x ∈ R3). Like the functions ψi

t (i = 1, 2, 3), ϕt belongs toW
1(Ft)

for all t > 0.

Dynamics. The modeling of moving rigid (or shape changing) bodies in an ideal fluid
classically involves the notion of mass matrices. The mass of the body is m :=

∫

B
̺ dx and its

inertia tensor at the time t ≥ 0 is defined by:

I(t) :=

∫

Bt

̺t
[

‖x‖2R3Id− x⊗ x
]

dx =

∫

B

̺
[

‖Θt(x)‖
2
R3Id−Θt(x) ⊗Θt(x)

]

dx. (1.3)

We introduce Mr
b(t) := diag(I(t),mId) (a 6× 6 symmetric bloc diagonal matrix), Mr

f (t) (a 6× 6
symmetric matrix as well) whose entries read:

̺f

∫

Ft

∇ψi
t · ∇ψ

j
t dx, (1 ≤ i, j ≤ 6), (1.4)

and we denote Mr(t) := Mr
b(t)+Mr

f (t). We also need the 6×1 column vector N(t), homogeneous
to a momentum, whose elements read:

̺f

∫

Ft

∇ψi
t · ∇ϕt dx, (1 ≤ i ≤ 6). (1.5)

If we neglect the buoyancy force, it has been proved in a series of papers (we refer for instance
to the already mentioned articles [7, 14] or [4]) that the swimming motion is governed by the
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equation:
(

Ω

v

)

= −M
r(t)−1N(t), (t ≥ 0). (1.6a)

At this point, we can identified ̺t (or more simply ̺ since they are linked through relation (1.1))
as a parameter and the control as being the function t ∈ [0, T ] 7→ ϑt ∈ D1

0(R
3). Notice that the

dependance of the dynamics in the control is strongly nonlinear. Indeed ϑt describes the shape
of the body and hence also the domain of the fluid in which are set the PDEs of the potential
functions involved in the expressions of the mass matrices Mr(t) and N(t).

To determine the rigid motion, Equation (1.6a) has to be supplemented with the ODE:

d

dt

(

R
r

)

=

(

R Ω̂

Rv

)

, (t > 0), (1.6b)

together with Cauchy data for R(0) and r(0). Remark that the dynamics does not depend on ̺
and ̺f independently but only on the relative density ̺/̺f . So we can assume, without loss of
generality, that ̺f = 1 in the sequel.

1.3. Main results. The first result ensures the well posedness of System (1.6) and the
continuity of the input-output mapping:

Proposition 1.1. For any T > 0, any ̺ ∈ C0(B̄)+, any absolutely continuous function
t ∈ [0, T ] 7→ ϑt ∈ D1

0(R
3) (respectively of class Cp, p = 1, . . . ,+∞ or analytic) and any inital

data (R(0), r(0)) ∈ SO(3)×R3, System (1.6) admits a unique solution t ∈ [0, T ] 7→ (R(t), r(t)) ∈
SO(3)×R3 (in the sense of Carathéodory) absolutely continuous on [0, T ] (respectively of class
Cp or analytic).

Let t ∈ [0, T ] 7→ ϑjt ∈ D1
0(R

3) (for j = 1, . . . ,+∞) be a sequence of controls in AC([0, T ], D1
0(R

3))
(see Section A for a definition of this space) which converges in this space to a function t ∈
[0, T ] 7→ ϑ̄t ∈ D1

0(R
3). Let a pair (R0, r0) ∈ SO(3) × R3 be given and denote t ∈ [0, T ] 7→

(R̄(t), r̄(t)) ∈ SO(3) × R3 the solution in AC([0, T ], SO(3) × R3) to System (1.6) with control
ϑ̄ and Cauchy data (R0, r0). Then, the unique solution (Rj, rj) to System (1.6) with control ϑj

and Cauchy data (R0, r0) converges in AC([0, T ], SO(3)×R3) to (R̄, r̄) as j → +∞.
We denote by M(3) the Banach space of the 3 × 3 matrices endowed wit any matrix norm.

The main result of this article addresses the controllability of System (1.6):
Theorem 1.2. (Synchronized Swimming) Assume that the following data are given: (i) A

function ¯̺ in C0(B̄)+ (the target density of the swimmer); (ii) A C1 function t ∈ [0, T ] 7→ ϑ̄t ∈
D1

0(R
3) (the target shape changes) such that the pair (¯̺, ϑ̄) satisfies the self-propelled constraints

(1.2); (iii) A C1 function t ∈ [0, T ] 7→ (R̄(t), r̄(t)) ∈ SO(3) × R3 (the target trajectory to be
followed). Then, for any ε > 0, there exists a function ̺ ∈ C0(B̄)+ (the actual density of the
swimmer) and a function t ∈ [0, T ] 7→ ϑt ∈ D1

0(R
3) (the actual shape changes that can be chosen

of class Cp for any p = 1, . . . ,+∞ or even analytic) such that the pair (̺, ϑ) satisfies (1.2),

‖ ¯̺− ̺‖C0(B̄) < ε, ϑ0 = ϑ̄0, ϑT = ϑ̄T and supt∈[0,T ]

(

‖ϑ̄t − ϑt‖C1
0(R

3)3 + ‖R̄(t) − R(t)‖M(3) +

‖r̄(t) − r(t)‖R3

)

< ε where the function t ∈ [0, T ] 7→ (R(t), r(t)) ∈ SO(3) × R3 is the unique
solution to system (1.6) with initial data (R(0), r(0)) = (R̄(0), r̄(0)) and control ϑ.

This theorem tells us that, maybe up to an arbitrarily small change of its density, any
weighted 3D body undergoing approximately any prescribed shape changes can approximately
track by swimming any given trajectory. It may seem surprising that the shape changes, which
are supposed to be the control of our problem, can also be prescribed. Actually, be aware that
they are only approximately prescribed. We are going to show precisely that arbitrarily small
superimposed shape changes suffice for controlling the swimming motion. This result improves
what has been done in the article [4] for a particular 2D model.
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When no macro shape changes are prescribed we have:
Theorem 1.3. (Freestyle Swimming) Assume that the following data are given: (i) A pair

(¯̺, ϑ̄) ∈ C0(B̄)+×D1
0(R

3) satisfying (1.2) (the target density and shape at rest) (ii) A C1 function
t ∈ [0, T ] 7→ (R̄(t), r̄(t)) ∈ SO(3)×R3 (the target trajectory). Then, for any ε > 0 there exists a
pair (̺, ϑ) ∈ C0(B̄)+×D1

0(R
3) (the actual density and shape at rest) such that (i)

∫

B
̺Θ dx = 0

(where Θ := Id + ϑ) (ii) ‖ ¯̺− ̺‖C0(B̄) + ‖ϑ̄ − ϑ‖D1
0(R

3) < ε and (iii) for almost any 5-uplet

(V1, . . . ,V5) ∈ (C1
0 (R

3)3)5 satisfying
∫

B ̺Vi dx = 0,
∫

B ̺Θ×Vi dx = 0 and
∫

B ̺Vi×Vj dx =
0 (i, j = 1, . . . , 5), there exists a function t ∈ [0, T ] 7→ s(t) ∈ R5 (that can be chosen of class Cp

for any p = 1, . . . ,+∞ or even analytic) such that, using ϑt := ϑ +
∑5

i=1 si(t)Vi ∈ D1
0(R

3) as
control in the dynamics (1.6), we get supt∈[0,T ]

(

‖R̄(t)−R(t)‖M(3) + ‖r̄(t)− r(t)‖R3

)

< ε where

the function t ∈ [0, T ] 7→ (R(t), r(t)) ∈ SO(3) × R3 is the unique solution to ODEs (1.6) with
initial data (R(0), r(0)) = (R̄(0), r̄(0)).

Differently stated, we claim in this Theorem that any weighted 3D body (maybe up to an
arbitrarily small change of its density) is able to swim by means of allowable deformations (i.e.
satisfying the self-propelled constraints) obtained as a suitable combination of pretty much any
given five basic movements.

The proofs rely on the following main ideas: First, we shall identify a set of parameters
necessary to thoroughly characterize a swimmer and its way of swimming (these parameters
are its density, its shape and a finite number of basic movements, satisfying the self-propelled
constraints (1.2)). Any set of such parameters will be termed a swimmer configuration (denoted
SC in short). Then, the set of all of the SC will be shown to be an (infinite dimensional) analytic
connected embedded submanifold of a Banach space.

The second step of the reasoning will consist in proving that the swimmer’s ability to track
any given trajectory (while undergoing any given shape changes) is related to the vanishing of
some analytic functions depending on the SC. These functions are connected to the determinant
of some vector fields and their Lie brackets (we will use here some classical result of Geometric
Control Theory). Eventually, by direct calculation, we will prove that at least one swimmer (cor-
responding to one particular SC) has this ability. An elementary property of analytic functions
will eventually allow us to conclude that almost any SC (or equivalently any swimmer) has this
property.

Remark 1.4. The authors conjecture that in both Theorem 1.2 and Theorem 1.3, the actual
density ̺ can be chosen equal to the target density ¯̺. At this point however and although it is
very unlikely, it can not be excluded that all of the swimmers with a particular density might be
unable to swim. This issue also appeared in [4].

1.4. Outline of the paper. The next Section is dedicated to the notion of swimmer
configuration (definition and properties). In Section 3 we show that the mass matrices are
analytic functions in the SC (seen as a variable) and in Section 4 we will restate the control
problem in order to fit with the general framework of Geometric Control Theory. A particular
case of swimmer will be shown to be controllable. In Section 5 the proof of the main results will
be performed. Section 6 contains some words of conclusion. Many technical results are gathered
in the appendix to avoid overloading the rest of the paper.

2. Swimmer Configuration. A swimmer configuration is a set of parameters characteriz-
ing swimmers whose deformations consist in a combination of a finite number of basic movements.

Definition 2.1. For any positive integer n, we denote C(n) the subset of C0(B̄)+×D1
0(R

3)×
(C1

0 (R
3)3)n consisting of all of the triplets c := (̺, ϑ,V) such that, denoting Θ := Id+ϑ and V :=

(V1, . . . ,Vn), the following conditions hold (i) the set {Vi|B̄ ·ek, 1 ≤ i ≤ n, k = 1, 2, 3} is a free
family in C1

0 (B̄) (ii) every pair (V,V′) of elements of {Θ,V1, . . . ,Vn} satisfies
∫

B ̺V dx = 0
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and
∫

B ̺V ×V′ dx = 0.
We call swimmer configuration (SC in short) any element c of C(n).
By definition, D1

0(R
3) is open in C1

0 (R
3)3 (see appendix, Section A). We deduce that for

any c ∈ C(n), the set {s := (s1, . . . , sn)
t ∈ Rn : ϑ+

∑n
i=1 siVi ∈ D1

0(R
3)} is open as well in Rn

and we denote S(c) its connected component containing s = 0.
Definition 2.2. For any positive integer n, we call extended swimmer configuration (ESC

in short) any pair c := (c, s) such that c ∈ C(n) and s ∈ S(c). We denote CX(n) the set of all of
these pairs.

Restatement of the problem in terms of SC and ESC. Pick a SC in C(n) (for some
integer n). The characteristics of the corresponding swimmer can be deduced from c as follows:
If c is equal to (̺, ϑ,V) with V := (V1, . . . ,Vn), the shape of the swimmer at rest is B̄ := Θ(B̄)
where Θ := Id + ϑ. When swimming, it can occupy the domains B̄c := Θs(B̄) for all s ∈ S(c)
(c := (c, s) ∈ C(n) is hence an ESC), where Θs := Id + ϑ +

∑n
i=1 siVi. Still for any s ∈

S(c), its density is the function ̺s ∈ C0(B̄c)
+ defined by ̺s(x) := ̺(Θ−1

s (x))/Js(Θ
−1
s (x)) with

Js := det∇Θs. Notice that within this construction, the shape changes on a time interval [0, T ]
(T > 0) are merely given through an absolutely continuous function t : [0, T ] 7→ s(t) ∈ S(c). If
t ∈ [0, T ] 7→ ṡ(t) ∈ Rn stands for its time derivative, the Lagrangian velocity at a point x of
B̄ is

∑n
i=1 ṡi(t)Vi(x) while the Eulerian velocity at a point x ∈ B̄c is

∑n
i=1 ṡi(t)w

i
s(x) where

wi
s(x) := Vi(Θ

−1
s (x)). Due to assumption (ii) of Definition 2.1, the self-propelled constraints

(1.2) are automatically satisfied.
The harmonic elementary potential functions of the fluid corresponding to the rigid motions

depend only on the ESC. Therefore, they will be denoted in the sequel ψi
c instead of ψi

t. The same
remark holds for the inertia tensor I(t) and the mass matrices Mr(t), Mr

b(t) and Mr
f (t) whose

notation is turned into I(c), Mr(c), Mr
b(c) and Mr

f (c) respectively. The elementary potential

connected to the shape changes can be decomposed into
∑n

i=1 ṡiϕ
i
c. In this sum, each potential

function ϕi
c is harmonic in Fc := R3 \ B̄c and satisfies on Σc := ∂Bc the Neumann boundary

conditions ∂nϕ
i
c = wi

s · nc , nc being the unit normal to Σc directed toward the interior of Bc.
Introducing the mass matrix N(c), whose elements are ̺f

∫

Bc

∇ψi
c ·∇ϕ

j
cdx (1 ≤ i ≤ 6, 1 ≤ j ≤ n)

(recall that ̺f can be chosen equal to 1), the dynamics (1.6a) can now be rewritten in the form:

(

Ω

v

)

= −M
r(c)−1

N(c)ṡ, (t ≥ 0). (2.1)

Let us focus on the properties of C(n) and CX(n).
Theorem 2.3. For any positive integer n, the set C(n) is an analytic connected embedded

submanifold of C0(B̄)× C1
0 (R

3)3 × (C1
0 (R

3)3)n of codimension N := 3(n+ 2)(n+ 1)/2.
The definition and the main properties of analytic functions in Banach spaces are summarized

in the article [17].
Proof. For any c := (̺, ϑ,V) ∈ C0(B̄) × C1

0 (R
3)3 × (C1

0 (R
3)3)n, denote V0 := Id + ϑ and

V := (V1, . . . ,Vn). Then, define for k = 0, 1, . . . , n, the functions Λk : C0(B̄) × C1
0 (R

3)3 ×

(C1
0 (R

3)3)n → R3(n+1−k) by Λk(c) :=
(

∫

B ̺Vk dx,
∫

B ̺Vk ×Vk+1 dx, . . . ,
∫

B ̺Vk ×Vn dx
)t

.

Every function Λk is analytic and we draw the same conclusion for Λ := (Λ0, . . . ,Λn)
t : C0(B̄)×

C1
0 (R

3)3 × (C1
0 (R

3)3)n → RN (N := 3(n + 2)(n + 1)/2). In order to prove that ∂cΛ(c) (the
differential of Λ at the point c) is onto for any c ∈ C(n), assume that there exist (n+2)(n+1)/2
vectors αj

i ∈ R3 (0 ≤ i ≤ j ≤ n) such that:

n
∑

i=0

αi · 〈∂cΛ(c), c
h〉 = 0, ∀ ch ∈ C0(B̄)× C1

0 (R
3)3 × (C1

0 (R
3))3, (2.2)
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where αi := (αi
i,α

i+1
i , . . . ,αn

i )
t ∈ R3(n+1−i) (j = 0, . . . , n) and ch := (̺h, ϑh,Vh) ∈ C0(B̄) ×

C1
0 (R

3)3 × (C1
0 (R

3)3)n with Vh
0 := Id + ϑh and Vh := (Vh

1 , . . . ,V
h
n). Reorganizing the terms in

(2.2), we obtain that:

∫

B

̺h
[

n
∑

k=0

α
k
k ·Vk +

∑

0≤i<j≤n

α
j
i · (Vi ×Vj)

]

dx+

n
∑

k=0

∫

B

̺Vh
k ·

[

k−1
∑

j=0

α
k
j ×Vj +α

k
k −

n
∑

j=k+1

α
j
k ×Vj

]

dx = 0.

Since this identity has to be satisfied for any (̺h, ϑh,Vh) ∈ C0(B̄) × C1
0 (R

3)3 × (C1
0 (R

3))3, we
deduce that, for every k = 0, . . . , n:

n
∑

p=0

α
p
p ·Vp +

∑

0≤i<j≤n

α
j
i · (Vi ×Vj) = 0 and

k−1
∑

j=0

α
k
j ×Vj +α

k
k −

n
∑

j=k+1

α
j
k ×Vj = 0. (2.3)

Multiplying the latter equality by ̺ and integrating over B, we get that αk
k = 0 (k = 0, . . . , n).

The first equality in (2.3) is now just a linear combination of the second ones (for k = 0, . . . , n),
so we can drop it. Taking into account Hypothesis (ii) of Definition 2.1, latter identity in (2.3)
with k = 0 leads to α

j
0 = 0 for every j = 1, . . . , n. There are no more terms involving V0 in the

other equations and invoking again Hypothesis (ii) we eventually get αj
i = 0 for 1 ≤ i < j ≤ n.

So, equality (2.2) entails that αi = 0 for all i = 0, . . . , n and the mapping ∂cΛ(c) is onto for all
c ∈ C(n).

The linear space X = Ker ∂cΛ(c) is closed since Λ is analytic. Let Y be an algebraic
supplement of X in C0(B̄) × C1

0 (R
3)3 × (C1

0 (R
3)3)n, and denote by ΠY the linear projection

onto Y along X . A crucial observation is that the linear space Y is isomorphic to RN and
hence it is finite dimensional and closed in C0(B̄)×C1

0 (R
3)3 × (C1

0 (R
3)3)n. Define the analytic

mapping f : X × Y → RN by f(x, y) = Λ(c + x + y). The mapping ∂yf(0, 0) = ∂cΛ(c) ◦ ΠY

being onto, the implicit function theorem (analytic version in Banach spaces, see [17]) asserts
that there exist an open neighborhood O1 of 0 in X , an open neighborhood O2 of 0 in Y , and
an analytic mapping g : O1 → Y such that g(0) = 0 and, for every (x, y) in O1 × O2, the two
following assertions are equivalent: (i) f(x, y) = 0 (or, in other words, c + x + y belongs to
C(n)), and (ii) y = g(x). The analytic mapping g provides a local parameterization of C(n) in a
neighborhood of c.

In order to prove that C(n) is path-connected, consider two elements c† := (̺†, ϑ†,V†) and

c‡ := (̺‡, ϑ‡,V‡) of C(n) and denote Θ† := Id + ϑ†, V† := (V†
1, . . . ,V

†
n) and Θ‡ := Id + ϑ‡,

V‡ := (V‡
1, . . . ,V

‡
n). According to Definition A.2, D1

0(R
3) is open and connected. It entails that

it is always possible to find a continuous, piecewise linear path t : [0, 1] 7→ ϑ̄t ∈ D1
0(R

3) such that
ϑ̄t=0 = ϑ† and ϑ̄t=1 = ϑ‡. We introduce 0 = t0 < t1 < . . . < tk = 1, a subdivision of the interval
[0, 1] such that t 7→ ϑ̄t is linear on every subinterval [tj , tj+1] (j = 0, . . . , k−1) and we denote Θ̄t :=
Id+ϑ̄t, ϑ̄

j := ϑ̄t=tj , Θ̄
j := Id+ϑ̄j (j = 0, . . . , k). Let us introduce as well the continuous functions

t ∈ [0, 1] 7→ ̺t := t̺‡ + (1 − t)̺† ∈ C0(B̄) and t ∈ [0, 1] 7→ u(t) := −
∫

B
̺tΘ̄tdx/

∫

B
̺tdx ∈ R3.

The set ∪t∈[0,T ]Θ̄t(B̄)+u(t) being compact, it is contained in a large ball Ω. We introduce Ω′ an
even larger ball containing Ω and a cut-off function χ defined in R3 such that 0 ≤ χ ≤ 1, χ = 1
in Ω and χ = 0 in R3 \ Ω̄′. The derivative u̇ of u exists everywhere on ]0, T [ excepted maybe
at the points t1, . . . , tk−1. The flow associated with the Carathéodory’s solutions of the Cauchy
problem: Ẋt(x) = u̇(t)χ(Xt(x)), (t > 0), Xt=0(x) = x is well defined (see [11, Theorem 1A, page
57]). Moreover, for every fixed t ∈ [0, 1], the mapping x ∈ R3 7→ Xt(x) ∈ R3 is C∞. Consider
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now the mappings t ∈ [0, 1] 7→ ϑt := Xt ◦Θ̄t− Id and Θt := Id+ϑt. If x ∈ R3 \ Ω̄′, Θt(x) = Θ̄t(x)
for all t ∈ [0, T ] and if x ∈ B̄ then ϑt(x) = ϑ̄t(x) + u(t) and Θt(x) = Θ̄t(x) + u(t). Notice that
ϑt ∈ D1

0(R
3) for all t ∈ [0, T ] and

∫

B
̺t(x)Θt(x)dx = 0 for all t ∈ [0, T ]. Since C1

0 (R
3)3 is an

infinite dimensional Banach space, it is always possible to find by induction W1,W2, . . . ,Wn in
C1

0 (R
3)3 such that (i) both families {W1|B̄ ·ek, . . . ,Wn|B̄ ·ek,V

†
1|B̄ ·ek, . . . ,V

†
n|B̄ ·ek, k = 1, 2, 3}

and {W1|B̄ · ek, . . . ,Wn|B̄ · ek,V
‡
1|B̄ · ek, . . . ,V

‡
n|B̄ · ek, k = 1, 2, 3} are free in C1

0 (R
3) and (ii)

for any pair of elements V, V′( both picked in the same family,
∫

B ̺
†Vdx = 0,

∫

B ̺
‡Vdx = 0,

∫

B
̺†Θ̄j × Vdx = 0,

∫

B
̺‡Θ̄j × Vdx = 0 (for all j = 1, . . . , k),

∫

B
̺†V × V′dx = 0 and

∫

B
̺‡V×V′dx = 0. Define the function t ∈ [0, 1] 7→ Vi

t ∈ C1
0 (R

3)3 by Vi
t := (1− 2t)V†

i +2tWi

if 0 ≤ t ≤ 1/2 and Vi
t := (2−2t)Wi+(2t−1)V‡ if 1/2 < t ≤ 1 and denote Vt := (V1

t , . . . ,V
n
t ) ∈

(C1
0 (R

3)3)n. Eventually, a continuous function linking c† to c‡ is given by t ∈ [0, 1] 7→ ct ∈ C(n)
with ct := (̺†, ϑ†,V3t/2) if 0 ≤ t ≤ 1/3, ct := (̺3t−1, ϑ3t−1,V1/2) if 1/3 < t ≤ 2/3 and ct :=

(̺‡, ϑ‡,V3t/2−1/2) if 2/3 < t ≤ 1.

We omit the proof of the following corollary, similar to that of the theorem above:

Corollary 2.4. For any positive integer n, the set CX(n) is an analytic connected embedded
submanifold of C0(B̄)× C1

0 (R
3)3 × (C1

0 (R
3)3)n ×Rn of codimension N := 3(n+ 2)(n+ 1)/2.

We denote π the projection of C(n) onto C0(B̄) × D1
0(R

3) defined by π(c) = (̺, ϑ) for all
c := (̺, ϑ,V) ∈ C(n). The proof of the following corollary is a straightforward consequence of
arguments already used in the proof of Theorem 2.3:

Corollary 2.5. For any positive integer n and for any (̺, ϑ) ∈ π(C(n)), the section
π−1({(̺, ϑ)}) is an embedded connected analytic submanifold of {̺}×{ϑ}×(C1

0(R
3)3)n (identified

with (C1
0 (R

3)3)n) of codimension 3n(n+ 3)/2.

3. Sensitivity Analysis of the Mass Matrices. For any positive integers k and p, we
denote M(k, p) the vector space of the matrices of size k × p (or simply M(k) when k = p).

Theorem 3.1. For any positive integer n, the mappings c ∈ CX(n) 7→ Mr(c) ∈ M(6) and
c ∈ CX(n) 7→ N(c) ∈ M(6, n) are analytic.

The method followed in this proof is inspired from [6]. The result already appeared in [13],
in a slightly different form though. Due to its crucial importance for our purpose, we recall here
the main ideas.

Let us begin with a preliminary lemma of which the statement requires introducing some
material. Thus, we denote F := R3 \ B̄ (recall that B is the unit ball, Σ := ∂B and n is the
unit normal to Σ directed toward the interior of B). For all ξ ∈ D1

0(R
3), we set Ξ := Id + ξ,

Bξ := Ξ(B), Fξ := Ξ(F ), Σξ := Ξ(Σ) and nξ stands for the unit normal to Σξ directed toward
the interior of Bξ. We denote q := (ξ,W), with W := (W1,W2) ⊂ (C1

0 (R
3)3)2, the elements of

Q := D1
0(R

3)× (C1
0 (R

3)3)2 and wi
ξ := Wi(Ξ−1) (i = 1, 2). Finally, for every q ∈ Q, we define:

Φ(q) :=

∫

Fξ

∇ψ1
q(x) · ∇ψ

2
q(x) dx, (3.1)

where, for every i = 1, 2, the function ψi
q ∈ W 1(Fξ) (recall that the function spaces are defined

in Section A) is solution to the Laplace equation −∆ψi
q = 0 in Fξ with Neumann boundary data

∂nψ
i
q = wi

ξ · nξ on Σξ. The solution has to be understood in the weak sense, namely:

∫

Fξ

∇ψi
q(x) · ∇ϕ(x) dx =

∫

Σξ

(wi
ξ · nξ)(x)ϕ(x) dσ, ∀ϕ ∈ W 1(Fξ). (3.2)

Lemma 3.2. The mapping q ∈ Q 7→ Φ(q) ∈ R is analytic.
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Proof. We pull back relation (3.2) onto the domain F using the diffeomorphism Ξ. We get:

∫

F

∇Ψ i
q(x)Aξ(x) · ∇(ϕ ◦ Ξ)(x) dx =

∫

Σ

(Wi(x) · nξ(Ξ(x))ϕ(Ξ(x))Jσ
ξ (x) dσ, ∀ϕ ∈W 1(Fξ),

where Ψ i
q := ψi

q ◦Ξ, Jξ := det(∇Ξ), Aξ := (∇Ξt∇Ξ)−1Jξ and Jσ
ξ := ‖(∇Ξ−1)tn‖R3Jξ (usually

referred to as the tangential Jacobian). In (3.2), if we specialize the test function to have the
form ϕ := φ ◦ Ξ−1 with φ ∈ W 1(F ), we obtain

∫

F
Ψ i
q(x)Aξ(x) · ∇φ(x) dx =

∫

Σ
biq(x)φ(x) dσ

for all φ ∈ W 1(F ), where biq := (Wi · nξ(Ξ))Jσ
ξ (i = 1, 2). We now claim that the mapping

ξ ∈ D1
0(R

3) 7→ Aξ − Id ∈ E0
0(Ω,M(3)) is analytic. Indeed, the mappings ξ ∈ D1

0(R
3) 7→

∇Ξt∇Ξ − Id ∈ E0
0(Ω,M(3)), A ∈ E0

0(Ω,M(3)) 7→ (Id + A)−1 − Id ∈ E0
0(Ω,M(3)) and ξ ∈

D1
0(R

3) 7→ Jξ − 1 ∈ C0
0 (R

3) are analytic. Reasoning the same way, we can show that the
mapping ξ ∈ D1

0(R
3) 7→ Jσ

ξ ∈ C0(Σ) is analytic as well (notice that for all ξ ∈ D1
0(R

3), the

function (∇Ξ−1)tn never vanishes on Σ). It is more complicated to prove that ξ ∈ D1
0(R

3) 7→
nξ ◦ Ξ ∈ C0(Σ)2 is analytic, so we refer to [13] for the details. This last result entails the
analyticity of q ∈ Q 7→ biq ∈ C0(Σ). Then, denoting by W 1(F )′ the dual space to W 1(F ), we

consider the mapping Γ : (q, u) ∈ Q×W 1(F ) 7→ 〈Aξ, u, ·〉−〈biq, ·〉 ∈W 1(F )′, where 〈Aξ, u, φ〉 :=
∫

F
∇u(x)Aξ(x) · ∇φ(x) dx and 〈biq, φ〉 :=

∫

Σ
biq(x)φ(x) dσ (φ ∈ W 1(F )). We wish now to apply

the implicit function theorem (analytic version in Banach spaces, as stated in [17]) to the analytic
function Γ . Observe, though, that we are only interested in the regularity result and not in the
existence and uniqueness. Indeed, we already know that for every q ∈ Q, there exists a unique
function Ψ i

q ∈W 1(F ) such that Γ (q, Ψ i
q) = 0. The function Ψ i

q is equal to ψi
q ◦Ξ where ψi

q is the

unique solution to the well posed variational problem (3.2). The partial derivative ∂uΓ (q, Ψ
i
q) is

defined by:

〈∂uΓ (q, Ψ
i
q), u, φ〉 =

∫

F

∇u(x)Aξ(x) · ∇φ(x) dx, ∀φ ∈ W 1(F ). (3.3)

For all ξ ∈ D1
0(R

3), the matrix Aξ is uniformly elliptic in R3 (there exists αξ > 0 such that
XtAξ(x)X > αξ‖X‖2

R3 for all X ∈ R3 and all x ∈ R3). We deduce that the right hand side of
(3.3) can be chosen as the scalar product in W 1(F ) and hence that ∂uΓ (q, Ψ

i
q) is a continuous

isomorphism from W 1(F ) onto its dual space according to the Riesz representation theorem.
The implicit function theorem applies and asserts that the mapping q ∈ Q 7→ Ψ i

q ∈ W 1(F ) is
analytic.

To conclude the proof, it remains only to observe that the function Φ(q) introduced in (3.1)
can be rewritten, upon a change of variables as Φ(q) =

∫

F ∇Ψ1
q(x)Aξ(x) · ∇Ψ

2
q(x) dx, which is

indeed analytic as a composition of analytic functions.
We can now give the proof of Theorem 3.1.
Proof. Recall that the elements of the matrix Mr

f (c) are defined in (1.4) and those of N(c)
in (1.5). For any c := (c, s) ∈ CX(n), where c := (̺, ϑ,V), we apply the lemma with ξ := ϑ +
∑n

i=1 siVi and W1,W2 ∈ {ei×Ξ, ei, i = 1, 2, 3} to get that the mapping c ∈ CX(n) 7→ Mr
f (c) ∈

M(6) is analytic. To prove the analyticity of the elements of N(c), we apply the lemma again
with ξ := ϑ +

∑n
i=1 siVi, W

1 ∈ {ei × Ξ, ei, i = 1, 2, 3} and W2 ∈ {V1, . . . ,Vn}. Eventually,
the analyticity of the elements of Mr

b(c) is straightforward after rewriting the inertia tensor I(c)
defined in (1.3) in the form (upon a change of variables) I(c) =

∫

B
̺[‖Ξ‖2

R3Id− Ξ ⊗Ξ] dx, still
with Ξ := Id + ξ and ξ := ϑ+

∑n
i=1 siVi.

4. Control.

4.1. Controllable SC. Let us fix c ∈ C(n) (for some positive integer n) and recall that
S(c) is the connected open subspace of Rn such that (c, s) ∈ CX(n). Introducing (f1, . . . , fn)
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an ordered orthonormal basis of Rn, we can seek the function t ∈ [0, T ] 7→ s(t) ∈ S(c) as the
solution of the ODE ṡ(t) =

∑n
i=1 λi(t)fi where the functions λi : t ∈ [0, T ] 7→ λi(t) ∈ R are the

new controls, and rewrite once more the dynamics (2.1) as:





Ω

v

ṡ



 =

n
∑

i=1

λi(t)

(

−Mr(c, s)−1N(c, s)fi
fi

)

, (t ≥ 0). (4.1)

It is worth remarking that in this form, s is no more the control but a variable which is meant to be
controlled and c ∈ C(n) is a parameter of the dynamics. Considering (4.1), we are quite naturally
led to introduce, for all c ∈ CX(n), the vector fields Xi(c) := −Mr(c)−1N(c)fi ∈ R6, Yi(c) :=

(X̂1
i (c),X

2
i (c), fi)

t ∈ TIdSO(3) × R3 × Rn (we have used here the notation Xi := (X1
i ,X

2
i )

t ∈
R3×R3) and Zi

c(R, s) := RRYi(c) ∈ TRSO(3)×R3×Rn whereRR := diag(R,R, Id) ∈ SO(6+n)
is a bloc diagonal matrix. The dynamics (4.1) and the ODE (1.6b) can be gathered into a unique
differential system:

d

dt





R
r

s



 =

n
∑

i=1

λi(t)Z
i
c(R, s), (t ≥ 0). (4.2)

For every i = 1, . . . , n, the function (R, r, s) ∈ SO(3)×R3×S(c) 7→ Zi
c(R, s) ∈ TRSO(3)×R3×Rn

can be seen as an analytic vector field (constant in r) on the analytic connected manifoldM(c) :=
SO(3)×R3 ×S(c). We denote ζ any element (R, r, s) ∈ M(c) and we define Z(c) as the family
of vector fields (Zi

c)1≤i≤n on M(c).
Lemma 4.1. Let c be a SC fixed in C(n) (n a positive integer). If there exists ζ ∈ M(c) such

that dimLieζZ(c) = 6 + n, then the orbit of Z(c) through any ζ ∈ M(c) is equal to the whole
manifold M(c).

Proof. Rashevsky Chow Theorem (see [1]) applies: If LieζZ(c) = TζM(c) for all ζ ∈ M(c)
(or more precisely, for all (R, s) ∈ SO(3)×S(c) since Zi

c does not depend on r) then the orbit of
Z(c) through any point of M(c) is equal to the whole manifold. Let us compute the Lie bracket
[Zi

c(R, s), Z
j
c(R, s)] for 1 ≤ i, j ≤ n and (R, s) ∈ SO(3)× S(c). We get:

[Zi
c(R, s), Z

j
c(R, s)] = RR







̂(X1
i ×X1

j)(c)

(X1
i ×X2

j −X1
j ×X2

i )(c)
0






+RR







̂(∂siX
1
j − ∂sjX

1
i )(c)

(∂siX
2
j − ∂sjX

2
i )(c)

0






. (4.3)

By induction, we can similarly prove that the Lie brackets of any order at any point ζ ∈ M(c)
have the same general form, namely the matrix RR multiplied by an element of T(Id,0,s)M(c).
We deduce that the dimension of the Lie algebra at any point of M(c) depends only on s.
According to the Orbit Theorem (see [1]), the dimension of the Lie algebra is constant along
any orbit. But according to the particular form of the vector fields Zi

c (whose last n components
form a basis of Rn), the projection of any orbit on S(c) turns out to be the whole set S(c)
(or, in other words, for any s ∈ S(c) and for any orbit, there is a point of the orbit for which
the last component is s). Assume now that dimLieζ∗Z(c) = 6 + n at some particular point
ζ∗ := (R∗, r∗, s∗) ∈ M(c). Then, according to the Orbit Theorem, for any s ∈ S(c), there
exists at least one point (Rs, rs, s) ∈ M(c) such that dimLie(Rs,rs,s)Z(c) = 6 + n. But since
the dimension of the Lie algebra does not depend on the variables R and r, we conclude that
dimLieζZ(c) = 6 + n for all ζ ∈ M(c).

Definition 4.2. We say that c, a SC in C(n) (for some integer n) is controllable if there
exists ζ ∈ M(c) such that dimLieζZ(c) = 6 + n.
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It is obvious that for a SC to be controllable, the integer n has to be larger or equal to 2.
The following result is quite classical (a proof can be found in [4]):

Proposition 4.3. Let c ∈ C(n) (for some integer n) be controllable (with the usual notation
c := (̺, ϑ,V), V := (V1, . . . ,Vn) and ϑs := ϑ +

∑n
i=1 siVi for every s ∈ S(c)). Then for any

given continuous function t ∈ [0, T ] 7→ (R̄(t), r̄(t), s̄(t)) ∈ SO(3)×R3 × S(c) and for any ε > 0,
there exist n C1 functions λi : [0, T ] → R (i = 1, . . . , n) such that:

1. supt∈[0,T ]

(

‖R̄(t)−R(t)‖M(3) + ‖r̄(t)− r(t)‖R3 + ‖ϑs̄(t) − ϑs(t)‖C1
0(R

3)3

)

< ε;

2. R(T ) = R̄(T ), r(T ) = r̄(T ) and s(T ) = s̄(T );

where t ∈ [0, T ] 7→ (R(t), r(t), s(t)) ∈ M(c) is the unique solution to the ODE (4.2) with Cauchy
data R(0) = R̄(0) ∈ SO(3), r(0) = r̄(0) ∈ R3, s(0) = s̄(0) ∈ S(c).

Let us mention some other quite elementary properties that will be used later on:

Proposition 4.4.

1. If c := (̺, ϑ,V) ∈ C(n) (n ≥ 2) is a controllable SC with V := (V1, . . . ,Vn) ∈
(C1

0 (R
3)3)n then any c+ := (̺, ϑ,V+) ∈ C(n+1) such that V+ := (V1, . . . ,Vn,Vn+1) ∈

(C1
0 (R

3)3)n+1 (for some Vn+1 ∈ Cm
0 (R3)3) is a controllable SC as well.

2. If c := (̺, ϑ,V) ∈ C(n) (n ≥ 2) is a controllable SC, then for any ϑ∗ ∈ {ϑ+
∑n

i=1 siVi, s ∈
S(c)} the element c∗ := (̺, ϑ∗,V) belongs to C(n) and is a controllable SC as well.

3. If c := (̺, ϑ,V) ∈ C(n) (n ≥ 2) is a controllable SC, then all of the controllable SC
c∗ := (̺, ϑ,V∗) in C(n) (V∗ ∈ (C1

0 (R
3)3)n) form an open dense subset of the section

π−1({(̺, ϑ)}) (for the induced topology).
4. If there exists a SC in C(n) for some n ≥ 2 then, for any k ≥ n, all of the controllable

SC in C(k) form an open dense subset of C(k) (for the induced topology).

Proof. The two first assertions are obvious so let us address directly the third point. Denote
Ek (k positive integer) the set of all of the vectors fields on M(c) obtained as Lie brackets of order
lower or equal to k from elements of Z(c). Then, consider the determinants of all of the different
families of 6 + n elements of Ek as analytic functions in the variable V (the other variables ̺, ϑ
and s = 0 being fixed). Since c is controllable, there exist at least one k and one family of 6 + n
elements in Ek whose determinant is nonzero. According to Corollary 2.5 and basic properties
of analytic functions (see [17]), the determinant may vanish only in a closed subset with empty
interior of the section π−1({(̺, ϑ)}) (for the induced topology). The proof of the last point is
similar.

4.2. Building a controllable SC. In this subsection, we are interested in computing the
Lie brackets of first order [Zi

c(R, s), Z
j
c(R, s)] at (R, s) = (Id, 0), for a particular SC.

General computations. Starting from identity (4.3) and focusing on the second term in
the right hand side, we have, for all c ∈ C(n) (n ≥ 2) , all s ∈ S(c) and all i, j = 1, . . . , n:

∂siXj(c) − ∂sjXi(c) = M
r(c)−1

[

(∂sjM
r(c)Xi(c) − ∂siM

r(c)Xj(c))

+ (∂sjN(c)fi − ∂siN(c)fj)
]

. (4.4)

From the decomposition Mr(c) := Mr
b(c) +Mr

f (c), we deduce that:

∂sjM
r(c)Xi(c)− ∂siM

r(c)Xj(c) =

(∂sjM
r
b(c)Xi(c) − ∂siM

r
b(c)Xj(c)) + (∂sjM

r
f (c)Xi(c)− ∂siM

r
f (c)Xj(c)). (4.5)
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We can easily compute the first term in the right hand side when s = 0. Thus, for all i, j =
1, . . . , n, we have:

[∂sjM
r
b(c)Xi(c)− ∂siM

r
b(c)Xj(c)]s=0 = ηj

[

Id 0
0 0

]

Xi(c)|s=0 − ηi

[

Id 0
0 0

]

Xj(c)|s=0, (4.6)

where ηi := 2
∫

B
̺(x)Vi(x) · Θ(x) dx.

Rigid shell’s deformation. We consider now shape changes that reduce to rigid displace-
ments on the swimmer’s boundary Σ (but obviously not inside the body for the self-propelled
constraints not to be violated). The idea of using such deformations stemmed from the reading
of the article [9]. However, rigid deformations of the shell can not be considered within the
modeling described in Section 2 (because rigid deformations do not fit with the general form of
the diffeomorphisms described in Section 2). Let us explain how to deal with this difficulty.

Let c := (̺, ϑ,V) ∈ C(6) be given such that V := (V1, . . . ,V6) with Vi|Σ(x) := ei×(x+ϑ(x))
(i = 1, 2, 3) and Vi|Σ(x) := ei−3 (i = 4, 5, 6) (Proposition C.1 in the appendix guarantees
the existence of such vector fields satisfying furthermore ηi = 0 for all i = 1, . . . , 6). Thus,

the shape changes we are considering read Θs := Id + ϑ +
∑6

i=1 siVi (s ∈ S(c)). Let us
define also Ξs := Rs(Id + ϑ) + τ s where Rs := exp(s1ê1) exp(s2ê2) exp(s3ê3) ∈ SO(3) and

τ s :=
∑3

i=1 si+3ei ∈ R3. Thus, Θs is a diffeomorphism which can be achieved within our
modeling while Ξs is a true rigid deformation.

In order to determine the expressions of the terms ∂siM
r
f (c)|s=0 (i = 1, . . . , 6) arising in

the computation of the Lie brackets, we have to compare (using the notation of Lemma 3.2)
∂siΦ(q

1
s)|s=0 and ∂siΦ(q

2
s)|s=0 (i = 1, . . . , 6) where:

• q1
s := (ξ1s ,W

1
s ) with ξ1s := Ξs − Id, W1

s := (W1,1
s ,W1,2

s ) and W1,1
s , W1,2

s ∈ {ei ×
Ξs, ei, i = 1, 2, 3} (settings corresponding to a true rigid deformation of the shell);

• q2
s := (ξ2s ,W

2
s ) with ξ2s := Θs − Id = ϑ +

∑n
i=1 siVi, W2

s := (W2,1
s ,W2,2

s ) and
W2,1

s ,W2,2
s ∈ {ei ×Θs, ei, i = 1, 2, 3} (settings allowed in our modeling).

Remark that ∂siΘs|s=0 = ∂siΞs|s=0 on Σ for all i = 1, . . . , 6, so the deformations are tangent at
s = 0. It entails that ∂siq

1
s|s=0 = ∂siq

2
s|s=0. Since, in addition, q1

s=0 = q2
s=0 and ∂siΦ(q

k
s )|s=0 =

〈∂qΦ(q
k
s ), ∂siq

k
s 〉|s=0 for k = 1, 2 and i = 1, . . . , 6, we deduce that ∂siΦ(q

1
s)|s=0 = ∂siΦ(q

2
s)|s=0

for all i = 1, . . . , 6.
We apply the diffeomorphism Ξs := Rs(Id+ϑ)+τ s to B̄ to obtain the domain of the deformed

swimmer. We denote B⋄ := (Id + ϑ)(B) (which can be seen as the shape of the swimmer at
rest, i.e. when s = 0), Σ⋄ := ∂B⋄, F⋄ := R3 \ B̄⋄ and Bs := Ξs(B), Fs := R3 \ B̄s, Σs := ∂Bs.
We seek the potential ψ1

c, defined and harmonic in Fs in the form ψ1
c(x) = ψ̃1

c (R
t
s(x − τ s))

where the function ψ̃1
c defined on F⋄ has to be determined. It is obvious that ψ̃1

c is harmonic in
F⋄ and we have only to determine the boundary conditions on Σ⋄. For all y ∈ Σ⋄, we denote
x := Rsy + τ s ∈ Σs. The relation n|Σs

(Rsy + τ s) = Rsn|Σ⋄(y) entails that ∇ψ̃1
c (y) · n|Σ⋄(y) =

∇ψ1
c(Rsy+τ s)·n|Σs

(Rsy+τ s) = ∇ψ1
c(x)·n(x), and this quantity has to be equal to (e1×x)·n(x).

We deduce after some elementary algebra that ∂nψ̃
1
c (y) = (Rt

se1×y) ·n(y)+(Rt
se1×R

t
sτ s) ·n(y).

Proceeding similarly and with obvious notation, we obtain more generally that:

∂nψ̃
i
c(y) = (Rt

sei × y) · n(y) + (Rt
sei ×Rt

sτ s) · n(y), (i = 1, 2, 3),

and ∂nψ̃
i
c(y) = Rt

sei−3 · n(y), (i = 4, 5, 6).

Denoting M⋄
f := Mr

f (c)|s=0, we get the relations:

M
r
f (c, s) =

[

Id τ̂ s

0 Id

] [

Rs 0
0 Rs

]

M
⋄
f

[

Rt
s 0
0 Rt

s

] [

Id 0
−τ̂ s Id

]

,
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and then, differentiating with respect to si:

∂siM
r
f (c, s)|s=0 =

[

êi 0
0 êi

]

M
⋄
f −M

⋄
f

[

êi 0
0 êi

]

, (i = 1, 2, 3), (4.7a)

∂siM
r
f (c, s)|s=0 =

[

0 êi−3

0 0

]

M
⋄
f −M

⋄
f

[

0 0
êi−3 0

]

, (i = 4, 5, 6). (4.7b)

The reasoning is quite similar for the entries of the matrix N(c). We only have to be careful that
the vector fields W2,2

s can actually not depend on s (once more, this is due to our modeling). The
elements of the matrix ∂sjN(c)|s=0fi − ∂siN(c)|s=0fj read (still with the notation of Lemma 3.2)
∂sjΦ(q

i
s)|s=0 − ∂siΦ(q

j
s)|s=0 (i, j = 1, . . . , 6) with this time qi

s := (ξs,W
i
s), ξs := Ξs − Id,

W i
s := (W1

s ,W
i,2), W1

s ∈ {ek × Ξs, ek, k = 1, 2, 3} and Wi,2 := ei × (Id + ϑ) (i = 1, 2, 3) or
Wi,2 = ei−3 (i = 4, 5, 6). The only difference with the elements of Mr

f (c) being that Wi,2 does
not depend on s for i = 1, 2, 3, we wish to reuse the preceding calculations. Invoking the chain
rule, we have to subtract to ∂sjΦ(q

i
s)|s=0−∂siΦ(q

j
s)|s=0 the quantity 〈∂W2Φ(qi

s), ∂sjW
i,2
s 〉|s=0−

〈∂W2Φ(qj
s), ∂siW

j,2
s 〉|s=0 which is quite easy to determine because Φ is linear in the variable

W2. Thus, this last expression is merely equal to Φ(qi,j) (1 ≤ i, j ≤ 6) with qi,j := (ϑ,Wi,j),
Wi,j := (W1,W2

i,j), W
1 ∈ {ek × (Id + ϑ), ek, k = 1, 2, 3} and

W2
i,j :=



















(ei × ej)× (Id + ϑ) if 1 ≤ i, j ≤ 3,

(ei × ej) if 4 ≤ i ≤ 6 , 1 ≤ j ≤ 3,

(ei × ej) if 1 ≤ i ≤ 3 , 4 ≤ j ≤ 6,

0 if 4 ≤ i, j ≤ 6.

We eventually obtain that:

∂sjN(c)|s=0fi − ∂siN(c)|s=0fj = ∂sjM
r
f (c)|s=0fi − ∂siM

r
f (c)|s=0fj − N

⋄(fi ⋆ fj), (4.8)

where N⋄ := N(c)|s=0 = M⋄
f and fi ⋆ fj := (f1i × f1j , f

1
i × f2j − f1j × f2i )

t with the notation

fi = (f1i , f
2
i )

t ∈ R3 ×R3.

Specifying the density and shape. The expression of the 6 × 6 symmetric added mass
matrix M⋄

f depends only on the domain F⋄ or equivalently on B⋄. As stated in Proposition D.1
in the appendix, this matrix is positive definite if we choose ϑ in such a way that B⋄ has no axis of
symmetry. It entails that, up to a change of frame e at the initial time, M⋄

f can be assumed to be

diagonal with positive eigenvalues µj (j = 1, . . . , 6). On the other hand, denoting by S(3)+ the
set of the 3×3 symmetric matrices that are positive definite, we can quite easily prove that for any
B⋄ (which means for any ϑ ∈ D1

0(R
3)), the mapping ̺ ∈ C0(B̄⋄)+ 7→

∫

B⋄ ̺(‖x‖R3Id−x⊗x)dx ∈
S(3)+ is onto. We deduce that for any (I1, I2, I3) ∈ R3 such that Ii > 0 for i = 1, 2, 3, there
exists ̺ ∈ C0(B̄)+ such that the inertia tensor I(c)|s=0 is diagonal, equal to diag(I1, I2, I3). In
this case, the matrix Mr

b(c)|s=0 is diagonal as well, equal to diag(I1, I2, I3,m,m,m, ). We deduce
that the vector fields Xi(c)|s=0 read −µi/(Ii+µi)fi if i = 1, 2, 3 and −µi/(m+µi)fi if i = 4, 5, 6.
Summarizing (4.3), (4.4), (4.5), (4.6) (recall that ηi = 0 for all i = 1, . . . , 6), (4.7) and (4.8), we
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obtain the following expressions for the Lie brackets at (R, s) = (Id, 0):

[Z1
c , Z

2
c ] =

I1I2(−µ1 − µ2 + µ3) + µ1µ2(−I1 − I2 + I3)

(µ1 + I1)(µ2 + I2)(µ3 + I3)





ê3
0

0



 ,

[Z1
c , Z

3
c ] =

I1I3(µ1 − µ2 + µ3) + µ1µ3(I1 − I2 + I3)

(µ1 + I1)(µ2 + I2)(µ3 + I3)





ê2
0

0



 ,

[Z2
c , Z

3
c ] =

I2I3(µ1 − µ2 − µ3) + µ2µ3(I1 − I2 − I3)

(µ1 + I1)(µ2 + I2)(µ3 + I3)





ê1
0

0



 ,

[Z2
c , Z

4
c ] =

I2m(µ4 − µ6)

(µ2 + I2)(µ4 +m)(µ6 +m)





0

e3
0



 ,

[Z3
c , Z

4
c ] =

I3m(µ5 − µ4)

(µ3 + I3)(µ4 +m)(µ5 +m)





0

e2
0



 ,

[Z3
c , Z

5
c ] =

I3m(µ5 − µ4)

(µ3 + I3)(µ4 +m)(µ5 +m)





0

e1
0



 .

Since, on the other hand, when (R, s) = (Id, 0) we also have

Zi
c =





−µiêi/(µi + Ii)
0

fi



 if i = 1, 2, 3, and Zi
c =





0

−µiei/(µi +m)
fi



 if i = 4, 5, 6,

we deduce that a sufficient condition ensuring that dimLie(Id,0,0)Z(c) = 12 is that

[

I1I2(−µ1 − µ2 + µ3) + µ1µ2(−I1 − I2 + I3)
][

I1I3(µ1 − µ2 + µ3) + µ1µ3(I1 − I2 + I3)
]

[

I2I3(µ1 − µ2 − µ3) + µ2µ3(I1 − I2 − I3)
][

I2m(µ4 − µ6)I
2
3m

2(µ5 − µ4)
2
]

6= 0. (4.9)

According to [10, pages 152-155], if we specialize now B⋄ to be an ellipsoid, the length of the
axes can be chosen in such a way that (i) it has no axis of symmetry (and hence µi > 0 for
i = 1, . . . , 6), (ii) µ4 6= µ5 and (iii) µ4 6= µ6. Since Ii > 0 (i = 1, 2, 3) and obviously m > 0, the
condition (4.9) reduces to:

[

I1I2(−µ1 − µ2 + µ3) + µ1µ2(−I1 − I2 + I3)
][

I1I3(µ1 − µ2 + µ3) + µ1µ3(I1 − I2 + I3)
]

[

I2I3(µ1 − µ2 − µ3) + µ2µ3(I1 − I2 − I3)
]

6= 0. (4.10)

As already mentioned, it is always possible to achieve any triplet of positive numbers (I1, I2, I3)
with a suitable choice of density, so whatever the values of µi (i = 1, 2, 3) are, it is always
possible to find ̺ ∈ C0(B̄)+ such that (4.10) holds. It entails, according to the forth point of
Proposition 4.4:

Proposition 4.5. For any integer n ≥ 5, the set of all the controllable SC is an open dense
subset in C(n).

Notice that n = 5 in this Proposition (instead of n = 6), because we did not use the vector
field Z6

c in the computation of the Lie brackets.
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5. Proofs of the Main Results.

Proof of Proposition 1.1. Let a control function ϑ be given in AC([0, T ], D1
0(R

3)) and
denote Θ := Id + ϑ. With the notation of Lemma 3.2, at any time t the entries of the matrix
Mr

f (t) read Φ(q) with q := (ϑ,W) and W := (W1,W2), Wi ∈ {ei × Θt, ei, i = 1, 2, 3}. We
deduce that t ∈ [0, T ] 7→ Mr

f (t) ∈ M(3) is in AC([0, T ],M(3)). To get the expression of the

elements of the vector N(t) we only have to modify W2 which has to be equal to ∂tϑt. It entails
that t ∈ [0, T ] 7→ N(t) ∈ R6 is in L1([0, T ])6. It is quite easy to verify that the inertia tensor
I(t) is in AC([0, T ],M(3)). Existence and uniqueness of solutions is now straightforward because
t ∈ [0, T ] 7→ Mr(t)−1N(t) ∈ R6 is in AC([0, T ],R6).

Let us address the stability result. With the same notation as in the statement of Proposi-
tion 1.1, denote (Ωj ,vj)t the left hand side of identity (1.6a) with control ϑj and (Ω̄, v̄)t when
the control is ϑ̄. As j → +∞, it is clear that (Ωj ,vj)t → (Ω̄, v̄)t in L1([0, T ],R6). Then,
integrating (1.6b) between 0 and t for any 0 ≤ t ≤ T , we get the estimate ‖R̄(t)−Rj(t)‖M(3) ≤
∫ t

0
‖R̄(s) − Rj(s)‖M(3)‖Ω̄(s)‖R3 + ‖Ωj(s) − Ω̄(s)‖R3ds. Applying Grönwall inequality, we con-

clude that Rj → R̄ in C([0, T ],M(3)) as j → +∞ and we use again the ODE to prove that

Ṙj → ˙̄R in L1([0, T ]). Next, it is then easy to obtain the convergence of rj to r̄ and to conclude
the proof.

Proof of Theorems 1.2 and 1.3. We shall focus on the proof of Theorem 1.2 because it
will contain the proof of Theorem 1.3. For any integer n, we shall use the notation ‖c‖C(n) :=
‖̺‖C0(B̄) + ‖ϑ‖C1

0(R
3)3 +

∑n
i=1 ‖Vi‖C1

0(R
3)3 for all c ∈ C0(B̄)× C1

0 (R
3)3 × (C1

0 (R
3)3)n with, as

usual, c := (̺, ϑ,V) and V := (V1, . . . ,Vn).
Let ε > 0 and the functions ¯̺ ∈ C0(B̄), t ∈ [0, T ] 7→ ϑ̄t ∈ D1

0(R
3) and t ∈ [0, T ] 7→

(R̄(t), r̄(t)) ∈ SO(3)×R3 be given as in the statement of the theorem.
Set now ¯̺1 := ¯̺, ϑ̄1 := ϑ̄t=0 and V̄1

1 := ∂tϑ̄t=0 ∈ C1
0 (R

3)3. According to the self-propelled
constraints (1.2), it is always possible to find four elements V̄1

j (j = 2, . . . , 5) in C1
0 (R

3)3 such

that the element c̄1 := (¯̺1, ϑ̄1, V̄1) be a SC which belongs to C(5), with V̄1 := (V̄1
1, . . . , V̄

1
5).

Then, Proposition 4.5 guarantees that for any δ > 0 it is possible to find a SC controllable in
C(5), denoted by c1 := (̺1, ϑ1,V1) where V1 := (V1

1, . . . ,V
1
5), such that ‖c1 − c̄1‖C(5) < δ/2.

Since t 7→ ∂tϑ̄t is continuous on the compact set [0, T ], it is uniformly continuous. For any ν > 0,
there exists δν > 0 such that ‖∂̄tϑt − ∂̄tϑt′‖C1

0(R
3)3 < ν providing that |t − t′| ≤ δν . We then

divide the time interval [0, T ] into 0 = t1 < t2 < . . . < tk = T such that |tj+1 − tj | < δν for
j = 1, . . . , k − 1. For any t1 ≤ t ≤ t2, we have the estimate:

‖ϑ̄t − (ϑ1 + (t− t1)V
1
1)‖C1

0(R
3)3 ≤ ‖ϑ̄t − (ϑ̄1 + (t− t1)V̄

1
1)‖C1

0(R
3)3

+ ‖ϑ̄1 − ϑ1‖C1
0(R

3)3 + (t− t1)‖V̄
1
1 −V1

1‖C1
0(R

3)3 .

On the one hande, we have, for all t ∈ [t1, t2], ‖ϑ̄t− (ϑ̄1+(t− t1)V̄
1
1)‖C1

0(R
3)3 < ν|t− t1|. On the

other hand, still for t1 ≤ t ≤ t2 and if we assume that δν < 1, we get: ‖ϑ̄1 − ϑ1‖C1
0(R

3)3 + (t −

t1)‖V̄
1
1 −V1

1‖C1
0(R

3)3 ≤ δ/2. We introduce now ¯̺2 := ¯̺1 and ϑ̄2 := ϑ̄t=t2 . It is always possible to

supplement V̄2
1 := ∂tϑ̄t2 with vector fields V̄2

j (j = 2, . . . , 5) in such a way that c̄2 := (¯̺2, ϑ̄2, V̄2)

be in C(5) with the obvious notation V̄2 := (V̄2
1, . . . , V̄

2
5).

We define ̺2 := ̺1 and ϑ2 := ϑ1+(t2−t1)V
1
1. For any t1 ≤ t ≤ t2, Proposition 4.4 guarantees

that the SC c1t := (̺1, ϑ1 + (t − t1)V
1
1,V

1) is controllable. In particular, for t = t2, there exists
an integer k and a family of 11 vector fields in Ek (the set of all the Lie brackets of order lower
or equal to k) such that the determinant of the family is nonzero. But this determinant can be
thought of as an analytic function in V1. The set π−1({(̺1, ϑ1)}) being an analytic connected
submanifold of (C1

0 (R
3)3)5 (see Corollary 2.5), the determinant is nonzero everywhere on this

15



set but maybe in a closed subset of empty interior (for the induced topology). Therefore, it
is possible to find V2 ∈ (C1

0 (R
3)3)5 such that ‖c̄2 − c2‖C(5) < (δ/2 + ν(t2 − t1)) + δ/4, and

c2 := (̺2, ϑ2,V2) is controllable.

By induction, we can build c̄j and cj (j = 1, 2, . . . , k) such that ‖c̄j−cj‖ ≤ δ/2+
∑k

i=2 δ/2
i+

ν(ti − ti−1) < δ + νT . We choose δ and ν in such a way that δ + νT < ε/2 and we define
t : [0, T ] 7→ ϑ̃t ∈ D1

0(R
3) and t ∈ [0, T ] 7→ c̃t ∈ C(5) as continuous, piecewise affine functions

by ϑ̃t := ϑj + (t − tj)V
j
1 and c̃t := (˜̺, ϑ̃t, Ṽt) with ˜̺ := ̺j = ̺1, Ṽt := Vj if t ∈ [tj , tj+1]

(j = 1, . . . , k − 1). Notice that for any t ∈ [0, T ], (i) ‖ϑ̄t − ϑ̃t‖C1
0(R

3)3 < ε/2 and (ii) c̃t is
controllable.

Definition 4.2 and Proposition 4.3 ensure that, on every interval [tj , tj+1] (j = 1, . . . , k− 1),

there exist five C1 functions λji : [tj , tj+1] 7→ R (i = 1, . . . , 5) such that the solution (Rj , rj , s
j) :

[tj , tj+1] → SO(3) ×R3 × R5 to the ODE (4.2) with vector fields Zi
cj (Rj , s) and Cauchy data

Rj(tj) = R̄(tj), rj(tj) = r̄(tj) and s
j(tj) = 0 satisfy:

1. supt∈[tj ,tj+1]

(

‖R̄(t) − Rj(t)‖M(3) + ‖r̄(t) − rj(t)‖R3 + ‖ϑ̃t − ϑjt‖C1
0(R

3)3

)

< ε/2 with

ϑjt := ϑj +
∑5

i=1 s
j
i (t)V

j
i ;

2. Rj(tj+1) = R̄(tj+1), rj(tj+1) = r̄(tj+1) and s
j(tj+1) = (tj+1 − tj , 0, 0, 0, 0)

t;

With these settings, the functions t ∈ [0, T ] 7→ ϑ̆t ∈ D1
0(R

3), R̆ : [0, T ] → SO(3) and r̆ : [0, T ] →

R3 defined by ϑ̆t := ϑjt , R̆(t) := Rj(t) and r̆(t) := rj(t) if t ∈ [tj , tj+1] (j = 1, . . . , k − 1) are
continuous, piecewise C1. We extend also every functions sj on [0, T ] by setting sj(t) := 0 if
t ∈ [0, tj[ and s

j(t) := (tj+1 − tj , 0, 0, 0, 0)
t if t ∈]tj+1, T ]. They are continuous, piecewise C1 as

well.
It remains to smooth the function ϑ̆t (and hence also R̆ and r̆). We can extend the functions

λji on the whole interval [0, T ] by merely setting λji (t) = 0 if t /∈ [tj , tj+1]. Then, denoting

(Fj
i ) 1≤i≤5

1≤j≤k

the canonical basis of (R5)k and S̆ :=
∑k

j=1

∑5
i=1 s

j
iF

j
i ∈ (R5)k, we get that (R̆, r̆, S̆)

is a Carathéodory’s solution to the following equation on [0, T ]:

d

dt





R̆
r̆

S̆



 =

k
∑

j=1

5
∑

i=1

λji (t)T
j
i (R̆, S̆), (5.1)

where T
j
i (R̆, S̆) := (R̆X̂1

i (c
j , sj), R̆X2

i (c
j , sj),Fj

i ) ∈ TRSO(3) × R3 × (R5)k. Let λ̌ji denote

analytic approximations of the functions λji in L1([0, T ]) and denote (Ř, ř, Š) the corresponding
analytic solution to system (5.1) with Š := (š11, . . . , š

1
5, š

2
1, . . . , š

2
5, . . . , š

k
1 , . . . , š

k
5) and ϑ̌t := ϑ10 +

∑k
j=1

∑5
i=1 š

j
i (t)V

j
i which is analytic from [0, T ] to C1

0 (R
3)3. According to Lemma D.2, ϑ̆t − ϑ̌t

can be made arbitrarily small in AC([0, T ], C1
0 (R

3)3), providing that the functions λ̌ji are close

enough to λji in L1([0, T ]). Notice that ϑ̌ does probably not satisfy the self-propelled constraints
(1.2) (especially at the times tj , j = 2, . . . , k − 1). It remains to invoke Proposition B.1 and the
continuity of the input-output function (second point of Proposition 1.1) to conclude that there
exists t ∈ [0, T ] 7→ ϑt ∈ D1

0(R
3) analytic, satisfying (1.2) and such that

sup
t∈[0,T ]

(

‖R(t)− R̆(t)‖M(3) + ‖r(t)− r̆(t)‖R3 + ‖ϑt − ϑ̆t‖C1
0(R

3)3

)

< ε/2,

where (R, r) : [0, T ] 7→ SO(3)×R3 is the solution to System (1.6) with initial data (R(0), r(0)) =
(R̄(0), r̄(0)) and control ϑ. The proof is then complete.

6. Conclusion. In this paper, we have proved that, for a 3D shape changing body, the
ability of swimming (i.e. not only moving but tracking any given trajectory) in a vortex free
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environment is generic. The genericity refers to the shape of the body, its density and the
basic movements (at most five) required for swimming. This result is part of a series of articles
[13, 14, 15, 4] studying locomotion in a potential flow and the next step of this study will be to
investigate whether this controllability result can be extended to a flow with vortices.

Appendix A. Function spaces.

Classical function spaces.

• For any compact set K ⊂ Rn (n a positive integer), the space C0(K) consists of the
continuous functions in K endowed with the norm ‖u‖C0(K) := supx∈K |u(x)|. The open
subset of the positive functions of C0(K) is denoted C0(K)+.

• For any open set Ω ⊂ R3 (included Ω = R3), D(Ω) is the space of the smooth (C∞)
functions, compactly supported in Ω.

• For any open set Ω ⊂ R3 (included Ω = R3), the set C1
0 (Ω) is the completion of

D(Ω) for the norm ‖u‖C1
0(Ω) := supx∈Ω |u(x)| + ‖∇u(x)‖R3 . When Ω = R3, we get

C1
0 (R

3) := {u ∈ C1(R3) : |u(x)| → 0 and ‖∇u(x)‖R3 → 0 as ‖x‖R3 → +∞}.
• The space C1

0 (R
3)3 is the Banach space of all of the vector fields in R3 whose every

component belongs to C1
0 (R

3).
• Let E be an open subset or an embedded submanifold of a Banach space and T > 0,
then AC([0, T ], E) consists in the absolutely continuous functions from [0, T ] into E. It

is endowed with the norm ‖u‖AC([0,T ],E) := supt∈[0,T ] ‖ut‖E +
∫ T

0
‖∂tut‖Edt.

• Cm
0 (Ω,M(k)) (m an integer) is the Banach space of the functions of class Cm in R3

valued in M(k) (M(k) stands for the Banach space of the k × k matrices, k a positive
integer) and compactly supported in Ω.

• Em
0 (Ω,M(k)) stands for the connected component containing the zero function of the

open subset {M ∈ Cm
0 (Ω,M(k)) : det(Id +M(x)) 6= 0 ∀x ∈ R3}.

Lemma A.1. The set D̃1
0(R

3) := {ϑ ∈ C1
0 (R

3)3 s.t. Id + ϑ is a C1 diffeomorphism of R3} is
open in C1

0 (R
3)3.

Proof. The mapping ϑ ∈ C1
0 (R

3)3 7→ δϑ := inf e∈S2

x∈R3
〈Id + ∇ϑ(x), e〉 · e ∈ R (S2 stands

for the unit 2 dimensional sphere) is well defined and continuous. For any ϑ0 ∈ D̃1
0(R

3), we
have δϑ0 > 0 and for all x, y ∈ R3 and e := (y − x)/|y − x| the following estimate holds:

(y+ϑ(y)− x−ϑ(x)) · e = |y− x|
∫ 1

0
〈Id+∇ϑ(x+ te), e〉 · e dt > |y− x|δϑ. We deduce that Id+ϑ

is one-to-one if ϑ is close enough to ϑ0. Further, still for ϑ close enough to ϑ0, Id + ϑ is a local
diffeomorphism (according to the local inversion Theorem) and hence it is onto.

Definition A.2. We denote D1
0(R

3) the connected component of D̃1
0(R

3) that contains the
identically zero function.

If ϑ ∈ C1
0 (R

3)3 is such that ‖ϑ‖C1
0(R

3)3 < 1, the local inversion Theorem and a fixed point

argument ensure that Id+ϑ is a C1 diffeomorphism so we deduce that D1
0(R

3) contains the unit
ball of C1

0 (R
3)3.

Sobolev spaces. For any open exterior domain F , the weighted Sobolev space W 1(F) is
defined by W 1(F) := {u ∈ D′(F) : u/

√

1 + |x|2 ∈ L2(F), ∂xi
u ∈ L2(F), i = 1, 2, 3} (see [3] for

details).

Appendix B. Making shape changes allowable.

Proposition B.1. Let t ∈ [0, T ] 7→ ϑjt ∈ D1
0(R

3) for j = 1, . . . ,+∞, be a sequence of
absolutely continuous functions (respectively of class Cp for p = 1, . . . ,+∞ or analytic) which

converges to t ∈ [0, T ] 7→ ϑ†t ∈ D1
0(R

3) in AC([0, T ], D1
0(R

3)). Assume that for some function
̺ ∈ C0(B̄)+, the pair (̺, ϑ†) satisfies (1.2). Then, there exists a sequence t ∈ [0, T ] 7→ ϑ̄jt ∈
D1

0(R
3) (j = 1, . . . ,+∞) in AC([0, T ], D1

0(R
3)) (respectively of class Cp for p = 1, . . . ,+∞ or
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analytic) such that (i) for any j = 1, . . . ,+∞, the pair (̺, ϑ̄j) satisfies (1.2) and (ii) ϑ̄j → ϑ† in
AC([0, T ], D1

0(R
3)).

Proof. Denote m :=
∫

B
̺ dx and, for every j = 1, . . . ,+∞, Θj

t = Id + ϑjt and rj(t) :=

(1/m)
∫

B
̺Θj

t dx. Then, for any continuous function t ∈ [0, T ] 7→ R(t) ∈ SO(3), we have
∫

B ̺R(t)Θ̃
j
t dx = 0 where Θ̃j

t := Θj − rj(t). Let us now determine an absolutely continuous

function t ∈ [0, T ] 7→ Rj(t) ∈ SO(3) such that we have also
∫

B ̺[∂t(R
j(t)Θ̃j

t ) × Rj(t)Θ̃j
t ]dx = 0

for all t ∈]0, T [. Introducing I(Θ̃j
t ) :=

∫

B
̺[|Θ̃j

t |
2Id − Θ̃j

t ⊗ Θ̃j
t ]dx (an inertia tensor with ̺ > 0,

so always invertible) and G(Θ̃j
t , ∂tΘ̃

j
t ) := I(Θ̃j

t )
−1

∫

B
̺ ∂tΘ̃

j
t × Θ̃j

tdx, the identity above can

be turned into Ṙj(t) = Rj(t)Ĝ(Θ̃j
t , ∂tΘ̃

j
t ) (0 < t < T ). Since SO(3) is compact, this ODE

supplemented with the Cauchy data R(0) = Id admits a unique solution defined for all t ∈ [0, T ].
The solution has the same regularity as t ∈ [0, T ] 7→ ϑjt ∈ D1

0(R
3). Besides, basic estimates

allow to prove that (Rj , rj) → (Id,0) in AC([0, T ], SO(3) × R3) and next that ϑ̃j → ϑ† in
AC([0, T ], C1

0 (R
3)3). Notice that, at this point, we probably have ϑ̃j /∈ D1

0(R
3). Let now Ω be

a large ball containing ∪ t∈[0,T ]
j∈N

Θ̃j
t (B̄) and Ω′ be an even larger ball containing Ω. Consider χ a

cut-off function such that 0 ≤ χ ≤ 1, χ = 1 in Ω and χ = 0 in R3 \ Ω̄′. Define Θ̄j as the flow

associated with the Cauchy problem Ẋ(t, x) = χ(x)∂tϑ̃
j
t + (1 − χ(x))∂tϑ

†, X(0, x) = Θ†
t=0(x),

(x ∈ R3) and ϑ̄j := Θ̄j − Id. Since ϑ̄jt=0 = ϑ†t=0, we deduce that ϑ̄jt ∈ D1
0(R

3) for all t ∈ [0, T ]

and the sequence t ∈ [0, T ] 7→ ϑ̄jt ∈ D1
0(R

3) complies with the requirements of the Proposition.

Appendix C. Making vector fields allowable. Let a triplet (̺, ϑ,V) ∈ C0(B̄)+ ×
D1

0(R
3)× (Cm

0 (R3)3)n be given such that
∫

B
̺Θ dx = 0 where Θ = Id+ϑ. Recall that Σ = ∂B.

Proposition C.1. It is always possible to define new vector fields V∗
i in such a way that

(i) V∗
i |Σ = Vi|Σ, (ii) (̺, ϑ,V∗) ∈ C(n) with V∗ := (V∗

1 , . . . ,V
∗
n) and (iii)

∫

B
̺Θ ·V∗

i dx = 0.

Proof. Arguing like in the proof of Theorem 2.3, we can easily show that the mapping
W ∈ C1

0 (B)3 7→ (
∫

B ̺W dx,
∫

B ̺Θ×W dx,
∫

B ̺Θ ·W dx) ∈ R3 ×R3 ×R is onto with infinite
dimensional kernel. Hence, it is always possible to find a vector field W1 ∈ C1

0 (B)3 satisfying
∫

B
̺W1 dx = −

∫

B
̺V1 dx,

∫

B
̺Θ × W1 dx = −

∫

B
̺Θ × V1 dx,

∫

B
̺Θ · W1 dx = −

∫

B
̺Θ ·

V1 dx and such that {Θ|B · ek, (V1 +W1)|B · ek, k = 1, 2, 3} is a free family in C1
0 (R

3)3. We
denote V∗

1 := V1 +W1. We can continue with the same idea: The mapping W ∈ C1
0 (R

3)3 7→
(
∫

B ̺W dx,
∫

B ̺Θ×W dx,
∫

B ̺V
∗
1×W dx) ∈ R3×R3×R3 is onto, also with infinite dimensional

kernel. Again, it is possible to find W2 ∈ C1
0 (B)3 satisfying

∫

B ̺W2 dx = −
∫

B ̺V2 dx,
∫

B ̺Θ×
W2 dx = −

∫

B
̺Θ×V2 dx,

∫

B
̺Θ·W2 dx = −

∫

B
̺Θ·V2 dx and

∫

B
̺V∗

1×W2 dx = −
∫

B
̺V∗

1×
V2 dx and such that {Θ|B · ek, V

∗
1 |B · ek, (V2 +W2)|B · ek, k = 1, 2, 3} is free in C1

0 (R
3)3. We

can set V∗
2 := V2 +W2 and iterate this process to define V∗

3 , . . . ,V
∗
n.

Appendix D. Added mass matrix for particular shaped swimmers. Let B be an
open, bounded, connected, C1 subset of R3. Denote Σ its boundary, n the unit vector to
Σ directed toward the interior of B, F := R3 \ B̄ and consider the 6 × 6 symmetric matrix
Mf of which the entries are defined by

∫

F
∇ψi · ∇ψj dx (1 ≤ i, j ≤ 6) where the functions ψi

(i = 1, . . . , 6) are harmonic in F and satisfy the Neumann boundary conditions ∂nψi = (ei×x)·n
on Σ if i = 1, . . . , 6 and ∂nψi = ei−3 · n if i = 4, 5, 6.

Proposition D.1. The matrix Mf is always positive and it is positive definite if and only
if B has no axis of symmetry.

Proof. Denote α := (α1, . . . , α6)
t any element in R6 and ψ :=

∑6
i=1 αiψi. Then, we have

α
tMf

α =
∫

F
‖∇ψ‖2

R3dx ≥ 0 which proves that Mf is indeed positive. Let now α be in R6 such

that αtMf
α = 0. It means that ψ = 0 and hence ∂nψ =

∑3
i=1 αi(ei ×x) ·n+

∑6
i=4 αiei ·n = 0.
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Denoting u :=
∑3

i=1 αiei and v :=
∑6

i=4 αiei · n = 0, this condition reads (u× x+ v) · n = 0 on
Σ. The case u = 0 is obviously not possible, otherwise we would have v·n(x) = 0 for all x ∈ Σ so
let us assume from now on that u 6= 0. For all x ∈ Σ, (u×x+v) ∈ TxΣ (the tangent space to Σ
at x). Let us set w := (u×v)/|u|2. Then (u×x+v) = u×(x−w)+λu with λ := (v ·u)/|u|2. In
this form, we can explicitly compute the expression of the flow connecting to the ODE Ẋ(t, x) =
u×(X(t, x)−w)+λu, X(0, x) = x. We obtain X(t, x) = exp(tû)(x−w)+w+ tλu for all t ∈ R.
Since X(t, x) has to remain on Σ for all t ∈ R and Σ is bounded, we deduce that λu = 0. For
all x ∈ Σ and all t ∈ R, the point X(t, x) lies on Σ. It means that Σ is globally invariant under
a rotation whose axis has u as direction vector and goes through w.

Let M be a smooth embedded submanifold of a Banach space E and X := (Xi)1≤i≤n be set
of smooth vector fields on M.

Lemma D.2. Let αi be in L∞([0, T ]) (i = 1, . . . , n) and x be a Carathéodory’s solution
defined on the time interval [0, T ] to the ODE ẋ(t) =

∑n
i=1 αi(t)Xi(x) (0 < t ≤ T ), with Cauchy

data x(0) = x0 ∈ M. Let the functions αk
i , (i = 1, . . . , n, k ∈ N) be in L1([0, T ]), such

that αk
i → αi in L1([0, T ]) as k → +∞. Then, for any sequence of Carathéodory’s solutions

(xk)k∈N satisfying ẋk(t) =
∑n

i=1 α
k
i (t)Xi(x) with Cauchy data xk(0) = x0, the functions xk can

be continued on the whole interval [0, T ] for k large enough, xk → x uniformly on [0, T ] and
ẋk → ẋ in L1([0, T ],M).

Proof. For any δ > 0 small enough, denote byKδ the compact {x ∈ M : ‖x−x(t)‖E ≤ δ, t ∈
[0, T ]} and denote kδ > 0 the Lipschitz constant such that

∑n
i=1 ‖Xi(x)−Xi(y)‖E < kδ‖x−y‖E

for all x, y ∈ Kδ and all i = 1, . . . , n. LetM := max x∈Kδ
i=1,...,n

‖Xi(x)‖E andm := sup t∈[0,T ]
i=1,...,n

|αi(t)|.

Any function xk is defined at least on a small interval [0, tk[ and we can choose tk small enough
such that xk(t) ∈ Kδ for all t ∈ [0, tk[. We get the estimate, for all t ∈ [0, tk[:

‖x(t)− xk(t)‖E ≤M
n
∑

i=1

∫ t

0

|αi(s)− αk
i (s)|ds+mkδ

∫ t

0

‖xk(s)− x(s)‖Eds. (D.1)

For any ε > 0, we can choose k large enough such that
∑n

i=1

∫ t

0
|αi(s)−αk

i (s)|ds < εe−mkδT /M .
Applying Grönwall inequality to (D.1), we obtain that ‖x(t)− xk(t)‖E < ε for all t ∈ [0, tk[. We
deduce first that if ε < δ, the solution xk can be continued on the whole interval [0, T ] and then
that xk → x uniformly as k → +∞. Writing now that:

∫ t

0

‖ẋk(t)− ẋ(t)‖Edt ≤
n
∑

i=1

∫ t

0

|αk
i (t)− αi(t)|‖Xi(xk(s))‖E + |αi(t)|‖Xi(xk(t)) −Xi(x(t))‖Edt

≤M

n
∑

i=1

∫ t

0

|αk
i (t)− αi(t)|dt+mkδ

∫ t

0

‖xk(t)− x(t)‖Edt,

we get the convergence of the sequence (ẋk)k∈N to ẋ in L1([0, T ],M).
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