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ABSTRACT

Fitness landscape analysis aims to understand the geome-
try of a given optimization problem in order to design more
efficient search algorithms. However, there is a very little
knowledge on the landscape of multiobjective problems. In
this work, following a recent proposal by Zitzler et al. (2010),
we consider multiobjective optimization as a set problem.
Then, we give a general definition of set-based multiobjec-
tive fitness landscapes. An experimental set-based fitness
landscape analysis is conducted on the multiobjective NK-
landscapes with objective correlation. The aim is to adapt
and to enhance the comprehensive design of set-based multi-
objective search approaches, motivated by an a priori anal-
ysis of the corresponding set problem properties.

Categories and Subject Descriptors

F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous

General Terms

Algorithms

Keywords

Fitness landscapes, Multiobjective optimization, Set-based
multiobjective search

1. INTRODUCTION
There exists a large amount of literature about multiob-

jective optimization in general, and about the identification
or the approximation of the Pareto optimal set in partic-
ular. In the latter case, evolutionary multiobjective opti-
mization (EMO) techniques have received a growing inter-
est since the late 1980s. The overall goal is generally to
identify a set of good-quality solutions (ideally the whole or
a ‘representative’ subset of the Pareto optimal set). As a
consequence, recent advances in the field explicitly formu-
late the goal of multiobjective optimization as a set problem:
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the search space is made of sets of solutions (and not single
solutions) [17]. However, to date, the impact of the main
problem-related properties on the behavior and the perfor-
mance of set-based multiobjective search approaches is still
far from being well-understood.

Up to now, the definition of multiobjective fitness land-
scapes (moFiL) has been mainly restricted upon two differ-
ent levels: the properties of the Pareto optimal set on the
one hand, and of the search space properties at the solution-
level on the other hand. With respect to the Pareto op-
timal set, problem-related properties are known to largely
affect the structure of Pareto optimal solutions [10], and
then the behavior of search algorithms [11]. With respect to
the solution-level, Knowles and Corne [8] lead a landscape
analysis on the multiobjective quadratic assignment prob-
lem with a rough objective correlation. The transposition of
standard tools from fitness landscape analysis to multiobjec-
tive optimization are discussed by Garrett [4], together with
a study on fitness-distance correlation. In another study, a
moFiL is regarded as a neutral landscape, and divided into
different fronts with the same dominance rank [5]. In previ-
ous works on multiobjective NK-landscapes [1], enumerable
moFiL are studied according to the number of fronts, the
number of solutions on each front, the probability to pass
from one front to another, and the hypervolume-value of the
Pareto optimal set.

These types of moFiL lead to rather poor tools to describe
the dynamics of population-based multiobjective search al-
gorithms. We here propose to define a third type of moFiL,
dealing with the search space properties at the set-level. The
contributions of this work are summarized below.

(i) A definition of set-based multiobjective fitness land-
scapes is given, based on a search space made of solution-
sets, a neighborhood relation between solution-sets,
and an indicator-based fitness function.

(ii) An experimental analysis is conducted in order to study
standard tools from single-objective fitness landscapes
(ruggedness and multimodality) in the context of set-
based multiobjective search. We study the influence of
the main problem-related properties and of the solution-
set size on multiobjective NK-landscapes.

The reminder of the paper is organized as follows. Section 2
deals with fitness landscapes, multiobjective optimization,
and set-based multiobjective search. In section 3, we give
a definition of set-based multiobjective fitness landscapes,
illustrated with multiple examples. Experimental results are
given in Section 4; and the last section concludes the paper.



2. PRELIMINARIES

2.1 Fitness Landscapes
In single-objective optimization, the notion of fitness land-

scape (FiL) has been introduced to study the topology of a
problem [6]. A FiL can be defined by the triplet (S,N , f)
such that: S is a set of admissible solutions (i.e. the search
space); N : S → 2S is a neighborhood relation, i.e. a func-
tion that assigns a set of solutions N (s) ⊂ S to any solution
s ∈ S, the set N (s) is called the neighborhood of s, and a
solution s′ ∈ N (s) is called a neighbor of s; f : S −→ IR is
a fitness function that can be pictured as the ‘height ’ of the
corresponding solutions, here assumed to be maximized. A
local optimum is a solution s⋆ ∈ S such that ∀s ∈ N (s⋆),
f(s) ≤ f(s⋆). The ability of search algorithms is related to
the number of local optima, and to their distribution over
the landscape [9]. Global optima are defined as the abso-
lute maxima in the whole search space S. Other landscape
features, such as basins, barriers, or neutrality can also be
defined [12]. For the sake of self-containedness, several no-
tions that will be used later in the paper are defined below.

A walk on the landscape from s to s′ ∈ S is a sequence
(s0, s1, . . . , sm) of solutions from the search space such that
s0 = s, sm = s′ and si ∈ N (si−1) ∀i ∈ {1, . . . ,m}. For
instance, the walk is said to be random if solutions are cho-
sen with a uniform probability from the neighborhood. It
can also be obtained through the repeated application of a
‘move’ operator defined on the landscape, such as a random
mutation or a deterministic hill-climbing.

Given a walk (st, st+1, . . .), the autocorrelation function [14]
(ρ) of a fitness function f is the autocorrelation function of
time series (f(st), f(st+1), . . .):

ρ(k) =
E[f(st)f(st+k)]− E[f(st)]E[f(st+k)]

var(f(st))

where E[f(st)] and var(f(st)) are the expected value and
the variance of f(st), respectively. Estimates r(k) of auto-
correlation coefficients ρ(k) can be calculated with a time
series (s1, s2, . . . , sL) of length L:

r(k) =

∑L−k

j=1 (f(sj)− f̄)(f(sj+k)− f̄)
∑L

j=1(f(sj)− f̄)2

where f̄ = 1
L

∑L

j=1 f(sj), and L >> 0. A random walk
is representative of the landscape when it is statistically
isotropic. In such a case, whatever the starting point and
the neighbors selected during the walks, estimates of r(n) are
nearly the same. The estimation error diminishes with the
length of the walk. The autocorrelation length τ measures
how the autocorrelation function decreases. This summa-
rizes the ruggedness of the landscape: the larger the cor-
relation length, the smoother the landscape. Weinberger’s
definition τ = − 1

ln(ρ(1))
makes the assumption that the au-

tocorrelation function decreases exponentially [14].
The length of adaptive walks, performed with a hill-climber,

is an estimator of the diameter of the local optima basins of
attraction. The larger the length, the larger the basin size.
This allows to estimate the number of local optima when
the whole search space cannot be enumerated exhaustively.

2.2 Multiobjective Optimization
A multiobjective optimization problem can be defined by

a set of M ≥ 2 objective functions F = (f1, f2, . . . , fM ), and

a set X of feasible solutions in the decision space. In the com-
binatorial case, X is a discrete set. Let Z = F (X ) ⊆ IRM be
the set of feasible outcome vectors in the objective space. In
a maximization context, a solution x′ ∈ X is dominated by
a solution x ∈ X , denoted by x′ ≺ x, iff ∀i ∈ {1, 2, . . . ,M},
fi(x

′) ≤ fi(x) and ∃j ∈ {1, 2, . . . ,M} such that fj(x
′) <

fj(x). A solution x⋆ ∈ X is said to be Pareto optimal (or
efficient, non-dominated), if there does not exist any other
solution x ∈ X such that x⋆ ≺ x. The set of all Pareto
optimal solutions is called the Pareto optimal set (or the
efficient set). Its mapping in the objective space is called
the Pareto front. A common approach is to identify a mini-
mal complete Pareto optimal set, for which each point of the
Pareto front corresponds to a single Pareto optimal solution.

However, generating the entire Pareto optimal set is often
infeasible for two main reasons: (i) the number of Pareto
optimal solutions is typically exponential in the size of the
problem instance, and (ii) deciding if a feasible solution be-
longs to the Pareto optimal set is often NP-complete. There-
fore, the overall goal is often to identify a good Pareto set
approximation. To this end, evolutionary algorithms have
received a growing interest since the late eighties.

2.3 Set-based Multiobjective Search
Recently, approximating the Pareto optimal set has been

explicitly stated as a set problem [17]. In that sense, most
existing EMO algorithms can be seen as hill-climbers per-
forming on sets. Let us define the search space Σ ⊂ 2X by
a set of feasible sets of solutions (and not single solutions).
An element σ ∈ Σ is denoted as a solution-set. Usually, a
maximum cardinality is imposed: |σ| ≤ µ for all σ ∈ Σ. Dif-
ferent interpretations of what is a good Pareto set approx-
imation are possible, and the definition of approximation
quality strongly depends on the decision-maker preferences.
A set preference relation is then usually induced over Σ, like
the Pareto dominance relation extended to solution-sets.

We here assume that the set preference relation is explic-
itly given in terms of a quality indicator I : Σ → IR. One
of them is the hypervolume indicator IH [18], that is to be
maximized. It gives the portion of the objective space en-
closed by a solution-set σ ∈ Σ and a reference point z⋆ ∈ Z.
The hypervolume indicator is one of the most commonly
used indicator, due to several interesting properties [15]. In
particular, this is the only indicator that is dominance pre-
serving, i.e. ∀σ, σ′ ∈ Σ such that σ′ is dominated by σ:
IH(σ) ≥ IH(σ′). Many recent search algorithms are based
on the hypervolume indicator, but most of them operates at
the solution-level [3, 16], with the exception of [2]. The goal
of a hypervolume-based search is then to find a solution-set
σ ∈ Σ that maximizes the indicator value:

argmax
σ∈Σ

IH(σ) (1)

Let us note that a minimal solution-set maximizing IH is
a subset of the Pareto optimal set. Therefore, IH can be
seen as a function that assigns, to each solution-set, a scalar
value reflecting its quality according to the goal formulated
in (1), i.e. a fitness function defined over sets.

3. SET-BASED FITNESS LANDSCAPES

3.1 Definition
Like in single-objective optimization, a multiobjective fit-

ness landscape (moFiL) requires a proper definition of (i) a



search space, (ii) a neighborhood operator, and (iii) a fit-
ness function. From a multiobjective perspective, several re-
marks and criticisms can be stated from previous attempts
made in the past in defining a moFiL. First, the output of
a multiobjective search algorithm is a solution-set, and not
a single solution like in the single-objective case. Moreover,
multiobjective search approaches in general manipulate ei-
ther a population of solutions, or an archive of mutually non-
dominated solutions. Both can be viewed as solution-sets.
As a consequence, following the work of Zitzler et al. [17],
identifying multiple tradeoff solutions by means of a Pareto
set approximation can explicitly be stated as a set problem
(see Section 2.3). The search space of a multiobjective opti-
mization problem is here assumed to be constituted of a set
of feasible solution-sets. Second, considering a partial order
only to analyze a FiL does not allow to measure interesting
fitness landscape features dealing with the ruggedness and
the evolvability (among others). This is the reason why the
Pareto dominance relation (or a slight modification of it) is
generally not satisfying enough to define a moFiL. Quality
indicators as defined in [18] allow to overcome such a limita-
tion by introducing a complete order between solution-sets,
and by quantifying their respective quality with respect to
the indicator being used. Last, in their proposal on set-based
multiobjective search, Zitzler et al. [17] do not define any
set-based neighborhood operator, then restricting the appli-
cation of their approach to some ‘random set mutation’, or
‘heuristic set mutation’. However, defining a neighborhood
structure on solution-sets allows to distinguish between the
properties of the search space, and the heuristics used to
explore solution-set’s neighborhood. This is also through
this definition that are located the main differences in the
dynamics of set-based multiobjective search algorithms.

In this work, we propose the definition of a moFiL in terms
of set-based multiobjective search by means of an indicator-
based fitness function.

A set-based multiobjective fitness landscape is defined as
a triplet (Σ, N, I) such that:

• Σ ⊂ 2X is a set of feasible solution-sets (where X
is the set of feasible solutions);

• N : Σ → 2Σ is a neighborhood relation between
solution-sets;

• I : Σ → IR is a unary quality indicator, i.e. a
fitness function measuring the quality of solution-
sets.

Σ, N, and I still need to be defined for the problem at hand.
But this is also the case in single-objective optimization,
except that they are here defined at the set-level.

Algorithm 1 gives a general class of algorithms that set-
based moFiL are able to compare. For sure, most existing
multiobjective search algorithms can be formulated as in-
stances of this general methodology.

3.2 Illustrative Examples of Set-based moFiL
Different set-level search spaces can be considered accord-

ing to the problem and the algorithm under study. Several
examples are given below.

• The search space of population-based approaches can

Algorithm 1 Set-based Neighborhood Search Algorithm

start with a solution-set σ ∈ Σ

evaluate σ with respect to I

repeat
select σ′ ∈ N(σ)
evaluate σ′ with respect to I

if accept(σ,σ′) then
σ ← σ′

end if
until (continue(σ))
return non-dominated solutions of σ

be defined as Σ = {σ ∈ 2X : |σ| = µ}, where µ is the
population size.

• The search space of approaches using a bounded archive
can be defined as Σ = {σ ∈ 2X : |σ| ≤ µ}, where µ is
the maximal size of the archive.

• The search space of a number of existing dominance-
based approaches, where solution-sets of mutually non-
dominated solutions only are considered, can be de-
fined as Σ = {σ ∈ 2X : ∀s, s′ ∈ σ, s 6≺ s′}.

• A search space with the two previous restrictive condi-
tions can also be considered, i.e. Σ = {σ ∈ 2X : |σ| ≤
µ and ∀s, s′ ∈ σ, s 6≺ s′}.

• A search space without any restriction is Σ = 2X .

Next, the neighborhood structure has to reflect the way the
search space is explored by a class of search algorithms. In
the general case, the definition of neighborhood is based ei-
ther on a distance, or more often on the variation operator(s)
handled by the algorithm under study. Roughly speaking,
at the set-level, the neighbors of a solution-set can for in-
stance be obtained by (i) replacing a solution from the set,
(ii) inserting a solution to the set, or (iii) deleting a solu-
tion from the set. In order to give more precise examples
of set-level neighborhood operators, let us consider an arbi-
trary non-empty solution-set σ ∈ Σ, an arbitrary non-empty
neighboring solution-set σ′ = N(σ), and an arbitrary neigh-
boring solution s′ ∈ N (s) with s ∈ σ. Possible set-level
neighborhood operators are discussed below.

• When replacing a solution from the set, a neighboring
solution-set can be defined as σ′ = σ∪{s′}\{s′′} such
that s′′ ∈ σ. The size of this replacement set-level
neighborhood is at most |σ| ·

∑
s∈σ |N (s)|.

In such a case, a possible neighborhood exploration strat-
egy is to find the tuple (s′, s′′), with s′′ ∈ σ, such that
I(σ∪{s′} \ {s′′}) is maximal. However, most existing EMO
methodologies generally separate the fact of inserting a so-
lution to the set, and deleting a solution from the set into
two different phases.

• When inserting a new solution to the set, a neighboring
solution-set can be defined as σ′ = σ ∪ {s′}. The size
of this insertion neighborhood is at most

∑
s∈σ
|N (s)|.

• When deleting a solution from the set, a neighboring
solution-set can be defined as σ′ = σ\{s} where s ∈ σ.
The size of this deletion neighborhood is |σ|.



The set-level neighborhood operators can be applied mul-
tiple times in order to define large-size neighborhood op-
erators, where several solutions can differ in a neighboring
solution-set. A neighboring solution-set must always corre-
spond to an element of the given search space. As a conse-
quence, when the solution-sets are somehow bounded in size,
the neighborhood must be restricted using a (partial) domi-
nance relation, or a limited-size set. Of course, the definition
of a set-level neighborhood relations are not limited to the
use of a solution-level neighboring operator N . For instance,
a set-level neighborhood relation can consider a random so-
lution, or a solution produced by applying a recombination
operator to pairs of solutions in the solution-set, and so on.
Anyway, all those set-level neighborhood operators are just
few examples, and like in single-objective optimization, one
has to define the neighborhood relation according to the
(set) problem and the algorithm under study.

At last, the fitness function defined for set-based moFiL
is given in terms of a quality indicator. Several studies are
devoted to theoretical properties of multiobjective quality
indicators. Fore more details, the reader is referred to [18].

3.3 Discussion
In the general case, two typical uses of FiL analysis can

be conducted. First, such a study can allow to compare
the difficulties, in terms of FiL features, associated with dif-
ferent search problems. Given a search algorithm and two
different optimization problems, the corresponding FiL are
defined (i.e. the search space, the neighborhood relation,
and the fitness function). Then, the difficulties can be com-
pared between both FiL according to measures dealing, for
instance, with the number of local optima, their distribution,
the ruggedness, the evolvability, and so on. Second, another
possibility of FiL analysis is the off-line tuning or design of
search approaches. Once again, given a search problem and
different possible component design or parameter setting,
the corresponding landscapes are defined. Then, according
to the FiL measures, the most promising search algorithm
components can be chosen a priori. In the context of set-
based multiobjective search, a comparison of two set-based
moFiL can be compared with each other in terms of FiL
measures. They can be defined, for instance, by two differ-
ent neighborhood operators, two different fitness functions
or two different search space definitions, In the following, we
conduct an empirical study on the comparison of difficulty
of multiobjective optimization problems.

4. EXPERIMENTAL ANALYSIS

4.1 ρMNK-Landscapes
In the single-objective case, the family of NK-landscapes

constitutes an interesting model to study the influence of
non-linearity on the number of local optima. In this section,
we present the ρMNK-landscapes proposed in [13]. Four
parameters are required to define a ρMNK-landscape: the
problem size N , the number of epistatic links K, the number
of objectives M , and the objective correlation coefficient ρ.

The family of NK-landscapes is a problem-independent
model used for constructing multimodal landscapes [7]. Pa-
rameter N refers to the number of bits in the decision space
(i.e. the string length) and K to the number of bits that in-
fluence a particular bit from the string (the epistatic interac-
tions). By increasing the value of K from 0 to (N−1), NK-

landscapes can be gradually tuned from smooth to rugged.
The fitness function (to be maximized) of a NK-landscape
fNK : {0, 1}N → [0, 1) is then defined on binary strings
of size N . An ‘atom’ with a fixed epistasis level is repre-
sented by a fitness component fi : {0, 1}K+1 → [0, 1) as-
sociated with each bit i ∈ N . Its value depends on the
allele at bit i and also on the alleles at K other bit posi-
tions (K must fall between 0 and N − 1). In other words,
the parameter K tunes the degree of non-linearity (epis-
tasis). The fitness fNK(x) of a solution x ∈ {0, 1}N cor-
responds to the mean value of its N fitness components fi:
fNK(x) = 1

N

∑N

i=1 fi(xi, xi1 , . . . , xiK ), where {i1, . . . , iK} ⊂
{1, . . . , i− 1, i + 1, . . . , N}. In this work, we set the K bits
randomly. Each fitness component fi is specified by exten-
sion, i.e. a number yi

xi,xi1
,...,xiK

from [0, 1) is associated

with each element (xi, xi1 , . . . , xiK ) from {0, 1}K+1. Those
numbers are uniformly distributed in the range [0, 1). As a
consequence, it is very unlikely that the same fitness value
is assigned to two different solutions.

A multiobjective variant ofNK-landscapes (namelyMNK-
landscapes) has been defined with a set of M independent
fitness functions [1]. The same epistasis degree Km = K is
used for all the objectives. Each fitness component fm,i is
specified by extension with the numbers ym,i

xi,xim,1
,...,xim,Km

.

In the original MNK-landscapes, these numbers are de-
fined randomly and independently. An approach for de-
signing MNK-landscapes with correlated objective func-
tions has been recently proposed in [13]. First, let us de-
fine the CMNK-landscapes, where the epistasis structure is
identical for all the objective functions: ∀m ∈ {1, . . . ,M},
Km = K and ∀m ∈ {1, . . . ,M}, ∀j ∈ {1, . . . ,K}, im,j = ij .
However, the fitness components are not defined indepen-
dently. The numbers (y1,i

xi,xi1
,...,xiK

, . . . , yM,i
xi,xi1

,...,xiK
) fol-

low a multivariate uniform law of dimension M , defined by
a correlation matrix C. Thus, the y’s follow a multidimen-
sional law with uniform marginals and the correlations be-
tween ym,i

... s are defined by the matrix C. The construction
of CMNK-landscapes defines correlation between the y’s
but not directly between the objectives. In [13], it is proven
by algebra that the correlation between objectives is tuned
by the matrix C: E(cor(fn, fp)) = cnp. In the ρMNK-
landscapes, the correlation matrix Cρ = (cnp) is assumed
to have the same correlation between all pairs of objectives:
cnn = 1 for all n, and cnp = ρ for all n 6= p. Of course, for
obvious reasons, it is not possible to have the matrix Cρ for
all ρ values in [−1, 1]: ρ must be greater than −1

M−1
, see [13].

In ρMNK-landscape, the parameter ρ allows to tune very
precisely the correlation between all pairs of objectives.

In the following, we conduct an empirical study of the
influence of the problem dimension, the non-linearity (epis-
tasis), the number of objective functions and the objective
correlation on some properties of set-based moFiL.

4.2 Experimental Design
In order to minimize the influence of the random creation

of landscapes, we considered 30 different and independent in-
stances for each parameter combinations: ρ, M , and K. The
measures reported are the average over these 30 instances.
The parameters under investigation in this study are given in
Table 1. We analyze the multiobjective ρMNK-landscapes
according to set-based search algorithms that manipulate
a fixed-size solution-set. The goal is to show the link be-



Table 1: Parameters used in the paper.
Parameter Values

N {64}
M {2, 3, 5}
K {2, 4, 6, 8, 10}
ρ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9}

such that ρ ≥ −1/(M − 1)

tween the geometry of the set-based moFiL and the features
that make a search algorithm efficient for the corresponding
problem. Previous results indicate that the problem is get-
ting more complex when the non-linearity and the degree
of conflict between the objectives are high [1, 13]. Feasible
solutions are bit strings of size N : X = {0, 1}N , and the set-
level search space is the set of solution-sets of size µ. The
set-level neighborhood relation consists of the replacement
neighborhood as defined in Section 3. It does not change
the solution-set size and uses a bit-flip solution-level neigh-
borhood operator. In this work, we do not consider the
possible insertion or deletion of solutions from the solution-
set. Hence, two solution-sets are neighbors if they have the
same size, and if they differ by one solution only. It is also
required that the corresponding solutions are neighbors ac-
cording to the one bit-flip neighborhood operator: σ′ ∈ N(σ)
iff ∃s ∈ σ, ∃s′ ∈ X such that dHamming(s

′, s) = 1 and
σ′ = σ \ {s} ∪ {s′}. The maximal size of this neighborhood
relation is then (|σ| · N). The set-level fitness function is
based on the hypervolume indicator [18]. Given that the
objective functions of ρMNK-landscapes, defined in [0, 1],
are to be maximized, the reference point required by the
hypervolume calculation is set to 0M .

4.3 Ruggedness
The ruggedness of a multiobjective problem is here mea-

sured in terms of the autocorrelation of the hypervolume
along a random walk. The starting solution-set of the walk
is initialized with µ = 100 random solutions. At each step
of the random walk, a random neighboring solution-set re-
places the current one. The length of the random walk is set
to 5.103. Figure 1 shows the autocorrelation functions for an
objective space dimension M = 2 with respect to the non-
linearity degree K, and to the objective correlation ρ. The
functions all decrease slowly with the step lag. The hyper-
volume correlation between random neighboring solution-
sets is high. Figure 2 shows the autocorrelation length ac-
cording to parameterK,M and ρ. The correlation values are
very high. As a comparison, the autocorrelation length of
single-objective NK-landscapes is −1/ log(1− K+1

N
), which

gives the length 20.8 for N = 64 and K = 2 [12]. The cor-
relation between neighboring solutions with respect to each
objective function impacts the correlation between neighbor-
ing solution-sets in terms of hypervolume. But this correla-
tion also depends on the solution-set size µ. Let us suppose
that the fitness values between neighboring solutions change
with a factor α. Then, the change of the hypervolume val-
ues between the corresponding neighboring solution-sets is
lower than α. Notice that the magnitude of the autocorre-
lation length relative to the hypervolume is approximately
µ times the one related to the solution-level fitness values.
Nevertheless, as the well-known result from single-objective
NK-landscapes, the autocorrelation length of the hyper-
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Figure 1: Autocorrelation functions according to pa-
rameter K (top ρ = −0.2), and to parameter ρ (bot-
tom K = 2). The number of objectives is M = 2.

volume decreases with the non-linearity degree of ρMNK-
landscapes (Figure 2 – bottom). With respect to the objec-
tive space dimension and to the objective correlation, the
autocorrelation lengths are nearly the same.

Our results shed new lights on the definition of a moFiL.
According to the hypervolume indicator and to the very el-
ementary neighborhood used in the experiments, the struc-
ture of the moFiL is very smooth. The ruggedness of the
landscapes depends more on the non-linearity than on the
objective space dimension or on the objective correlation.
This gives complementary information with respect to [13],
which enlighten the importance of objective correlation and
objective space dimension on the structure of the Pareto op-
timal set. Moreover, from the algorithm-design perspective,
if we refer on results from single-objective fitness landscapes
analysis, a local search based on solution-sets and on the
hypervolume should be efficient for the ρMNK-landscapes.

4.4 Adaptive Walk
In this section, we define an adaptive walk as a first-

improvement hill-climbing (HC) algorithm performing on
solution-sets. At each algorithm iteration, a random neigh-
boring solution-set is accepted if its hypervolume-value is
strictly better than the one of the current solution-set. The
walk stops once a local optimum solution-set is found, ac-
cording to the set-level neighborhood relation. The length of
the adaptive walks is studied with a solution-set size µ = 20.
It reduces the size of the neighborhood structure and then,
of the time complexity of the HC algorithm. Usually, it is
expected that, when the problem difficulty increases, so is
the number of local optima. As a consequence, the length
to reach a local optimum becomes smaller.



 150

 200

 250

 300

 350

 400

 450

-1 -0.5  0  0.5  1

A
ut

oc
or

re
la

tio
n 

le
ng

th

ρ

K=2
K=4
K=6
K=8

K=10

 150

 200

 250

 300

 350

 400

 450

 500

-0.2  0  0.2  0.4  0.6  0.8  1

A
ut

oc
or

re
la

tio
n 

le
ng

th

ρ

K=2
K=4
K=6
K=8

K=10

 150

 200

 250

 300

 350

 400

 450

 2  4  6  8  10

A
ut

oc
or

re
la

tio
n 

le
ng

th

K

M=2
M=3
M=5

 150

 200

 250

 300

 350

 400

 450

 2  4  6  8  10

A
ut

oc
or

re
la

tio
n 

le
ng

th
K

M=2
M=3
M=5

Figure 2: Average value of the autocorrelation length according to parameter ρ (top left M = 2, right M = 5),
and to parameter K (bottom left ρ = −0.2, right ρ = 0.9). The solution-set size is µ = 100.
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Figure 3: Average length of the adaptive walks according to parameter ρ (top left M = 2, right M = 5), and
to parameter K (bottom left ρ = −0.2, right ρ = 0.9). The solution-set size is µ = 20.
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Figure 4: Average number non-dominated solutions in the solution-set local optima according to parameter ρ
(top left M = 2, right M = 5), and to parameter K (bottom left ρ = −0.2, right ρ = 0.9). The solution-set size
is µ = 20.

Figure 3 shows the length of the adaptive walks according
to the ρMNK-landscapes parameters. First, as expected,
for a fixed objective space dimension and objective corre-
lation, the length of adaptive walks decrease with the non-
linearity degree K. The length is correlated to the diffi-
culty of the problem under study. However, surprisingly, the
length decreases when the objective correlation increases,
whereas, intuitively, the search becomes easier when the ob-
jective correlation increases. A notable exception stands for
M = 5, with ρ ∈ {−0.2, 0.0}.

In order to explain this result, we need to deeply ana-
lyze the set-based HC. Let us note that only non-dominated
solutions from the set contribute to the hypervolume. As
a consequence, when the number of non-dominated solu-
tions is small, the number of neighboring solution-sets with
a strictly higher hypervolume-value is small. In such a case,
the length of the adaptive walk should be smaller. This
should explain our results. Indeed, according to [13], the
size of the Pareto optimal set increases when the objective
space dimension and the objective correlation decrease. The
non-linearity K has a low influence on this size. Figure 4
shows the number of mutually non-dominated solutions in
the output of the algorithm (i.e. in the solution-set local
optima). As the size of the Pareto optimal set, the num-
ber of non-dominated solutions in the set decreases with the
objective correlation, and is nearly constant with the pa-
rameter K. For M = 2, the maximum size µ = 20 is never
reached. For M = 3, the maximum size is nearly reached
for all correlation values between ρ = −0.2 and ρ = 0.0.

When there is an equivalent number of mutually non-
dominated solutions in the solution-sets of the different land-
scapes, the length of adaptive walks corroborates the ex-
pected property: the larger the size, the ‘easier’ the problem.

In such a case, like in single-objective fitness landscapes, the
length of adaptive walks could be used to estimate the di-
ameter of the basins of attraction of local optima. However,
three possible ways could overcome the drawback related to
the number of non-dominated solutions. First, it is possible
to change the search space or the neighborhood relation in
order to consider mutually non-dominated solutions in the
sets only. The indicator-based fitness function could also be
modified in order to take dominated solutions into account.
Second, we can change the definition of the HC algorithm
in order to consider the ties in hypervolume-values. At last,
when there is a large number of neighboring solution-sets
sharing the same hypervolume-value, we can see the fitness
landscapes as covered by many plateaus. Then, it could
become useful to study the structure of the plateaus more
than the solution-set local optima. The decision between
these choices has to be made depending on the issues to
analyze, and according to the problem and the algorithm
under consideration.

At last, as shown in Figure 5, the size of the solution-
sets impacts the length of adaptive walks. With the cost
of additional evaluations, the quality of the set-based local
optimum increases with the solution-set size. Indeed, the
length of adaptive walks and the hypervolume-value both
increase with the solution-set size, but at different rates.
This suggests that a trade-off between cost and quality exists
with respect to the solution-set size.

5. CONCLUSIONS
In this paper, we formulated a definition of set-based mul-

tiobjective fitness landscapes. It is based on a set of solution-
sets as a search space, an indicator quantifying the quality
of solution-sets as a fitness function, and a set-based neigh-
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local optima, and average length of the adaptive
walks according to the solution-set size µ. The num-
ber of objectives is M = 3, the objective correlation
is ρ = −0.2, and the non-linearity degree is K = 4.

borhood relation. We performed a set-based multiobjec-
tive fitness landscape analysis on the multiobjective NK-
landscapes with objective correlation. Our preliminary ex-
perimental study shows that tools from single-objective fit-
ness landscapes can directly be extended for analyzing set-
based multiobjective search approaches. The relevant fea-
tures of multimodality and ruggedness has been highlighted
for this particular class of problems.

Two difficulties have been pointed out in this work. First,
the size of the set-based neighborhood can become very large
in comparison with solution-based neighborhood structures.
Second, some solutions contained in a feasible solution-set
may become dominated by others, so that they do not con-
tribute to indicator-based fitness values for most existing
quality indicators. As a consequence, future methodologies
will be devoted to an efficient way of sampling the neigh-
borhood, while taking dominated solutions into account. As
a next step, we will formalize existing multiobjective search
algorithms in terms of set problems based on a set-based
neighborhood. Such advances will allow us to analyze the
link between the performance and the dynamics of given
search methods, together with the main features of multi-
objective fitness landscapes. Moreover, we plan to experi-
ment more advance concepts, related to the evolvability, the
neutrality, or local optima networks in order to enlarge the
understanding of multiobjective problem structures.
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