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Abstract . In the context of expensive numerical experiments, a promising solution to alleviate
the computational costs consists of using partially converged simulations instead of exact so-
lutions. The gain in computational time is at a price of precision in the response. This work
addresses the issue of fitting a Gaussian process metamodel to partially converged simula-
tion data, for further use in prediction and optimization. The main challenge consists in the
adequate approximation of the error due to partial convergence, which is correlated in both
design variables and time directions. Here, we propose to fit a Gaussian process in the joint
space of design parameters and computational time. The model is constructed by building a
covariance function that reflects accurately the actual structure of the error. Practical solutions
are proposed to solve the learning issues associated with the model. The method is applied
to a CFD simulator test-case, and shows significant improvement in prediction compared to a
classical kriging model.

1. Introduction

Using computer experiments and metamodels for facilitating optimization and statistical
analysis of engineering systems has become commonplace (Sacks et al. (1989); Jones et al.
(1998)). However, despite the continuous growth of computational capabilities, the com-
plexity of the simulators still drastically limit the number of available experiments, which
are often insufficient to build accurate metamodels.
An efficient solution to alleviate the computational cost consists of using degraded versions
of the expensive simulator to provide faster but less accurate evaluations of the simulator
output. Such approximations can be obtained by using coarser mesh (in Finite Element
methods), a simpler partial differential equations problem, or geometry simplification for
instance. The degraded simulator is often called low-fidelity (LF) model and the expensive
version high-fidelity (HF) model. Using metamodels in this context has been addressed by
many authors in the literature. For instance, Alexandrov et al. (2000) and Gano et al. (2006)
used metamodels to approximate the difference between LF and HF models. Kennedy and
O’Hagan (2000) proposed a so-called auto-regressive model to integrate data with various
fidelities. All these approaches assume that (1) a discrete (small) number of fidelities is
available, and (2) LF responses are smoother than HF responses.
A less explored but promising alternative is to use partially converged simulations as a low-
fidelity model, by stopping artificially the convergence of the simulator solver at early stage.
Such approach has many advantages, among which the use of a single simulator instead of
a different simulator for each fidelity level, and the possibility of having as many levels of
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Table 1. Design variable bounds
x1 x2 x3 x4 x5 x6 x7

Lower bound 4 15 5 5 20 9 9

Upper bound 11 45 20 11 60 60 60

accuracy as desired.
Using metamodels with such data is an open and difficult question, that differs from the
classical multifidelity framework since unconverged responses are likely to be a lot rougher
than converged ones, and the number of fidelity levels can be very large. In the pioneer
article of Forrester et al. (2006), it is observed that all simulations within the design space
tend to converge in unison, so partially converged responses are corrected using a constant
shifting value and fused with fully converged responses to build a classical metamodel. Al-
though demonstrated to be quite efficient already, this approach hinders the potential of
partial convergence, since it allows the use of only two fidelity levels, and using a constant
shift requires simulations to achieve a relatively high level of convergence.
This work addresses the issue of fitting a metamodel to partially converged simulation data,
when convergence level potentially varies from one design to another. To do so, we propose
to use a Gaussian process model in the joint space of design parameters and computational
time. The model is constructed by building a covariance function that reflects accurately
the actual structure of the error.
In the next section, we describe a Computational Fluid Dynamics (CFD) simulator opti-
mization problem, which response illustrates the important behaviors of partially converged
simulations. Then, we present a Gaussian process model for the joint design-time space,
followed by learning issues and solutions specific to this model. Finally, the model is applied
to the analysis of the CFD problem.

2. An Illustrative example: S-shaped pipe flow

To motivate our approach and highlight the important properties of partial convergence, we
consider the optimization problem of an S-shaped pipe, which form is defined parametrically.
A two-dimensional CFD model is built using OpenFOAM and its solver simpleFoam (steady-
state, incompressible, turbulent flow). A constant flow velocity is imposed at the pipe
input, and a null pressure at the output. The pipe contour is defined with the help of
seven parameters, as shown in figure 1. The parameter bounds are given in table 1. The
objective is to maximize the uniformity of the flow velocity at the end of the S-section,
so the objective function (referred to as fSD) is taken as the velocity standard deviation
between P9 and P10.

OpenFOAM allows us to monitor the velocity field for each solver step, so we can
measure the convergence directly on the objective function. First, we generate 20 designs
using Latin hypercube sampling (LHS), and for each solver step, we compute fSD. Figure
2 shows the evolution of the 20 designs for all time steps. Although converging to different
values, all the convergence curves have similar shapes, and it seems reasonable to assume
that most of the information required for prediction or optimization can be obtained before
full convergence.

Now, in order to represent the data in the joint design-time space, we fix all the parame-
ters to their nominal value but x2 (which is the most sensitive parameter), and 100 designs
are generated for x2 values uniformly distributed between its bounds. For all designs, 500
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Figure 1. Contour and shape parameters of the 2D pipe model. x2 is an angle, x6 and x7 define the
curvatures of the Bezier curves (bold lines, right figure), x1, x3, x4, x5 are distances.
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Figure 2. Response convergence for 20 designs.
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solver iterations are used for convergence. Figure 3 shows three designs and their converged
velocity fields, for minimum (left), mean (center) and maximum (right) values of x2.

Figure 3. Three designs and velocity fields for x2 taking its minimum (left), mean (center) and
maximum values (right).

The objective function fSD and the convergence error are then shown in the x2 and time
t plan (Figure 4). The convergence error is here taken as the current objective function
value minus the value at step 500.

100
200

300
400

500 15
20

25
30

35
40

45

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x2 value

flowSD for XP 100

Nb of iterations

flo
w

S
D

100
200

300
400

500

15
20

25
30

35
40

45
−0.2

−0.1

0

0.1

0.2

Nb of iterations

Error in flowSD for 100 XP

x2 value

flo
w

S
D

Figure 4. Evolution of objective function (left) and objective function error (right) as a function of x2

and t. Time axis direction is inversed in the left figure to increase readability

First, we can observe that the response in smooth in both x2 and t directions, which
means that two close designs with the same number of convergence steps will have similar
responses. Obviously, when t increases, the error decreases and tends towards zero, so
the response becomes invariant with respect to t. One can also observe that the error
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fluctuations have a higher frequency for small t than for high t. These are the three key
characteristics that we want to include in our model, as we describe in the next sections.

3. A brief review of the ordinary kriging (OK) model

This section contains a brief review of the ordinary kriging model, which is used as a basis
for our space-time model.

3.1. OK equations
We denote by y the response of a numerical simulator or function that is to be studied:
y : x ∈ D ⊂ R

d −→ y(x) ∈ R. In the framework of ordinary kriging Matheron (1969),
y is assumed to be a realization of a Gaussian process Y with unknown constant mean
µ and stationary (location-invariant) covariance kernel. The kriging model amounts to
conditioning Y on the observations Y evaluated at a set of input parameters X = {xi, 1 ≤
i ≤ n} called the design of experiments. The conditional mean and variance of Y define
respectively the kriging best predictor mOK and prediction variance s2

OK , and are given by
the following equations:

mOK(x) = E[Y (x)|Y (xi) = yi, 1 ≤ i ≤ n]

= µ̂ + k(x)T K−1 (Y − µ̂1) , (1)

and

s2
OK(x) = Var[Y (x)|Y (xi) = yi, 1 ≤ i ≤ n]

= k(x,x) − k(x)T K−1k(x) +

(
1 − 1TK−1k(x)

)2

1TK−11
(2)

where:

• | means ”conditional on”,

• Y = (y1, . . . , yn)T ,

• K =
(
k(xi,xj)

)
1≤i,j≤n

,

• k(x) = (k(x,x1), . . . , k(x,xn))T ,

• 1 is a n × 1 vector of ones, and

• µ̂ = 1
T
K

−1
Y

1T K−11
is the best linear unbiased estimate of µ.

Often times, it is assumed that the response is shifted by a linear trend instead of a
constant; this is the framework of universal kriging, which is not presented here for the sake
of conciseness but for which the method presented here applies without difficulty. Detailed
calculations and statistical interpretation can be found in Matheron (1969), Cressie (1992)
or Rasmussen and Williams (2006) for instance.

When response is observed in Gaussian, independent noise, i.e. observations are of the
form Y (xi) + εi and cov(εi, εj) = 0, i 6= j, equations remain valid except that a diagonal
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matrix ∆ has to be added to the covariance matrix K at every occurrence [Rasmussen and
Williams (2006), pp.16-17], with terms ∆i,j = cov(εi, εj) = δi,j × var(εi), 1 ≤ i, j ≤ n.
This model is often referred to as Gaussian process regression in machine learning. Note
that this model can be easily generalized to the case where the εi’s are correlated, ∆ being
non-diagonal.

3.2. Covariance function and parameter learning
In this work, the covariance function k used is the anisotropic Matern covariance with
smoothness parameter ν = 5/2:

k(x,x′) = kx(hx) = σ2

(
1 +

√
5hx +

5

3
h2

x

)
exp

(
−
√

5hx

)
(3)

where hx =
√

xT Σx′ with Σ = diag
([

1/θ2
1, . . . , 1/θ2

d

])
. The matrix Σ accounts for anisotropy

in the x space.

The parameters σ2 and θ1, . . . , θd are often referred to as process variance and ranges,
respectively. They are usually not known by the user and must be estimated based on a
sample of observations. One of the most popular method to do so is the maximum likelihood
estimation (MLE), which amounts to maximizing the probability density function of Y seen
as a function of the covariance parameters:

L(σ2, θ1, . . . , θd) = (2π)−
n
2 det (K)−

1

2 exp

(
−1

2
(Y − µ̂1)T

K−1 (Y − µ̂1)

)
(4)

Here, K can be factorized by σ2: K = σ2R (with R independent of σ2). Then, for fixed
θ1, . . . , θd, the optimal σ2 is given by:

σ̂2 =
1

n
(Y − µ̂1)

T
R−1 (Y − µ̂1) (5)

By injecting this quantity into equation 4 and applying a logarithmic transformation,
the MLE problem simplifies to the minimization of the so-called concentrated log-likelihood
with respect to the range parameters only:

min
θ1,...,θd

n log

(
1

n
(Y − µ̂1)

T
R−1 (Y − µ̂1)

)
+ log (det (R)), (6)

the MLE of σ2 being computed afterwards using equation 5.

4. A Gaussian process surrogate for partially converged sim ulations

The Ordinary Kriging model presented in the previous section relies on a set of assumptions,
in particular the stationarity of the response y, that are - approximately - met in many com-
puter experiments situations. Here, the particular behavior of the response strongly violates
some of these assumptions. This section presents a model based, like Ordinary Kriging, on
Gaussian process conditioning, that fits adequately partially converged responses.
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4.1. Desired properties
When partial convergence is considered, an observation yi is defined by both input parame-
ters x ∈ D and computational time t ∈ R+∗ (typically equal or proportional to the number
of solver iterations). In order to predict such types of responses, Gaussian processes are
particularly adapted since they allow the definition of models that can inherit the structure
of the function to approximate.
Indeed, we consider that the observed function is a realization of a random process Y (x, t),
which is the sum of a process F independent of t, and a process G that depends on both x

and t:
Y (x, t) = F (x) + G(x, t) (7)

F is the response given by the simulator with complete convergence, and then can be
modeled with the usual assumptions in computer experiments Sacks et al. (1989): station-
arity, ergodicity, etc. (as for a kriging model in a classical framework). G is the error term
due to partial convergence, and has a more complex structure. Under the hypothesis of
independence between F and G, the kernel kY of Y writes simply as the sum of the kernels
of F and G, so all the modeling difficulty lies in the characterization of the convergence
error G.

In the x space, it can be observed (Figure 4) that two runs with close sets of input
parameters converge in a similar fashion, hence their convergence errors are correlated.
In the t direction, except for the first few iterations that often show large oscillations,
the convergence is smooth so the responses evaluated at successive time steps are also
correlated. In addition, the convergence error tends to zero when the computational time
increases. It can be assumed reasonably that the error variance decreases monotonically
with computational time, which makes G instationary in the t direction. The speed of
convergence may differ slightly from one design to another, but assuming this speed constant
seems reasonable here. Finally, one can observe that the oscillation frequency of the error
tends to decrease with time, which is another instationary behavior in the t direction.

4.2. Modifying usual covariance functions
Most usual covariance functions in the kriging framework are stationary (i.e. k(x,x′) =
k(x − x′)), hence are not suitable for our problem. However, lots of possibilities exist to
modify usual kernels to make new ones with the desirable properties, see Rasmussen and
Williams (2006) (chapter 4, pp.94-95) for a detailed discussion. In particular, we use here
the three following properties:

• given two kernels k1(x,x′) and k2(x,x′), their sum and their product are a kernel:

k3(x,x′) = k1(x,x′) + k2(x,x′), k4(x,x′) = k1(x,x′) × k2(x,x′)

• given any function a : D → D, then its composition with the kernel is a kernel:

k5(x,x′) = k (a(x), a(x′))

Proofs are direct by verifying that the following property is met:
A kernel k on D × D is positive definite if and only if it is symmetric (k(x,x′) = k(x′,x)
for all x,x′ ∈ D) and for all {x1, . . . ,xn} ∈ D (n ∈ N) and all {a1, . . . , an} ∈ R:

n∑

i,j=1

aiajk(xi,xj) ≥ 0 (8)
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4.3. A covariance function for partial convergence
Recall that G is a process autocorrelated in x and t with decreasing amplitude and increasing
smoothness when t increases. To account for the decreasing amplitude, we propose to use
a covariance of the form:

kG(u,u′) = σ2(t, t′)rG(x,x′, t, t′) (9)

where u = (x, t), rG is a correlation function and σ2(t, t′) is a decreasing function of t
and t′. To ensure that kG is a positive definite kernel, it is sufficient to choose σ2(t, t′)
as a covariance function. Since G tends to zero, its variance σ2(t, t′) should be null when
t → +∞. Here we choose a decreasing exponential form for the variance:

σ2(t, t′) = σ2
G exp(−α

t + t′

2
), (10)

with α ∈ R
∗
+ a parameter that accounts for the convergence speed. Another choice, among

many, could be: σ2(t, t′) =
σ2

G

(t+t′)α .

Although not necessary, it is convenient to choose a separable function for rG:

rG(u,u′) = rGx(x,x′) × rGt(t, t
′), (11)

which allows to handle different regularities in x and t directions.
The correlation rGx can be taken as stationary, i.e. rGx(x,x′) = rGx(|x− x′|), for

instance, the Matern 5/2 function of equation 3.
The correlation rGt has to account for the increasing smoothness of the error (high

oscillations for the first steps, then smooth convergence). To do so, we propose to use
a classical covariance (for instance the Matern 5/2 function) and define for a distance
depending on time, for instance:

ht =
|t − t′|
θ(t, t′)

=
|t − t′|

θ0 + ∆θ

2 (t + t′)
, (12)

with θ0, ∆θ ∈ R+.
Finally, the kernel of the process Y is the sum of the kernels of F and G, assuming that

they are independent of each other:

kY (u,u′) = kF (x,x′) + kG(u,u′) (13)

Using this kernel, we are able to perform simulation, conditional simulation, hence learning
with Gaussian processes.

Let Yn = [y1, . . . , yn]
T

be a set of observations, X the matrix of design parameters, T

the vector of times and U = [X,T] the experimental matrix. In the fashion of Ordinary
Kriging, the mean and variance of Y at u∗ = (x∗, t∗) conditional on the observations Y are
given by:

m(u∗) = µ̂ + kY (u∗)TK−1
Y (Y − µ̂1) (14)

s2(u∗) = kY (u∗,u∗) − kY (u∗)T K−1
Y kY (u∗) +

(
1 − 1TK−1

Y kY (x)
)2

1T K−1
Y 1

(15)

with: KY i,j = kY (ui,uj) and kY = [kY (u∗,u1) . . . kY (u∗,un)].
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The functions m(.) and s2(.) define the Gaussian process model, which provides a pre-
diction mean and variance for any given design with convergence level. As for the Ordinary
Kriging model, m is equal to the observations and s is equal to zero at the points of the
DOE.

In most applications, in particular for optimization, the value of interest is the actual
response, i.e. the asymptotic value for t = +∞. From equation 13, the covariance kY (u,u∗)
is defined for u∗ = (x∗, +∞) and is simply equal to kF (x,x∗) (indeed, σ2

G(+∞, .) = 0 which
implies kG = 0). Then, we can define an asymptotic prediction independent of t, equal to:

m∞(x∗) = µ̂ + kF (x∗)TK−1
Y (Y − µ̂1) (16)

s2
∞(x∗) = σ2

F − kF (x∗)T K−1
Y kF (x∗) +

(
1 − 1TK−1

Y kF (x)
)2

1TK−1
Y 1

(17)

One can notice that these equations take the form of an Ordinary Kriging with correlated
residuals, since KY = KF + KG, KG playing the role of ∆ in section 3.

4.4. Discussion
4.4.1. Comparison with co-kriging

One might prefer to limit the responses to two (or a few) convergence levels only, as in
Forrester et al. (2006). In that case, the data is similar in form to a multi-fidelity framework,
for which the co-kriging model Kennedy and O’Hagan (2000) has been proved to be an
efficient tool for prediction and optimization.

When t levels of response are considered, the co-kriging model assumes that the more
accurate response Zt is equal to the less accurate response Zt−1 multiplied by a scaling
factor ρt−1 plus a stationary Gaussian process independent of Zt and Zt−1:

Zt(x) = ρZt−1(x) + δt(x) (18)

In the framework of this paper, we have Zt(x) = F (x) + G(x, t) and Zt−1(x) = F (x) +
G(x, t − 1). Hence, the two models differ for two reasons. First, by the scaling factor
ρ: this factor is intuitive in a multi-fidelity framework, since data may come from different
simulators, so they are different in nature and may have different amplitudes. This behavior
is not so clear with partial convergence.

The second difference is the co-kriging assumption of independence of the differences
between two fidelity levels: cov (δt1(x), δt2(x)) = 0, t1 6= t2. This would imply that G(x, t1)
is independent of G(x, t2), meaning that the convergence error is correlated in the x-direction
but not in the time direction, which is obviously false from figure 2. Co-kriging might apply
to partial convergence only if the convergence times t1, t2, . . . are sparse enough so the
hypothesis of independence in the time direction holds.

4.4.2. Monte-Carlo convergence

The space-time model allows us to deal with a framework closely related to partial conver-
gence that is typical of robust design for instance: an observation is computed by averaging
an arbitrary number ti of independent drawings (or repeated experiments):

Ỹi =
1

ti

ti∑

j=1

F (xi) + εi,j , (19)
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when F (x) is the function of interest, observed with noise εi,j ∼ N (0, τ2). We have then

Ỹi ∼ N
(
F (xi),

τ2

ti

)
. F is observed exactly for ni → +∞, and the process error G is equal

to:

G(xi, ti) =
1

ti

ti∑

j=1

εi,j , ti ≤ ni (20)

In a classical framework, one would only use the observation Ỹi and build a kriging with

noisy observations by adding diagonal terms τ2

ni
to the covariance matrix, as explained in

section 3. In contrast, the space-time model presented here takes the whole trajectory of
G into account, that is {G(xi, 1), . . . , G(xi, ti)}. One may wonder if this adds any helpful
information for prediction. We show below that the two models are actually equivalent,
due to the Markovian property of G here.

Indeed, since all εi,j are uncorrelated, the covariance of G is null in the x direction:

cov
(
G(xi, ti), G(xj , tj)

)
= 0 for any xi 6= xj

For a given trajectory (fixed xi, t
(1)
i , t

(2)
i ≤ ti), it is easy to find that we have:

cov
(
G(xi, t

(1)
i ), G(xi, t

(2)
i )
)

=
τ2

max(t
(1)
i , t

(2)
i )

= τ2 min(t
(1)
i , t

(2)
i )

t
(1)
i t

(2)
i

(21)

So the kernel of G is:

kG((ui,uj)) =
τ2

t
(p)
i t

(q)
j

min(t
(p)
i , t

(q)
j )δxi=xj (22)

where ui = {xi, t
(p)
i } and uj = {xj , t

(q)
j }, 1 ≤ t

(p)
i ≤ ti, 1 ≤ t

(q)
j ≤ tj .

With such kernel, we show that given a (space-time) model conditioned on the observa-
tions Ỹi (as defined in 19), adding any Y (u) with u = (xi, tu) for i ∈ {1, . . . , n} and tu ≤ ti
has no effect on the model. This property can be seen as a screening effect [Stein (2002)]
in the time dimension. The proof is given in appendix. Note that this effect is true only
when the covariance is markovian in the time direction and null in the x direction.

Hence, in this case the space-time model coincides with a kriging with noisy observations,
so taking into account the convergence trajectories is useless. The use of space-time models
makes sense only when the convergence path is not markovian or when the errors are
correlated in the x direction.

5. Learning model parameters

In Ordinary Kriging, the covariance parameters are most of the time learned using an
optimization process, for instance by maximizing the likelihood of the observations, or by
minimizing the cross-validation error. This step is particularly critical for the accuracy of the
kriging model, and is known to be difficult, in particular when the number of observations
is small and the number of parameters large.
Our model requires the knowledge of the parameters of the covariance function of kY .
Assuming anisotropy in the x space and Matern 5/2 shape for all covariances, we have:

• for the stationary covariance kF : d + 1 parameters, σ2
F , θ1

F , . . . , θd
F ,
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• for the stationary correlation rGx: d parameters, θ1
G, . . . , θd

G,

• for the correlation rGt: two parameters, θ0 and ∆θ,

• for the process variance σ2: two parameters, σ2
G and α.

Learning these 2d + 5 parameters in a single optimization loop seems unrealistic here, since
the objective function is likely to be highly multimodal, and ensuring a good exploration
may be too expensive computationally.
Besides, with partial convergence, the design of experiments takes a particular form, which
can be used to simplify the learning process. Indeed, when an observation is made at x

with time t, the response can be calculated without any computational effort for all the
time steps smaller than t. In other words, one has access to the response convergence for
the design x from one to t: {y(x, 1), y(x, 2), . . . , y(x, t)}. In the following, we refer to a
series of data for the same x and increasing t as response (or error) trajectory.
Then, we propose to decompose the kernel parameters learning in two steps: first, we learn
the parameters related to time only, and then the parameters related to x.

5.1. Learning time parameters
The process variance function accounts for the convergence speed of the simulator (the
variance of the error due to partial convergence). This speed might differ from one design
to another, especially if the design space is large, but it is reasonable to consider speed as
uniform, and then learn it from a small number of simulations.
We assume here that the user has performed a small number K of fully converged simulations
(3 ≤ K ≤ 10, typically), well spread in the design space. Let N be the number of steps
required for full convergence, we have then an initial set of K × N observations:

{y(x1, t1), . . . , y(x1, tN ), . . . , y(xK , t1), . . . , y(xK , tN )}.

The error trajectories can be known exactly by subtracting the converged responses to the
partially converged response trajectories: g(xi, tj) = y(xi, tj) − y(xi, tN ). We have then
realizations of the process G for K designs and N times:

g(x1, t1), . . . , g(x1, tN ), . . . , g(xK , t1), . . . , g(xK , tN ).

We assume then that the correlation in x is null, which is reasonable considering that K is
very small and the observations are away one from each other. In that case, the kernel of
G is:

kG((ui,uj)) = σ2(ti, tj)rGt(ti, tj)δxi=xj (23)

The parameters σ2
G, θ0, ∆θ and α can then be estimated by maximum likelihood, i.e.

by solving:
min

{σ2

G
,θ0,∆θ,α}

l = log detKG + gTK−1
G g (24)

As for Ordinary Kriging, the covariance matrix can be factorized by σ2
G: KG = σ2

GRG,
so the concentrated log-likelihood can be used:

{
θ̂0, ∆̂θ, α̂

}
= argmin

[
n log

(
1

n
gTR−1

G g

)
+ log (det (RG))

]
(25)

σ̂2
G = gTR−1

G g (26)
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This problem is only three-dimensional, which makes it easy to solve. Moreover, comput-
ing the concentrated log-likelihood is here facilitated by the fact that RG is block-diagonal
(see section 6).

5.2. Learning x-space parameters
Once the time-related parameters are estimated, the remaining unknown parameters are
related to the covariance of F (σ2

F , θ1
F , . . . , θd

F ) and the correlation rx of G (θ1
G, . . . , θd

G).
The direct optimization of the log-likelihood may be overly challenging, especially if d is
large. In order to reduce the problem dimension, we assume that F and G share the same
anisotropy, i.e. the respective influence of the parameters will be the same for the actual
process and the error. Thus, we set:

θi
G = ρθi

F , 1 ≤ i ≤ d (27)

with ρ a factor of proportionality.
The number of parameters is then reduced to d+2, which makes it feasible to use MLE,

hence solving the problem:
{

σ̂2
F , θ̂1

F , . . . , θ̂d
F , ρ̂

}
= arg min

(
log detKY + (Y − µ̂1)

T
K−1

Y (Y − µ̂1)
)

(28)

Note that here, the matrix KY cannot be factorized by σ2
F , so concentrated log-likelihood

cannot be used to estimate σ2
F separately.

6. Numerical issues

The major numerical issue with partial convergence comes from the huge amount of data
available. The covariances matrices used either for parameter learning or prediction are of
very large size, and their inversion can be at the same time computationally intensive and
subject to numerical instabilities.

A first numerical trick to facilitate the inversion, well-known of kriging users, consists
of adding a small diagonal matrix (nugget) to the covariance matrix, which amounts to
relaxing the constraint of exactly interpolating the data. Here, since the diagonal of KG is
not constant and typically shows variations of several orders of magnitude, it is preferable
to add a value proportional to the diagonal term, for instance 10−4 × σ2(ti, ti). Thus, the
relaxation is similar for all the data points.

Another natural option to reduce the computational cost is to use only a subset of
the available data. This solution is discussed separately in the parameter learning and
prediction situations.

6.1. Data reduction for parameter estimation
The first step of parameter estimation is to use a small number K of error trajectories to
estimate the time-related parameters. Since the trajectories are assumed to be independent
of each other, the matrix KG is block diagonal: KG = diag

(
K1

G, . . . ,KN
G

)
. Then, we have:

log (det (KG)) =
K∏

k=1

log
(
det (Kk

G)
)

K−1
G = diag

(
(K1

G)−1, . . . , (KN
G )−1

)
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The matrices Ki
G are of size N×N (N being the number of steps required to achieve full

convergence). N typically varies from hundreds (as for the application presented here) to
thousands for complex simulations. If it is too large, one must use a subset of the data only.
Regular subsets (one observation every p steps) may ensure a better inference of the error
decrease rate (parameters α and σG), but this is at the price of the regularity information
(local smoothness), which may impact the estimation of θ0 and ∆θ. Irregular sub-sampling
may offer the best trade-off.

When estimating the parameters related to the x space, using a subset of the data seems
particularly necessary since the inversion of KY is embedded in an optimization loop and is
likely to be calculated numerous times. The question is then to choose the subset that will
provide the most information about kG and kF . Choosing the last point of each trajectory
seems obvious since these points provide the most information on F . In addition, the subset
should favor data with equal times (i.e. alignments in the t direction), since they are the
points with highest correlation value across trajectories.

6.2. Data reduction for prediction
It is well-known that the classical kriging predictor at a location x∗ is mainly determined
by the few observations nearest to the prediction point, so that a kriging based only on
these neighbor observations provides the same predictor (and prediction variance) than the
kriging with all the observations. This phenomenon is often called screening effect [Cressie
(1992); Stein (2002)], and is used to compute fast predictions in the case of large data sets.
Data selection is typically performed by building a hyper-rectangle (or ellipsoid) in the x

space, centered on the prediction point.
The definition of neighborhood in our context is not straightforward for the asymptotic

prediction, i.e. prediction of the actual response F . Indeed, with the convention t = +∞ for
asymptotic prediction, all the observations are equally far away from the prediction point
in the time space.

A simple conservative approach consists of selecting all the data for which kF (x∗,xi) is
higher than a certain level, or equivalently, define the neighborhood of x∗ as:

Ω = {x ∈ D| 1

σ2
F

kF (xi,x∗) > β} (29)

for some level 0 ≤ β ≤ 1. This ensures (see equations 14 and 15) that all the influent
observations are taken into account, but may select a lot more observations that what is
actually necessary.

Indeed, as we noticed before, the last term of a trajectory (corresponding to the highest
computational time) is the one that contains the most information for asymptotic prediction.
However, since the trajectories are not Markovian, the other terms also have an influence
on the prediction. In particular, the very last terms provide (seeing it as finite differences)
the derivative information of G in the t direction.

Hence, we propose as a rule of thumb to choose the last three observations of each
trajectory in Ω as our subset for asymptotic prediction.

7. Application to the pipe flow example

In this section, we illustrate the learning steps of the previous section applied to the data
on the CFD example. For this analysis, two data sets are generated, one for learning and
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the other for testing. Both are based on 200-point LHS designs with maximin criterion.
Some combination of parameters lead to unfeasible configurations (detected at the meshing
stage) and are removed from the data sets (14 points for the learning set and 18 for the test
set).

7.1. Learning time parameters
Four points, randomly chosen in the first LHS, are used to generate fully converged runs
(with 500 steps), from which we extract the corresponding error trajectories. For each
trajectory, the first 50 steps are removed since the convergence behavior is non-smooth. By
construction (see section 5.1), the last term of each error trajectory is zero, which is slightly
incorrect (the actual error is of the order of the solver tolerance). To avoid bias, the last 20
steps are also removed. The corresponding data (1720 error values) is represented in Figure
6 (left).

Then, the MLE is performed using the full dataset on a 32 × 32 × 32 grid. We found
σ̂2

G = 0.57966, α̂ = 0.0172, θ̂T = 62 and ∆̂θ = 1/60. Figure 5 shows the concentrated
likelihood in the α-θT direction at optimal ∆θ; the optimization problem is here unimodal
and the optimal values are well-defined.
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Figure 5. Square error and variance model.

To validate visually the values of σ̂2
G and α̂, we draw in Figure 6 (right) the error

trajectories divided by σ2(t, t). As we can see, the four trajectories can now be considered
in first approximation as stationary with variance equal to one. The amplitude of the
curves seems however non-constant, which indicates that the model might be improved by
considering a process variance that also depends on x. However, this may make the learning
problem very difficult to solve.

In order to illustrate the model, we represent the actual error trajectory of a new design
(randomly chosen), and the associated Gaussian process model based on 20 observations of
this trajectory, uniformly chosen between t = 0 and t = 500. The trajectory and GP model
(mean and 95% confidence interval) are shown in Figure 7. Note that such kind of data is
not realistic, since in a real case the response would be known for all the intermediate time
steps, but the shape of the GP mean and confidence interval reflects the accuracy of the
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Figure 6. Original error trajectories and rescaled trajectories using estimated parameters.

model. Here, the smoothness of the model mean is similar to the one of the actual process,
except for the very first time steps, where it shows very high variability. The confidence
intervals are also quite realistic, and account for the fact that the process becomes flatter
for large t.
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Figure 7. Example of error trajectory approximation using a GP model (left: complete trajectory,
right: detail).

7.2. Learning design parameters
Now, for the remaining 182 designs of the learning DOE, partially converged simulations
are run. 45 designs use the minimum convergence level (50 steps), another 45 use 60 steps,
the other use random values between 50 and 500. With such setup, the DOE consists of
four fully converged observations, one half of very inexpensive observations that ensures a
good space filling, and the other half of heterogeneously converged observations. The total
number of steps is equal to 18,500, which is the computational resource required to run 37
fully converged simulations.
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The estimated parameters by maximum likelihood are:

• σ̂2
F = 0.51375

• θ̂Fx = [2 0.97649 1.3783 1.4784 0.50908 2 1.2162]

• ρ̂ = 0.52272 (meaning that F is smoother than G in the x direction)

7.3. 7D analysis and comparison to Ordinary Kriging
Here, we compare our model to two versions of Ordinary Kriging:

• Ordinary (interpolating) Kriging based on 37 fully converged simulations,

• Ordinary (regressing) Kriging based based on the 186 partially converged simulations

The first model corresponds to the standard situation (full convergence, interpolating
model) and the number of observations is chosen so that the computational budget (i.e.
total number of solver iterations) is equal to the budget of the partially converged DOE.
The 37 points are chosen as a subset of the initial LHS using a maximin criterion to ensure
a good space-filling.

The second model is also standard and corresponds to a simplified error model: all the
errors are treated as gaussian, centered and independent of each other. The diagonal matrix
that accounts for the error variances is taken as ∆ = diag([σ2

G(t1, t1), . . . , σ
2
G(tn, tn)]), that

is, the error variances given by the space-time model. We can then measure by how much
we gain in prediction by using a complex error model.

For all models, the same parameters σ̂2
F and θ̂Fx are used, so the differences are only

due to the model structures and the design of experiments. The question of parameter
estimation is left appart here, since for the first model estimating an anisotropic model
(eight parameters) is very challenging and would lead to a huge variability in the results.

The predicting performances are given in figure 8 and table 2. The histograms represent
the differences between the model means and the actual converged values, from which is also
computed the RMSE (root mean square error) statistic. In addition, the 95% confidence in-
tervals are drawn in order to visualize if the model uncertainty reflects the reality. To assess
the global uncertainty of each model, the average prediction variance at test points (referred
to as integrated mean square error [IMSE], which is the classical terminology in computer
experiments [Sacks et al. (1989)]) and the maximum prediction variance (maxMSE) are
computed.

For the space-time model, ten actual values are outside the interval, which shows a very
good calibration of the prediction variance (since 5% of the data is expected to be out-
side the interval). The Ordinary Kriging with partially converged data is on the contrary
over-confident, since almost half of the data is outside the interval. Inversely, the Ordinary
Kriging with fully converged data seems slightly over-conservative (5 data outside the in-
tervals). The IMSE values confirm that the predicted uncertainty is a lot higher with 37
observations than with the space-time model.

The RMSE errors show that assuming that the errors are gaussian, centered and inde-
pendent of each other leads to a very poor model. The very high RMSE value is due to a
strong bias in the model, in particular the high values of the actual function are most of the
time underestimated (central figure of figure 8. In comparison, using only fully converged
simulations lead to a safer and more accurate model. The space-time model offers here the
best results in terms of RMSE.
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Table 2. Prediction statistics of the three models
Model RMSE IMSE maxMSE

Space-Time 0.129 0.0161 0.0532

Ordinary Kriging with 186 observations 0.398 0.0206 0.0649

Ordinary Kriging with 37 observations 0.195 0.0492 0.1705
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Figure 8. Comparison of the predicting capacity of the space-time model and two Ordinary Kriging
models. The top figures show the actual responses values along with the predictions, represented by
the mean (circle) and ±1.96 times the standard deviation (errorbars). The 182 test points are ranked
by their response value. Red errorbars indicate points where the actual value is outside the kriging
95% interval.
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7.4. Optimal design of experiments for prediction
We have observed in the previous section that the average prediction variance was a lot
smaller using partially converged simulations that using fully converged ones. In other
words, the model was more accurate when spreading the budget into the 186 simulations
instead of concentrating it on 37.

Finding the most efficient design of experiments for both learning parameters and pre-
diction is already a challenging question with classical kriging models and seems an unreach-
able objective. However, it is possible to see if there exists an optimal trade-off between the
number of observations and their precision, for a model with known parameters and given
a fixed computational budget.

Here, we use the parameters values obtained previously, but we replace the existing
DOE by a subset of the 186-point LHS with constant convergence level. The total budget
is taken as 18, 500, so the number of observations varies between 37 (with 500 steps for each
simulation) and 186 (with 100 steps for each). The RMSE, IMSE and maxMSE metrics are
computed in each case. Note that contrarily to the RMSE, the IMSE and maxMSE do not
depend on the observation values and can be computed off-line, so an optimal strategy for
those criteria can be found before running any simulation (assuming that the parameters
are known).

For each configuration, 20 subsets are taken randomly from the initial LHS. The results
are presented in the form of boxplots in figure 9.

The boxplots clearly show that some sampling strategies are better than others. In terms
of maximum prediction variance, using limited convergence and more simulations is more
efficient, with optimal values for 124 or 136 steps (137, 147 simulations). The maxMSE is
very sensitive to holes in the design space, so using a large number of observations allows
a better coverage of the design space. However, when the number of observations becomes
to high (here 186), the response uncertainty overcomes this advantage.

Similarly, the IMSE shows that there is an optimal trade-off, here situated at 160-172
steps and 107-117 observations. This trade-off is different from the one for the maxMSE
criterion. For the error in the model mean, a trade-off again appears, but favors more
accurate simulations. Those trade-off actually depend on the total budget: figure 10 show
the IMSE values obtained for a budget of 9,250 steps: here, the optimal number of steps is
97, while (almost) full convergence is the worst option.

The difference between the IMSE and RMSE results indicate that theoretical criteria
may not be the perfect tool to choose experiments, since they do not take into account
any modeling error, which can be significant. Hence, a good alternative may be to choose
a majority of simulations with optimal convergence level, and complete this design with a
couple of simulations with heterogeneous convergence level.

8. Conclusion

In this paper, we explored the possibility of using partially converged simulations for learning
and optimizing expensive-to-evaluate computer codes. We have proposed to use Gaussian
processes to approximate the simulator response in the joint design-time space. The main
idea was to build a covariance kernel that reflects accurately the actual structure of the
response considered: the observed response was modeled as the sum of a stationary process
depending on design parameters only and an error process which variance decreases towards
zero when time tends to infinity.
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Figure 9. Boxplots of the RMSE, IMSE and maxMSE of the space-time model based on different
DOE size for a constant computational budget of 18,500 steps. The x-axis is written either in terms
of number of steps for one simulation or total number of simulations.
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Figure 10. Boxplots of the IMSE of the space-time model based on different DOE size for a constant
computational budget of 9,250 steps.
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In addition, we proposed a procedure for the learning of the model parameters, by
decomposing in into a series of simpler optimization problems, and discussed some numerical
issues. Finally, we have applied our model to a real simulator, and showed some substantial
improvement in learning compared to the classical framework.

Future research may include the application of this model to higher dimension problems,
and optimization under partial convergence using EGO-like strategies.
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Appendix: Screening effect in the time dimension in the case of Monte-Carlo con-
vergence

Property: Once the Ỹi are taken into account in the model, adding any Y (u) with u =
(xi, tu) for i ∈ {1, . . . , n} and tu ≤ ti has no effect on the model.

Proof:

Let us denote by λ1, . . . , λn the kriging weights corresponding to a prediction at an arbi-
trary point x ∈ D when Ỹ1, . . . , Ỹn are known, the kriging mean being equal to

∑n

k=1 λkỸk.

By characterization of the kriging mean as projection of Y (x) onto Span{Ỹ1, . . . , Ỹn}, we
know that:

E

[(
Y (x) −

n∑

k=1

λkỸk

)
Ỹi

]
= 0, ∀i ∈ {1, . . . , n} (30)

We will now show that Y (x) −∑n

k=1 λkỸk is also orthogonal to Y (u), which is a sufficient
condition for the conditional independence in question.

Indeed, denoting γ the scalar product between those two quantities, we have:

γ = E

[(
Y (x) −

n∑

k=1

λkỸk

)
Ỹ (u)

]
(31)

= E




(

Y (x) −
n∑

k=1

λkỸk

)

F (xi) +
1

tu

tu∑

j=1

εi,j







 (32)

= E




(

Y (x) −
n∑

k=1

λkỸk

)

Ỹi −
1

ti

ti∑

j=1

εi,j +
1

tu

tu∑

j=1

εi,j







 (33)

= E




(

Y (x) −
n∑

k=1

λkỸk

)

 1

tu

tu∑

j=1

εi,j −
1

ti

ti∑

j=1

εi,j







 , (34)

Ỹi being removed due to eq. 30.
Then, by hypothesis all the εi,j are independent of each other and have a expectation

equal to zero, so the expectation of the term on the right parenthesis has a null expectation.
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Since Y (x) and λkỸk are independent of εi,j for k 6= i, eq. 34 reduces to:

γ = E

[
−λiỸi

(
1

tu

tu∑

i=1

εi,j −
1

ti

ti∑

i=1

εi,j

)]
(35)

Then:

γ = E


−λi


F (xi) +

1

ti

ti∑

j=1

εi,j




 1

tu

tu∑

j=1

εi,j −
1

ti

ti∑

i=1

εi,j




 (36)

= −λiE







 1

ti

ti∑

j=1

εi,j







 1

tu

tu∑

j=1

εi,j −
1

ti

ti∑

j=1

εi,j







 (37)

= −λi



 1

tuti

tu∑

j=1

ti∑

k=1

E [εi,jεi,k] − 1

t2i

tu∑

j=1

ti∑

k=1

E [εi,jεi,k]



 (38)

= −λi



 1

tuti

tu∑

j=1

ti∑

k=1

δj,k − 1

t2i

tu∑

j=1

ti∑

k=1

δj,k



 (39)

= −λi

(
1

tuti
tu − 1

t2i
ti

)
(40)

= 0 (41)
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