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1 Introduction

Using computer experiments and metamodels for facilitating optimization and statistical analysis
of engineering systems has become commonplace (Sacks et al. (1989), Jones et al. (1998)). However,
despite the continuous growth of computational capabilities, the complexity of the simulators still
drastically limit the number of available experiments, which are often insufficient to build accurate
metamodels.

An efficient solution to alleviate the computational cost consists of using degraded versions of the
expensive simulator to provide faster but less accurate evaluations of the simulator output. Such
approximations can be obtained by using coarser mesh (in Finite Element methods), a simpler par-
tial differential equation problem, or geometry simplification for instance. The degraded simulator
is often called low-fidelity (LF) model and the expensive version high-fidelity (HF) model. Using
metamodels in this context has been addressed by many authors in the litterature. For instance,
Alexandrov et al. (2000) and Gano et al. (2006) used metamodels to approximate the difference
between LF and HF models. Kennedy and O’Hagan (2000) proposed a so-called auto-regressive
model to integrate data with various fidelities. All these approaches assumes (1) that a discrete
(small) number of fidelities is available, and (2) that LF responses are smoother than HF responses.
A less explored but promising alternative is to use partially converged simulations as a low-fidelity
model, by stopping artificially the convergence of the simulator solver at early stage. Such approach
has many advantages, among which the use of a single simulator instead of a different simulator
for each fidelity level, and the possibility of having as many levels of accuracy as desired.

Using metamodels with such data is an open and difficult question, that differs from the classical
multifidelity framework since unconverged responses are likely to be a lot rougher than converged
ones, and the number of fidelity levels can be very large. In Forrester et al. (2006), it is observed
that all simulations within the design space tend to converge in unison, so partially converged
responses are corrected using a constant shifting value and fused with fully converged responses
to build a classical metamodel. Although demonstrated to be quite efficient already, this approach
hinders the potential of partial convergence, since it allows the use of only two fidelity levels, and
using a constant shift requires simulations to achieve a relatively high level of convergence.

This work addresses the issue of fitting a metamodel to partially converged simulation data, when
convergence level potentially varies from one design to another. To do so, we propose to use a Gaus-
sian process model in the joint space of design parameters and computational time. The model is
constructed by building a covariance function that reflects accurately the actual structure of the
€rTor.

In the next section, we describe a Computational Fluid Dynamics (CFD) simulator optimization
problem, which response illustrates the important behaviors of partially converged simulations.
Then, we present a Gaussian process model for the joint design-time space, followed by learning
issues and solutions specific to this model. Finally, the model is applied to the analysis of the CFD
problem.

2 A Motivating example: 2D pipe flow simulation

To motivate our approach and highlight the important points of partial convergence, we consider the
optimization problem of an S-shaped pipe, which form is defined parametrically. A two-dimensional
CFD model is build using OpenFOAM and its solver simpleFoam (steady-state, incompressible,
turbulent flow). A constant flow velocity is imposed at the pipe input, and a null pressure at the



output. The pipe contour is defined with the help of 13 parameters. The objective is to maximize
the uniformity of the flow velocity at the end of the S-section. Figure 1 shows the shape parameters
and the CFD model for the nominal parameters. The objective function is the velocity standard
deviation between P9 and P10, which we will refer to as fsp.
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FIGURE 1. Five first shape parameters for the 2D pipe model. The remaining parameters define Bezier
curves between the points P3-P5, P4-P6, P7-P9 and P8-P10. All the points are fixed except P5, P6, P7
and P8.

OpenFOAM allows us to monitor the velocity field for each solver step, so we can measure the
convergence directly on the objective function. First, we generate 20 designs using Latin hypercube
sampling (LHS), and for each solver step, we compute fsp. Figure 2 shows the evolution of the 50
designs for all time steps. Although converging to different values, all the convergence curves have
very similar shapes (which goes in the sense of convergence in unison, as described in Forrester
et al. (2006)).
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FIGURE 2. Response convergence for 20 designs.

Now, in order to represent the data in the joint design-time space, we fix all the parameters to their
nominal value but x5 (which is the most sensitive parameter), and 100 designs are generated for zo
values uniformly distributed between its bounds. For all designs, 500 solver iterations are used for
convergence. Figure 3 shows three designs and their converged velocity fields, for minimum (left),
mean (center) and maximum (right) values of xs.

The objective function fsgp and the convergence error are then shown in the x5 and time ¢ plan
(Figure 4). The convergence error is here taken as the current objective function value minus the
value at step 500.

First, we can observe a strong regularity of the response in both x5 and ¢ directions, which means
that two close designs with the same number of convergence steps will have similar responses.
Obviously, when t increases, the error decreases and tends towards zero, so the response becomes
invariant with respect to t. One can also observe that the error fluctuations have a higher frequency
for small ¢ than for high ¢. These are the three key characteristics that we want to be included in
our model, as we describe in the next section.
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FIGURE 3. Three designs and velocity fields for z2 taking its minimum (left), mean (center) and maximum
values (right).
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FIGURE 4. Evolution of objective function (left) and objective function error (right) as a function of z
and t. Time axis direction is inversed in the left figure to increase readability

3 A Gaussian process surrogate for partially converged simulations

Let us first introduce some notation. We denote by y the response of a numerical simulator or
function that is to be studied: y : 2 € D ¢ RY — y(x) € R. In the framework of computer
experiments, Gaussian process is a popular metamodel in particular because of its flexibility and
rich statistical interpretation. Assuming a covariance structure for the data, a metamodel is built
by conditioning a gaussian process on n observations Y, evaluated at a set of input parameters
X, € D™ called the design of experiments. The choice of the covariance is particularly crucial, and
is often based on user’s previous knowledge on the response behavior. In the framework of kriging
(Matheron (1969)), stationary covariances are used.

When partial convergence is considered, an observation y; is defined by both input parameters
x € D and computational time t € R** (typically proportional to the number of solver iterations).
In order to predict such types of responses, Gaussian processes are particularly adapted since they
allow the definition of models that can inherit the structure of the function to approximate.
Indeed, we consider that the observed function is a realization of a random process Y (x, t), which
is the sum of a process F' independent of ¢, and a process G that depends on both z and t:

Y (z,t) = F(z) + G(z,t) (1)

F is the response given by the simulator with complete convergence, and then can be modeled with
the usual assumptions: stationarity, ergodicity, etc. (as for a kriging model in a classical framework).
G is the error term due to partial convergence, and has a more complex structure. In the x space,
it can be observed that two runs with close sets of input parameters converge in a similar fashion,
hence their partially converged response are correlated. In the t direction, except for the first few
iterations that often show large oscillations, the convergence is smooth so the responses evaluated
at successive time steps are also correlated. Moreover, GG is naturally instationary in ¢, since the
convergence error tends to zero when the computational time increases. More generally, it can be
assumed that the error variance decreases monotonically with computational time.



Hence, we propose a covariance function for G of the following form (with the notation u = (z,1)):
ka(u,u') = o?(t, t )ry(z, 2 e (t, 1) (2)

where 7, and r; are correlation functions, and o2(¢,t') is the process variance. In the following,
we make appropriate choices so kg is still a kernel. For details on this topic, see Rasmussen and
Williams (2006) (chapter 4) for instance.

The correlation r, can be taken as stationary, i.e. r (x,z’) = r,(|x — 2’|), for instance, the matern

3/2 function:
o .

The correlation r; has to account for the increasing smoothness of the error (high oscillations for
the first steps, then smooth convergence). To do so, we propose to define for the correlation a range
depending on time, for instance with the matern 3/2 function:

=
e — 4
) P ( 0.1) @
with: 0(¢, ') = 0o + B2 (t +1'), 6o, Ag € RY.
The process variance o2(t,t') must decreases towards zero to ensure that the error is null when
t — 400. Here we choose a decreasing exponential form for the variance:

ro(tt') = (1 + \/55(;:)'

t+t

o?(t,t") = o exp(—a 5

) (5)
Finally, the kernel of the process Y is the sum of the kernels of F' and G (Rasmussen and Williams
(2006), p.95):

ky (u,u') = kp(z,2") + kg (u,u') (6)

Using this kernel, we are able to perform simulation, conditional simulation, hence learning with
gaussian processes.

Let Y, = [y1,... ,yn]T be a set of observations, X the matrix of design parameters, T the vector
of times and U = [X, T| the experimental matrix. In the fashion of Simple Kriging, the mean and
variance of Y at u* = (z*,t*) conditional on the observations Y, are given by (Matheron (1969)):

m(u*) = ky (u*)TKyY, (7)
s2(u*) = ky (u*,u*) — ky (u*) Ky ky (u*) (8)

with: Kyl"j = k’y(ui, Uj) and ky = [ky(u*,ul) e k‘y(u*,un)]

The functions m(.) and s?(.) define the gaussian process model, which provide a prediction mean
and variance for any given design with convergence level. As for the simple kriging model, m is
equal to the observations and s is equal to zero at the points of the DOE.

In most applications, the value of interest is the actual response, i.e. the asymptotic value for
t = 4+00. From equation 6, the covariance ky (u,u*) is defined for u* = (z*,+00) is simply equal
to kp(x,x*). Then, we can define an asymptotic prediction independent of ¢, equal to:

Moo (x™) = kr(z)TKyY, (9)
5% (¢) = o — kp(z*) ' Kykp(z¥) (10)

One can notice that these equations take the form the equations of a Simple Kriging with correlated
residuals.

4 Learning issues and solutions

In simple kriging, the covariance parameters are most of the time learned using an optimization
process, for instance by maximizing the likelihood of the observations, or by minimizing the cross-
validation error. This step is particularly critical for the accuracy of the kriging model, and is
known to be difficult, in particular when the number of observations is small and the number of
parametes large.

Our GP model requires the knowledge of the parameters of the covariance function of ky. Assuming
anisotropy in the z space and matern 3/2 shape for all covariances, we have:



e for the stationary covariance kp: d + 1 parameters, 0%, 0L, ..., 9%7
e for the stationary correlation r,: d parameters, ¢, ..., 92,7

e for the correlation r;: two parameters, 8y and Ay,

e for the process variance o?: two parameters, a?; and a.

Learning these 2d + 5 parameters in a single optimization loop seems unrealistic here, since the
objective function is likely to be highly multimodal, and ensuring a good exploration may be too
expensive computationally.

Besides, with partial convergence, the design of experiments takes a particular form, which can
be used to simplify the learning process. Indeed, when an observation is made at x with time ¢,
the response can be calculated without any computational effort for all the time steps smaller
than ¢. In other words, one has access to the response convergence for the design x from zero to
t: {y(z,0),y(z,1),...,y(z,t)}. In the following, we refer to a series of data for the same z and
increasing t as response (or error) trajectory.

Then, we propose to decompose the kernel parameters learning into successive steps: first, we learn
the process variance parameters, then the r; parameters, and finally all the other parameters.

4.1 Learning the process variance

The process variance function accounts for the convergence speed of the simulator (the variance of
the error due to partial convergence). This speed might differ from one design to another, especially
if the design space is large, but it is reasonable to consider speed as uniform, and then learn it
from a small number of simulations.

We assume here that the user has performed a small number K of fully converged simulations,
well spread in the design space. The error trajectories can be known exactly by substracting the
converged responses to the partially converged response trajectories. We have then realizations of
the process G for K designs and N times: g(z1,t1),...,9(x1,tN), -, 9Tk, t1), .-, 9(TK,tN).
Since they are yet unknown, we assume that the correlations in « and ¢ are both null for the process
G. Following that assumption, we have:

G(zi,tj) ~ N (0,0°exp(—at;)) independently (11)

Gz, t5) = M ~ N (0,1) independently (12)

o2 exp(—at;)

Then, the parameters 0> and « are chosen to ensure that é(xi,tj) follows a standard normal
distribution. One can remark that for a given «, there exists a unique o? that ensures that the
sample {G(z;,t;)}; ; has a variance equal to one:

2
1

1 _ _
7 T K x NZM Clont)” ~ | 7x NZH Cloirts) (13)

Then, « can be found by performing a (mono-dimensional) optimization, for instance using the
Kolmogorov-Smirnov distance between empirical standard normal distributions.

4.2 Range parameters for the time correlation

Once the process variance parameters are known, the time correlation parameters can be assessed
using the same data, assuming that the correlation in x is null. The r; parameters account for the
regularity in the ¢ direction, which depends on the simulator solver and can be considered as uniform
for the design space, so a small number of trajectories are sufficient to learn the parameters.
Several possibilities exist at this point, but all involve an optimization loop. For instance, the
parameters can be found by minimizing leave-one-out (or leave-k-out) cross-validation errors. Here
we choose to use the likelihood information. It is well-known that maximizing the likelihood of a
gaussian vector realization Y, is equivalent to minimizing the following quantity:

l=logdetKe + Y K;'Y, (14)



Hence, the time correlation parameters are chosen by solving the optimization problem:
(05, Ap] = argmin (g, Ag) (15)

Such kind of optimization is not easy to solve, since it is not convex in general, and may require
the use of a global optimizer. Here, the possibility of data vizualization (trajectory by trajectory)
might be useful to set realistic bounds for the two variables and help the optimization process.

4.3 Other parameters

Finally, the other parameters for the covariance of F' (0%, 0L, ..., 9}17) and the correlation r, of G
(0%, ...,0%) have to be learned together, using log-likelihood minimization for instance:
[O‘%, 0%, ...,0%,05,. .., Odg} = arg min (log det Ky + YZK;lYn) (16)

If the amount of fully converged simulations is large, it might be preferable to learn the covariance
parameters of F first based on the converged response only, and then the parameters of G based
on all the data.

5 Application to the 2D pipe flow example

In this section, we illustrate the learning steps of the previous section applied to the data on the
CFD example.

5.1 Learning time parameters

We assume that three fully converged runs (randomly chosen on the initial DOE) are available for

learning the time parameters. The corresponding data (1500 error values) is represented in Figure
5.
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FIGURE 5. Available data for learning time parameters.

The first step is to assess the values of 02 and «. Figure 6 shows the graph of the Kolmogorov-
Smirnov (KS) distance as a function of « (left), and the empirical distribution of the sample
normalized with the best « (right). We can see that the KS distance has a marked minimum
for & = 0.0128. For this value, we have 62 = 5.4 x 107%. The empirical and standard normal
distributions differ substantially; this can be imputed to the strong dependency on time, which has
been neglected here.

02 and o provide an estimate of the error variance for any ¢. Figure 7 draws the square error in
logarithmic scale as well as the obtained variance model. We see that the variance trend matches
quite well the data.

Then, the parameters 6y and Ay are learned by maximum likelihood. The optimal parameters are
6o = 5 and Ay = 0.03 (so the range is equal to 20 when ¢ = 500). To validate visually our model,
we represent the actual error trajectory of a new design (randomly chosen), and the associated
Gaussian process model based on 20 observations of this trajectory, uniformly chosen between
t = 0 and t = 500. The trajectory and GP model (mean and 95% confidence interval) are shown
in Figure 8. Note that such kind of data is not realistic, since in a real case the response would be
known for all the intermediate time steps, but the shape of the GP mean and confidence interval
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FIGURE 7. Square error and variance model.

reflects the accuracy of the model. Here, the regularity of the model mean is similar to the one
of the actual process, except for the very first time steps, where it shows very high variability.
The confidence intervals are also quite realistic, and account for the fact that the process becomes

flatter for large t.
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FIGURE 8. Example of error trajectory approximation using a GP model (left: complete trajectory, right:
detail).



5.2 Space-time approximation

Finally, we present the results in the joint design-time space, where x5 is the only varying design
parameter, as described in section 2. For this very simplified setup, we do not consider the problem
of learning the covariance parameters in the x direction, so O‘%, fr and 0g are assumed to be
known.

The DOE here consists of five partially converged simulations, with different convergence times;
for each design, the response is sampled every five time steps (to limit the total number of observa-
tions and reduce the covariance matrix size). The Gaussian process model, DOE, and asymptotic
responses are represented in Figure 9.

Asymptotic prediction

a00 s00

FIGURE 9. Prediction of the output of the CFD simulator based on five observations with different
convergence levels. Upper graphs: exact response, design of experiments, and (right): asymptotic prediction
(black), exact response (red) and observations (blue). Lower graphs: mean and standard deviation of the
gaussian process model; difference between the model mean and actual response.

Due to the high amount of data regarding the problem complexity, the model mean, as well as
the asymptotic prediction, are very accurate. The asymptotic prediction is somehow similar to a
kriging with nugget effect, but take into account the negative bias of the observations for small ¢.
The shape of the prediction variance s? reflects the actual process structure, with higher values for
small ¢. For large ¢, the variance due to partial convergence tends to zero but s2 remains high to
account for the uncertainty in the asymptotic process.

6 Conclusion

In this work, we have proposed a way to approximate data from partially converged simulations,
using Gaussian processes in the joint design-time space. The main idea was to build a covariance
kernel that reflects accurately the actual structure of the response considered: the observed response
is modeled as the sum of a stationary process depending on design parameters only and an error
process which variance decreases towards zero when time tends to infinity. In addition, we proposed
a complete procedure for the learning of the model parameters, by decomposing in into a series of
simple optimization problems. Finally, we have applied our model to a real simulator, and showed
that it approximates accurately partially converged data in small dimension.

Future research may include the application of this model to higher dimension problems, and
optimization under partial convergence using EGO-like strategies. Another important issue is the
selection of useful data, since the presented model tends to have large covariance matrices, which
can be computationally costly.
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