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Minimal arithmetic thickness connecting discrete

planes

Damien Jamet∗ and Jean-Luc Toutant†

March 25, 2011

Abstract

While connected arithmetic discrete lines are entirely characterized,

only partial results exist for the more general case of arithmetic discrete

hyperplanes. In the present paper, we focus on the 3-dimensional case,

that is on arithmetic discrete planes. Thanks to arithmetic reductions on

a vector n, we provide algorithms either to determine whether a given

arithmetic discrete plane with n as normal vector is connected, or to

compute the minimal thickness for which an arithmetic discrete plane

with normal vector n is connected.

Keywords : Discrete geometry, arithmetic discrete planes, connectedness

1 Introduction

The discrete geometry attempts to provide an analogue of Euclidean geometry
for the discrete space Zn. Such an investigation has not only theoretical motiva-
tions, but also practical applications since digital images can be seen as arrays
of pixels.

In [1], J.-P. Reveillès initiated a new approach for linear discrete objects and
defined arithmetic discrete lines as sets of pair of integers satisfying a double
Diophantine inequality. The arithmetic discrete line with normal vector n ∈ R

2,
translation parameter µ ∈ R and arithmetic thickness ω ∈ R is the set L(n, µ, ω)
defined by:

L(n, µ, ω) =
{
v = (v1, v2) ∈ Z

2; 0 ≤ ln,µ(v) < ω
}
,

where ln,µ(v) = n1v1 + n2v2 + µ.
Geometrically, it can be viewed as the set of integer points in a strip bounded

by two parallel Euclidean lines. The width of this strip is ruled by the arithmetic
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thickness, which plays a key role in the definition. In particular, the connected-
ness of a given arithmetic discrete line is entirely characterized by its arithmetic
thickness.

The definition of arithmetic discrete lines extends naturally to the definition
of arithmetic discrete planes in the 3-dimensional discrete space Z

3, and to the
definition of arithmetic discrete hyperplanes in higher dimensions [2].

It is thus natural to expect a deep relation between the connectedness of
an arithmetic discrete hyperplane and its arithmetic thickness. In fact, the 2-
dimensional case is somewhat confusing since a connected arithmetic discrete
line is also a separating set (see Section 2). Indeed, it is easy to characterized
this last property for discrete planes with the arithmetic thickness, whereas it is
yet unclear under which kind of conditions such a discrete object is connected.

Connectedness is a main topological property for the characterization and
the understanding of discrete objects. Discrete planes are fundamental prim-
itives in volume modelling. Improving the knowledge on connected discrete
planes is thus of wide interest from theoretical perspective and may also lead
to new powerful tools and applications. Besides, a section is devoted to this
problem in [3]

In the present paper, we deal with the following questions:

1. Given n ∈ R
3, µ ∈ R and ω ∈ R, is P(n, µ, ω) connected?

2. Given n ∈ R
3 and µ ∈ R, how much is the thickness of the thinnest connected

arithmetic discrete plane with normal vector n and translation parameter µ?

These questions have already been addressed. In [2], E. Andres, R. Acharya
and C. Sibata characterized separating arithmetic discrete hyperplanes as con-
nected set. This result gave a partial answer to the first question. In [4],
Y. Gérard deeper investigated it. He provided an algorithm which determines
whether a rational arithmetic discrete hyperplane, that is, with a normal vector
n ∈ Z

d, is connected. He reduced the (possibly) infinite graph of connectedness
of the considered arithmetic discrete hyperplane to a finite one by quotienting
it by a subgroup of the lattice of periods of the arithmetic discrete hyperplane.
In [5], V. Brimkov and R. Barneva focused on the second question. They intro-
duced explicit formulas for some particular cases and provided an algorithm for
the general case. Unfortunately, their algorithm appears to be incorrect [6].

In the present paper, we extend previous work [6] and give short and ele-
mentary algorithms, which take a vector n ∈ Z

3 as input and answer to both
previously mentioned questions: to determine whether an arithmetic discrete
plane is connected and to compute the minimal thickness making it connected.
While Y. Gérard, V. Brimkov and R. Barneva approaches need to determine a
connected component, our algorithms are entirely arithmetic and do not need
to consider any graph of connectedness.
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2 Basic Notions and First Properties

The aim of this section is to introduce the basic notions and definitions we use
throughout the present paper.

Let d be an integer equal or greater than 2 and let {e1, . . . , ed} denote the
canonical basis of the Euclidean vector space R

d. Let us call discrete set, any
subset of the discrete space Z

d. In the following, for the sake of clarity, we
denote by (x1, . . . , xd) the point x =

∑d
i=1 xiei ∈ R

d. An integer point v ∈ Z
d

is called a voxel (or a pixel if d = 2) and a subset of Zd,a discrete set.

Definition 1 (κ-adjacency). Let κ ∈ {0, . . . , d− 1}. Two voxels v,w ∈ Z
d are

said to be κ-adjacent if:

‖v −w‖∞ = 1 and ‖v −w‖1 ≤ d− κ.

Remarque 1. ‖v‖∞ = max
i∈{1,...,d}

{|vi|} and ‖v‖1 =

d∑

i=1

|vi|.

In other words, the voxel v and the voxel w are κ-adjacent if they are
distinct, the differences of their coordinates are at most 1 and v and w have at
most d − κ different coordinates. A κ-path is a (finite or infinite) sequence of
consecutive κ-adjacent voxels. If (γi)1≤i≤n is a finite κ-path, then we say that
γ links the voxel γ1 to the voxel γn.

Definition 2 (κ-connected sets). Let E be a discrete set and let κ ∈ {0, . . . , d−
1}. Then E is κ-connected if, for each pair of voxels (v,w) ∈ E2, there exists
a κ-path in E linking v to w.

In [1], J.-P. Reveillès introduced the arithmetic discrete line as a set of integer
points satisfying a double Diophantine inequality.

Definition 3 (Arithmetic discrete lines [1]). Let n ∈ R
2, µ ∈ R and ω ∈ R. The

arithmetic discrete line L(n, µ, ω) with normal vector n, translation parameter
µ and arithmetic thickness ω is the discrete set defined by:

L(n, µ, ω) =
{
v ∈ Z

2; 0 ≤ ln,µ(v) < ω
}
, (1)

where ln,µ(v) = n1v1 + n2v2 + µ.

This definition extends in a natural way to higher dimensions:

Definition 4 (Arithmetic discrete hyperplanes [1, 2]). Let n ∈ R
d, µ ∈ R and

ω ∈ R. The arithmetic discrete hyperplane P(n, µ, ω) with normal vector n,
translation parameter µ and arithmetic thickness ω is the discrete set defined
by:

P(n, µ, ω) =
{
v ∈ Z

d; 0 ≤ pn,µ(v) < ω
}
, (2)

where pn,µ(v) = µ+

d∑

i=1

nivi.
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Definition 5 (Rational arithmetic discrete hyperplanes). If there exists α ∈ R
∗

such that αn ∈ Z
d, then the arithmetic discrete hyperplane P(n, µ, ω) and its

normal vector n are said to be rational.

Throughout the present paper, if P(n, µ, ω) is a rational arithmetic hyper-
plane, then we assume, without loss of generality, n ∈ Z

d, µ ∈ Z, ω ∈ Z and
gcd{n1, . . . , nd} = 1 [2].

In [1], J.-P. Reveillès showed how the κ-connectedness of an arithmetic dis-
crete line only depends on its normal vector and its thickness:

Theorem 1 ([1]). Let n ∈ R
2, µ ∈ R and ω ∈ R. The arithmetic discrete line

L(n, µ, ω) is 0-connected (resp. 1-connected) if and only if ω ≥ ‖n‖∞ (resp.
ω ≥ ‖n‖1).

It becomes natural to try to extend Theorem 1 to higher dimensions, that is,
given n ∈ R

d, µ ∈ R and κ ∈ {0, . . . , d− 1}, to try to characterize the thickness
of the thinnest κ-connected arithmetic discrete hyperplane with normal vector
n and translation parameter µ.

Nevertheless, it is not difficult to exhibit a 0-connected arithmetic discrete
plane P(n, µ, ω) with ω < ‖n‖∞ (see Fig. 1). Similarly, one easily finds a
2-connected arithmetic discrete plane P(n, µ, ω) with ω < ‖n‖1.

(a) A 0-connected arithmetic discrete
plane (ω = 11)

(b) A 1-connected arithmetic discrete
plane (ω = 21)

Figure 1: Connected arithmetic discrete planes (with normal vector n =
(9, 14, 31)) thinner than the naive one.

In fact, the case of arithmetic discrete lines is somewhat confusing. Indeed,
in Z

2, an arithmetic discrete line is κ-connected if, and only if, it separates
(in some sense to define) the discrete space Z

2. Let us introduce the notion of
κ-separating sets.

Definition 6 (κ-separating sets). Let E be a discrete set and κ ∈ {0, . . . , d−1}.
Then E is said to be κ-separating in Z

d if its complement in Z
d has exactly two

κ-connected components.

It directly follows from Theorem 1:
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Corollary 1. Let n ∈ R
2, µ ∈ R and ω ∈ R. The arithmetic discrete line

L((n, µ, ω) is 0-separating (resp. 1-separating) if and only if ω ≥ ‖n‖1 (resp.
ω ≥ ‖n‖∞).

Although Theorem 1 does not seem to extend naturally to higher dimensions,
there exists a quite nice extension of Corollary 1 relating to the κ-separating
arithmetic discrete hyperplanes.

For the sake of clarity, let us introduce a notation, providing a norm on R
d.

Definition 7 (κ-minimality norms). Let x ∈ R
d, κ ∈ {0, . . . , d − 1} and let σ

be a permutation over the set {1, . . . , d} satisfying: ∀i ∈ {1, . . . , d−1}, |xσ(i)| ≤
|xσ(i+1)|. The κ-minimality norm ]x[κ of x is:

]x[κ =
d∑

i=d−κ

|xσ(i)|.

In other words, ]x[κ is equal to the sum of the (κ+1) greatest absolute values
of the coordinates of x. One easily checks that, for each κ ∈ {0, . . . , d− 1}, the
map ] · [κ : Rd −→ R

d is a norm on R
d. Moreover, one has ]x[0 = ‖x‖∞ and

]x[d−1 = ‖x‖1.
In Z

2, the κ-connected arithmetic discrete lines are exactly the (2− (κ+1))-
separating ones and Corollary 1 extends in any dimension d ≥ 2 as follows:

Theorem 2 (κ-separating hyperplanes [2]). Let n ∈ R
d, let µ ∈ R and let

ω ∈ R. Let κ ∈ {0, . . . , d− 1}. The arithmetic discrete hyperplane P(n, µ, ω) is
κ-separating in Z

d if and only if ω ≥ ]n[κ.

Let us now notice that the fact that an arithmetic discrete hyperplane
P(n, µ, ω) κ-separates Zd does not depend on the translation parameter µ.

Moreover, one shows that, given two rational arithmetic discrete hyperplanes
P and P

′ with the same normal vector n ∈ Z
d, then P is the image of P

′

by a translation: µ can be expressed as an integer linear combination of the
coordinates of n, thanks to Bezout’s Lemma. Hence, for all κ ∈ {0, . . . , d− 1},
the κ-connectedness of a rational arithmetic discrete hyperplane P(n, µ, ω) does
not depend on µ. In other words, P(n, µ, ω) is κ-connected if and only if so is
P(n, 0, ω). In the general case, one does not know whether the κ-connectedness
of an arithmetic discrete hyperplane depends on its translation parameter. [7]
gives an idea of current knowledge on planes with arbitrary real coefficients.

Consequently, although it only provides a partial answer of our problem, we
focus on the present paper on the arithmetic discrete planes with null translation
parameter. For the sake of clarity, we refer to them by P(n, ω) and to the map
pn,0 by pn.

In the following sections, we investigate the three classes of connected arith-
metic discrete planes. Let us start with the easiest case, that is, the 2-connected
arithmetic discrete planes. The other cases can be deduced from that one.
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3 2-connected arithmetic discrete planes

Let us first introduce some technical properties.

3.1 Technical properties

Lemma 1 (A lower bound). Let n ∈ R
3 and ω ∈ R. If the arithmetic discrete

plane P(n, ω) is 2-connected, then ω ≥ ‖n‖∞.

Proof Without loss of generality, let us suppose that 0 ≤ n1 ≤ n2 ≤ n3. If
n1 = n2 = 0, then n3 = 1 and P(n, ω) is 2-connected if and only if ω ≥ 1.
Assume now n2 6= 0 and let 0 < ω < n3. Then P(n, ω) has voxels belonging to
different level lines (i.e. voxels v and w such that v3 6= w3). Let v ∈ P(n, ω).
Then, 0 ≤ pn(v) and w < n3 ≤ pn(v + e3) = pn(v) + n3. Hence, v + e3 /∈
P(n, ω). In other words, two voxels of P(n, ω) belonging to different level line
are not linked by a 2-path included in P(n, ω). Hence P(n, ω) is not 2-connected.

This bound is not very accurate but useful to prove that the arithmetic
thicknesses of the arithmetic discrete planes, with a given normal vector, form
an interval.

Lemma 2. Let n ∈ R
3. The set {ω ∈ R; P(n, ω) is 2-connected} is an interval.

Proof Without loss of generality, let us suppose that 0 ≤ n1 ≤ n2 ≤ n3. Let
ω ∈ R such that P(n, ω) is 2-connected. According to Lemma 1, ω ≥ n3. Let
α ∈ R+ and let v ∈ Z

3 such that β = pn(v) ∈ [ω, ω + α[. Let (q, r) ∈ N × R+

satisfying β−ω = qn3+r and 0 ≤ r < n3. For all k ∈ {0, . . . , q}, pn(v−ke3) =
β−kn3 ∈ [ω, ω+α[ and pn(v−(q+1)e3) ∈ [0, ω[. Hence, we have built a 2-path
(v−ke3)k∈{0,...,q+1} in P(n, ω+α) linking v to the voxel v−(q+1)e3 ∈ P(n, ω)
which is 2-connected by assumption.

Lemma 2 reduces the determination of {ω ∈ R; P(n, ω) is 2-connected} to
the determination of its lower bound. Let us now define the minimal 2-
connecting thickness of a vector.

Definition 8 (Minimal 2-connecting thickness). Let n ∈ R
3. The minimal

2-connecting thickness of n is the number Ω2(n) defined by:

Ω2(n) = inf {ω ∈ R; P(n, ω) is 2-connected} .

Let us remind that, if n is a rational vector then the thickness ω is considered
to be an integer. In that case, Ω2(n) becomes:

Ω2(n) = min {ω ∈ Z; P(n, ω) is 2-connected} .

In this particular case, one remarks that P(n,Ω2(n)) is 2-connected. As far as
we know, it has not been proved it holds in the general case.
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3.2 Arithmetic reductions preserving 2-connected compo-

nents

In the present section, we show that the determination of Ω2(n) reduces to
the one of Ω2(m), with ‖m‖∞ < ‖n‖∞, by an elementary reduction on the
components of n.

Theorem 3. Let n ∈ R
3
+ such that 0 ≤ n1 ≤ n2 ≤ n3 and let m ∈ R

3 such
that m = (n1, n2 + n1, n3 + n1). For all ω ∈ R, the arithmetic discrete plane
P(n, ω) is 2-connected if and only if so is P(m, ω + n1).

Proof Let us consider the map Ψ2 : R3 −→ R
3 defined by:

Ψ2 : R
3 −→ R

3


x1

x2

x3


 7−→



x1 − x2 − x3

x2

x3




One checks that Ψ2 provides a bijection from P(n, ω) to P(m, ω).

1. Let us assume P(n, ω) to be 2-connected and let us show that P(m, ω + n1)
is 2-connected too. One first notes that, given an element v ∈ P(m, ω+ n1),
if pm(v) ∈ [ω, ω + a[, then v− e1 ∈ P(m, ω + a) and pm(v− e1) ∈ [0, ω[. In
other words, an element of P(m, ω + n1) is either an element of P(m, ω) or
2-adjacent to an element of P(m, ω). Thanks to this remark, it remains to
show that each pair of points of P(m, ω) is 2-linked in P(m, ω + n1).
Since Ψ2 : P(n, ω) −→ P(m, ω) is a bijection, it remains to show that the
images of two 2-adjacent elements of P(n, ω) are 2-linked in P(m, ω + n1).
For short, we give a geometric interpretation of the action of the map Ψ2

on two 2-adjacent voxels of P(n, ω) (see Figure 2) : the right grey voxels are
the images of the left grey ones, while the right white voxels are elements
of P(m, ω + n1) which allow us to 2-link the grey voxels. For ensuring the
existence of such white voxels, we remind that the right grey ones belongs
to P(m, ω) and, for any such voxels v, the (white) voxel v + e1 belongs to
P(m, ω + n1).

e3

e1

e2

Ψ2

Ψ2

Ψ2

Figure 2: The action of Ψ2 on two 2-adjacent voxels of P(n, ω).

2. Conversely, let us suppose P(m, ω + n1) to be 2-connected. Then, ω + n1 ≥
‖n‖∞ (see Lemma 1). Hence, for all v ∈ P(m, ω + n1) such that pm(v) ∈
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[ω, ω + n1[, pm(v − e1) = pm(v) − n1 ∈ [0, ω[ and v − e1 ∈ P(m, ω). Let

Ψ̃2 : P(m, ω + n1) −→ P(n, ω) be the surjective map defined by:

Ψ̃2 : P(m, ω + n1) −→ P(n, ω)

v 7−→

{
Ψ−1

2 (v), if pm(v) ∈ [0, ω[,
Ψ−1

2 (v − e1), otherwise.

Since Ψ̃2 is surjective, then it remains to show that the image of two 2-
adjacent voxels in P(m, ω + n1) are either equal or 2-linked in P(n, ω).

i. Let v and w in P(m, ω + n1) such that v −w = e1. Two cases occur:

• If pm(v) ∈ [0, ω[, i.e. v ∈ P(m, ω), then Ψ̃2(v)− Ψ̃2(w) = e1.

Hence, Ψ̃2(v) and Ψ̃2(w) are 2-adjacent.

• If pm(v) ∈ [ω, ω + n1[, then Ψ̃2(v) = Ψ̃2(v − e1) = Ψ̃2(w) = e1.

ii. Let v and w in P(m, ω + n1) such that v −w = e2.

• If pm(v) ∈ [0, ω[, then pm(v) = pm(w) + n1 + n2 and, v + e1 ∈
P(m, ω + n1) and pm(w + e1) ∈ [0, ω[ (since n1 ≤ n2). One finally

checks that (Ψ̃2(w), Ψ̃2(w + e1), Ψ̃2(v)) forms a 2-path in P(n, ω).

• If pm(v) ∈ [ω, ω + n1[, then Ψ̃2(v)− Ψ̃2(w) = Ψ−1
2 (e2 − e1) = e2.

iii. Let v and w in P(m, ω + n1) such that v −w = e3.

• If pm(v) ∈ [0, ω[, then pm(v) = pm(w) + n1 + n3 and, v + e1 ∈
P(m, ω + n1) and pm(w + e1) ∈ [0, ω[ (since n1 ≤ n3). One then

checks that (Ψ̃2(w), Ψ̃2(w + e1), Ψ̃2(v)) form a 2-path in P(n, ω).

• If pm(v) ∈ [ω, ω + n1[, then Ψ̃2(v)− Ψ̃2(w) = Ψ−1
2 (e3 − e1) = e3.

To sum up, let us give a geometrical interpretation of the last three cases
(see Figure 3).

e3

e1

e2
Ψ2

Ψ2

or
Ψ2

or

or

Figure 3: The action of Ψ̃2 on two 2-adjacent voxels of P(m, ω + n1).

By induction, a direct consequence of Theorem 3 is:

Corollary 2. Let n ∈ R
3
+ such that 0 ≤ n1 ≤ n2 ≤ n3, let q = ⌊n2/n1⌋ and let

m ∈ R
3 such that m = (n1, n2 − qn1, n3 − qn1). For all ω ∈ R, the arithmetic

discrete plane P(n, ω) is 2-connected if and only if so is P(m, ω + qn1).
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The second important consequence of Theorem 3 links the minimal 2-
connected thickness of n with the one of m (as defined in Corollary 2).

Corollary 3. Let n ∈ R
3
+ such that 0 < n1 ≤ n2 ≤ n3 and q = ⌊n2/n1⌋. Then,

we have:
Ω2(n1, n2, n3) = Ω2(n1, n2 − qn1, n3 − qn1) + qn1.

In this reduction, n1, n2 and n3 are assumed to be all non-zero. If n1 = 0,
then

P(n, ω) =
⋃

k∈Z

({
v ∈ Z

3; x1 = 0 and 0 ≤ pn(v) < ω
}
+ ke1

)

and one checks that P(n, ω) is 2-connected if and only if so is the set{
v ∈ Z

3; x1 = 0 and 0 ≤ pn(v) < ω
}
. From Theorem 1, it follows:

Theorem 4. Let n ∈ R
3
+ such that n1 = 0 and gcd{n2, n3} = 1. Then, P(n, ω)

is 2-connected if and only if ω ≥ n2 + n3.

Composing both reductions (see Theorem 3 and Theorem 4) directly pro-
vides two algorithms: one that determines the minimal 2-connected thickness
Ω(n) of a vector n ∈ N

3, one that returns whether an arithmetic discrete plane
is 2-connected.

3.3 Applications

In the present section we provide an algorithm computing the 2-minimal thick-
ness of a given integer vector n. A first naive approach consists in ”translating”
Corollary 3, such as it is, in terms of an algorithm, in order to reduce n and
increase ω while n does not satisfy conditions of Theorem 4. In fact, thanks
to the following technical lemma, we can obtain a shorter and nicer way to
compute Ω2(n).

Notation. — Let φ2 : Z⋆ × Z
2 −→ Z

3 be the map defined by:

φ2(n) =

(
n2 −

⌊
n2

n1

⌋
n1,min

{
n1, n3 −

⌊
n2

n1

⌋
n1

}
,max

{
n1, n3 −

⌊
n2

n1

⌋
n1

})
.

Let ∆ =
{
n ∈ N

3, 0 < n1 ≤ n2 ≤ n3 and gcd{n1, n2, n3} = 1
}
.

Lemma 3. Let n ∈ ∆ and let n′ = φ2(n). Then, 0 ≤ n′
1 ≤ n′

2 ≤ n′
3 and

gcd{n′
1, n

′
2, n

′
3} = 1 (in particular, if n′

1 6= 0 then n′ ∈ ∆). Moreover,

‖n‖1 − 2Ω2(n) = ‖n
′‖1 − 2Ω2(n

′).

Proof The first assertions, that is, 0 ≤ n′
1 ≤ n′

2 ≤ n′
3 and

gcd{n′
1, n

′
2, n

′
3} = 1 are clear. The last assertions follows from that

{n′
1, n

′
2, n

′
3} =

{
n1, n2 −

⌊
n2

n1

⌋
n1, n3 −

⌊
n2

n1

⌋
n1

}
(see Notation above) and

from that Ω2(n
′) = Ω2(n)−

⌊
n2

n1

⌋
n1.
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Given n ∈ ∆ and n′ = φ2(n), one has n′
1 < n1. Hence, there exists k ∈ N

such that n(k) = φk
2 = φ2 ◦ · · · ◦ φ2︸ ︷︷ ︸

k times

(n) satisfies n
(k)
1 = 0. In that case, it follows

from Theorem 4 that Ω2(n
′) = n′

2 + n′
3 and:

Lemma 4. Let n ∈ ∆ and let k ∈ N such that n′ = φk
2 = φ2 ◦ · · · ◦ φ2︸ ︷︷ ︸

k times

(n)

satisfies n′
1 = 0. Then, Ω2(n) =

‖n‖1 + ‖n
′‖1

2
.

Proof By Lemma 3, ‖n‖1−2Ω2(n) = ‖n
′‖1−2Ω2(n

′). By Theorem 4, Ω2(n
′) =

‖n′‖1 and the result follows.

In fact, Lemma 3 and Lemma 4 prove the correction of the following algo-
rithm calculating Ω2(n) for any n ∈ ∆.

Algorithm 1 Compute the minimal 2-connecting thickness

Input :

n ∈ N
3 such that 0 ≤ n1 ≤ n2 ≤ n3 and gcd{n1, n2, n3} = 1

Output :

Ω2(n)

ω ← n1 + n2 + n3 ;
while (n1 6= 0) do

n =

(
n2 −

⌊
n2

n1

⌋
n1,min

{
n1, n3 −

⌊
n2

n1

⌋
n1

}
,max

{
n1, n3 −

⌊
n2

n1

⌋
n1

})

;
end while

return (ω + n2 + n3)/2 ;

This algorithm has obviously a constant space complexity, but also a rea-
sonable time complexity.

Proposition 1. Algorithm 1 runs in O (log2(n2)) time.

Proof We refer to the vector n at iteration i by n(i). By definition of q, for

all i, n
(i+1)
1 < n

(i)
2 /2. Moreover, since n

(i+1)
2 = min

{
n
(i)
1 , n

(i)
3 −

⌊
n
(i)
2 /n

(i)
1

⌋
n1

}
,

one have n
(i+1)
2 ≥ n

(i)
1 . Thus, by induction, for all i, n

(2i+1)
1 < n

(0)
2 /2i. The

algorithm ends when the value of n
(i)
1 is equal to 0. n

(i)
1 being an integer,

this stopping criteria can be rewritten as n
(i)
1 < 1. With previous statements,

It means that n
(0)
2 /2i/2 < 1 and the algorithm ends always after less than

2log2(n
(0)
2 ) iterations.

The global computation of the thickness ω used in Algorithm 1 is not ap-
propriate for the decision on the 2-connectedness of a given arithmetic discrete
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plane P(n, ω). It rather requires to update this value at each iteration. Nev-
ertheless Algorithm 2 is very similar to Algorithm 1. Indeed, we just have to
initialize the process with the value of ω and, at each step, to decrease it ac-
cording to Corollary 2. Then, P(n, ω) is 2-connected only if, at the end of the
process, the value of ω remains greater than or equal to 0.

Algorithm 2 Is a given arithmetic discrete plane 2-connected ?

Input :

ω ∈ N
∗

n ∈ N
3 such that 0 ≤ n1 ≤ n2 ≤ n3 and gcd{n1, n2, n3} = 1

Output :

Decision on the 2-connectedness of P(n, ω)

while (n1 6= 0 and ω > 0) do

n =

(
n2 −

⌊
n2

n1

⌋
n1,min

{
n1, n3 −

⌊
n2

n1

⌋
n1

}
,max

{
n1, n3 −

⌊
n2

n1

⌋
n1

})

;

ω ← ω −

⌊
n2

n1

⌋
n1 ;

end while

return (ω > 0);

Comparison of Algorithm 2 with Y. Gérard’s algorithm [4] is difficult since
we do not know neither time complexity nor space complexity for this last
one. In the one hand, it obviously requires space for storing the adjaceny graph
and it uses set operations which are generally more time-consuming than simple
arithmetic operations. In the other hand, it can apply whatever the dimension or
the connectedness. Our algorithm just solve the case of 2-connected arithmetic
discrete planes. In the sequel of the present paper, we extend it to the other
connectedness of the 3-dimensional discrete space, but higher dimensions stay
yet out of our scope.

4 1-connected arithmetic discrete planes

In the present section, we show how to reduce the problem of deciding the 1-
connectedness of an arithmetic discrete plane to the 2-connectedness of another
one.

Notation. — From now on, we denote by Ψ1 : R3 −→ R
3 the following

linear bijection:
Ψ1 : R

3 −→ R
3



x1

x2

x3


 7−→




x1

x2 − x1

x3 − x2




The following theorem shows how the map Ψ1 is useful for the determination
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of the 1-connectedness of a given arithmetic discrete plane.

Theorem 5. Let n ∈ R
3 such that 0 ≤ n1 ≤ n2 ≤ n3 and let ω ∈ R. The

arithmetic discrete plane P(n, ω) is 1-connected if and only if the arithmetic
discrete plane P(Ψ1(n), ω) is 2-connected.

Before proving this result and for the sake of clarity, let us introduce a
terminology:

Terminology. — Let E be a discrete set, let v and v′ be two elements of
E and let κ ∈ {0, 1, 2}. We say that v and v′ are κ-linked in E if they share
the same κ-connected component in E.

Proof For short, let us state P = P(n, ω) and P
′ = P(Ψ1(n), ω). Let Ψ̃1 =

tΨ1
−1:

Ψ̃1 : R
3 −→ R

3


x1

x2

x3


 7−→



x1 + x2 + x3

x2 + x3

x3




One easily checks that Ψ̃1 : R3 −→ R
3 provides a bijection from P to P

′ and,
for all v ∈ P, pn(v) = pΨ1(n)(Ψ̃1(v)).
It remains to show that two voxels v and w in P are 1-linked in P if and only
if Ψ̃1(v) and Ψ̃1(w) are 2-linked in P

′. Equivalently, it is sufficient to prove the
following assertions:

1. Let v ∈ P and w ∈ P. If v and w are 1-adjacent in P, then Ψ̃1(v) and Ψ̃1(w)
are 2-linked in P

′.

2. Let v′ ∈ P
′ and w′ ∈ P

′. If v′ and w′ are 2-adjacent in P
′, then Ψ̃−1

1 (v′)

and Ψ̃−1
1 (w′) are 1-linked in P.

1. Let v and w be two 1-adjacent voxels of P.

i If v −w = e1, then Ψ̃1(v) − Ψ̃1(w) = e1. Hence Ψ̃1(v) and Ψ̃1(w) are
2-linked in P

′.

ii If v−w = e2, then Ψ̃1(v)− Ψ̃1(w) = e1+e2. Moreover, one checks that

Ψ̃1(v) + e1 ∈ P
′ and we have shown that Ψ̃1(v) and Ψ̃1(w) are 2-linked

in P
′. Geometrically, the action of Ψ̃1 can be represented as in Figure 4 :

the grey voxels correspond to the images of the extremities of the original
1-path, the white ones belong to P

′ and allow us to construct a 2-path in
P
′.

The other cases, that is, v−w ∈ {e3, e1 ± e2, e2 ± e3, e1 ± e3} are handled
by the same method. Moreover, the cases v−w ∈ {e1+e2, e2+e3, e1+e3}
can be splited into the elementary cases v −w ∈ {e1, e2, e3}.

2. Conversely, one checks that for all v ∈ Z
3 satisfying ‖v‖1 ≤ 1, then

‖Ψ̃−1
1 (v)‖∞ ≤ 1 and ‖Ψ̃−1

1 (v)‖∞ ≤ 2. It follows that the image under Ψ̃−1
1

of two 2-adjacent voxels of P′ are 1-adjacent.
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e3

e1

e2

Ψ̃1

Ψ̃1

Ψ̃1

Ψ̃1

Ψ̃1

Ψ̃1

Ψ̃1

Ψ̃1

Ψ̃1

Figure 4: The action of Ψ̃1 on two 2-adjacent voxels of P.

From Theorem 5 and Lemma 2, it directly follows that, given n ∈ R
3, the set

{ω ∈ R; P(n, ω) is 1-connected} is an interval. Its determination is equivalent
to the one of its lower bound, also called the minimal 1-connecting thickness of
n:

Definition 9 (Minimal 1-connecting thickness). Let n ∈ R
3. The minimal

1-connecting thickness of n is the number Ω1(n) defined by:

Ω1(n) = inf {ω ∈ R; P(n, ω) is 1-connected} .

A direct consequence of Theorem 5 is:

Corollary 4. Let n ∈ R
3 such that 0 ≤ n1 ≤ n2 ≤ n3 and let Ψ1 be as defined

in Notation above. Then Ω1(n) = Ω2(Ψ1(n)).

Thanks to Algorithm 1 and Corollary 4, one easily determines the minimal
1-connecting thickness of a given rational vector. In the same way, one easily
decides whether a given arithmetic discrete plane is 1-connected.

5 0-connected arithmetic discrete planes

The last case, which has been the most studied in the literature [2, 4, 5], concerns
the 0-connectedness of the arithmetic discrete plane. This part is almost similar
to the previous one. Let us first recall a technical lemma, called Symmetry
lemma in [5]:

Lemma 5 (Symmetry lemma [5]). Let n ∈ R
3
+ such that 0 ≤ n1, n2 ≤ n3 and

let n′ = (n3 − n1)e1 + n2e2 + n3e3. Let ω ∈ R. The arithmetic discrete plane
P(n, ω) is 0-connected if and only so is P(n′, ω).

The main interest of Lemma 5 is that it allows us to assume 0 ≤ 2n1 ≤ n3.
Moreover, since the role of n1 and n2 are symmetric in Lemma 5, one can also
suppose 0 ≤ 2n2 ≤ n3. In particular, one can suppose that 0 ≤ n1 ≤ n2 ≤
n1 + n2 ≤ n3.

Let us now introduce a notation before stating the main result of the present
section.
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Notation. — From now on, we denote by Ψ0 : R3 −→ R
3 the following

linear bijection:

Ψ0 : R
3 −→ R

3


x1

x2

x3


 7−→




x1

x2 − x1

x3 − x2 − x1




The main result of this section is then:

Theorem 6. Let n ∈ R
3 such that 0 ≤ n1 ≤ n2 ≤ n1 + n2 ≤ n3 and let ω ∈ R.

The arithmetic discrete plane P(n, ω) is 0-connected if and only if the arithmetic
discrete plane P(Ψ0(n), ω) is 2-connected.

Proof The proof is almost the same as the one of Theorem 5. Here we consider
the action of the map Ψ̃0 = tΨ0

−1 from P(n, ω) to P(Ψ0(n), ω).

From Theorem 6 and Lemma 2, it directly follows that, given n ∈ R
3, the

set {ω ∈ R; P(n, w) is 0-connected} is an interval. Its computation is equivalent
to the one of its lower bound, also called the minimal 0-connecting thickness of
n:

Definition 10 (minimal 0-connecting thickness). Let n ∈ R
3. The minimal

0-connecting thickness of n is the number Ω0(n) defined by:

Ω0(n) = inf {ω ∈ R; P(n, ω) is 0-connected} .

A direct consequence of Theorem 6 is:

Corollary 5. Let n ∈ R
3 such that 0 ≤ n1 ≤ n2 ≤ n1 + n2 ≤ n3 and let Ψ0 be

as defined in Notation above. One has Ω0(n) = Ω2(Ψ0(n)).

Thanks to Algorithm 1, one easily determines the minimal 0-connecting
thickness of a given rational vector. Just remind that, with no loss of generality,
up to exchange n1 and n3 − n1 (resp. n2 and n3 − n2), one can suppose that
0 ≤ n1 ≤ n2 ≤ n1 + n2 ≤ n3 and apply Lemma 5 and Theorem 6 to determine
Ω0(n) in every case. In the same way, one can decide whether a given arithmetic
discrete plane is 0-connected.

5.1 Additional remarks on the minimal 0-connected thick-

ness

The determination of Ω0(n) has already been deeply investigated in [5] as al-
ready mentioned. V. Brimkov and R. Barneva focused on rational arithmetic
discrete planes and found explicit formulas in some particular cases:

Theorem 7 (Explicit formulas [5]). Let n ∈ Z
3 satisfying 0 ≤ n1 ≤ n2 ≤ n3.

One has:
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• if n3 < n1 + n2/2, Ω0(n) = n1 + n2 − n3 + gcd(n3 − n2, n3 − n1)− 1,

• if n1 + n2 < n3 < 2n2 − n1, Ω0(n)) = n2 − n1 + gcd(n1, n3 − n2)− 1,

• if n3 ≥ 2n2 + n1, ΩO(n) = n3 − (n1 + n2) + gcd(n1, n2)− 1.

Conclusion

In the present paper, we have shown how to compute the minimal 2-connecting
thickness of a vector n. The reduction exhibited in Theorem 3 works what-
ever the type (rational or irrational) of the considered vector. Nevertheless, we
have restricted our investigation to rational vectors and provided an algorithm
which computes their minimal 2-connecting thickness. This algorithm can be
easily adapted to decide whether a given rational arithmetic discrete plane is
0-connected or not. Then, we have shown how to reduce the problem of de-
termining the minimal 1-connecting and 0-connecting thicknesses of a vector n
to the determination of the minimal 2-connecting thickness of an appropriate
vector (see Theorem 5 and Theorem 6).

In forthcoming work, we plan to deeply investigate the case of non-rational
arithmetic discrete planes. Since reductions of Theorem 3, Theorem 5 and
Theorem 6 do not depend on the nature of the input vector (integer or not), we
hope to extend our approach to any vector n ∈ R

3. Currently, some particular
points still need to be investigated. In particular, given n ∈ R

3 and κ ∈ {0, 1, 2},
we do not know whether P(n,Ωκ(n)) is κ-connected. In other words, is Ωκ(n)
the smallest element of the set {ω ∈ R; P(n, ω) is κ-connected} ? or just a lower
bound? Besides, does the translation parameter change the κ-connectedness of
an arithmetic discrete plane if its normal vector is not rational?

Another interesting investigation will be the extension of this work to arith-
metic discrete hyperplane in any dimension.
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