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Abstract

The rapid proliferation of mobile computing devices and local wireless networks over the past few years has promoted a contin-

uously growing interest in location-aware systems and applications. The main problem with existing positioning techniques is

that they are designed to position dimensionless objects. Such an assumption may lead to practical inconsistencies, as it results in

neglecting the effects of the volume of an object, its physical characteristics, and its spatial arrangement on signal propagation. In

this paper, we consider the problem of positioning cargo containers in a marine port terminal, where such characteristics can be

finely estimated. Based on the signal propagation map of a container yard, we propose VAPS, a volume-aware positioning system

that takes advantage of the waveguide effect generated by the containers. Although VAPS is specific to the marine port scenario,

its design principles can be extended and adapted to other situations. VAPS maps discrete RSSI levels into hop-counts and relies

on realistic propagation models to obtain near-perfect positioning at a very low control overhead. Our extensive evaluations show

how to set the parameters required in the VAPS algorithm. The results demonstrate that, in scenarios where the assumptions made

by traditional approaches fail, the considerations of VAPS make the difference.

Key words: GPS-free positioning systems, signal propagation, waveguide effect.

1. Introduction

Having the coordinates of a node can be of great utility in

numerous applications of wireless networks, including object

tracking, warehouse inventory, health care, and environmental

monitoring, to cite a few. Therefore, positioning systems have

been and still are the focus of extensive research. The main

approaches in use today rely on satellite-based systems such

as GPS [1], Glonass [2], as well as the upcoming Galileo [3]

and Beidou [4]. Although straightforward and widely adopted,

satellite-based solutions cannot be used in a number of scenar-

ios (e.g., indoor, underwater, and underground deployments)

and can involve high economic and energetic costs. There have

been many attempts in the literature to provide alternative solu-

tions, commonly referred to as GPS-free positioning systems.

These are roughly classified into two classes: signal-based and

topology-based methods. In the first category, the strategy most

frequently adopted is to measure the distance between the tar-

get element and several reference points (whose coordinates are

known) based on metrics such as the Received Signal Strength

Indicator (RSSI) [5, 6, 7, 8, 9], Time of Arrival (ToA) [10],

✩This document is an extended version of our previous paper “VAPS: Posi-

tioning With Spatial Constraints”, presented at IEEE WoWMoM 2009.
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Time Difference of Arrival (TDoA) [11], or Angle of Arrival

(AoA) [12]. In the second category, the traditional approach

is to determine the distance of a node to a number of refer-

ence points by using network topology metrics such as the hop-

count [13, 14, 15, 16]. In both methods, the coordinates of

the target point are inferred through multi-lateration or similar

techniques.

In this paper, we focus on a class of deployment scenarios

where the abovementioned solutions cannot be used. In fact,

existing methods are designed to position dimensionless nodes

without considering their volume, physical composition, or any

other spatial constraints. The implicit assumption is that the

node to be positioned is a point in the space. This is a poten-

tial source of errors because the volume, the physical charac-

teristics of the objects to position, and their spatial arrangement

may have a major impact on the signal propagation. The partic-

ular characteristics of large objects may lead to new constraints

such as a strong attenuation or reflection of propagated signals.

In some cases, as the marine port scenario considered in this

paper, objects have metallic surfaces that lead to high reflec-

tion and blocking effects on the transmitted signals. Therefore,

certain arrangements of metallic objects may cause waveguide

effects, inducing homogeneous signal propagation throughout

the area. Uniform propagation of signals may lead to ambiguity

in determining the positions of the objects, as the signal atten-

uation becomes completely different from the one observed in

open spaces.

To our knowledge, there is no work in the literature deal-
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Figure 1: Container yard in a marine port terminal.

ing with such specific challenges. In order to effectively bridge

this gap, we propose VAPS, a Volume Aware Positioning Sys-

tem to position large metallic objects. Contrarily to traditional

solutions, VAPS brings the following innovative features:

• Signal propagation-aware positioning. VAPS takes into

account and benefits from the waveguide and blocking

effects caused by metallic objects. This is fundamental

in our scenario as these effects completely compromise

the correlation between distance and reference parame-

ters such as signal strength, propagation time, and angle

of arrival. For this reason, in our scenario, traditional sys-

tems are useless as they rely on such correlations when

computing coordinates.

• Dimension-aware positioning. VAPS falls under the

umbrella of hop-count-based systems; however, since con-

tainers have well-defined dimensions, hop-counts can be

directly translated into distances. Furthermore, VAPS is

able to correct possible erroneous coordinates, therefore

preventing physically impossible situations such as the

overlap of two or more elements.

Taking spatial constraints into account is of course scenario-

dependent. In this paper, we specifically refer to a reservoir of

cargo containers at a marine port terminal arranged along long

rows, several containers high, in a limited space. The contain-

ers are metallic, inducing high reflection, which leads to dis-

tinct waveguide effects. This means that signal attenuation in

the space separating two rows of containers is almost null. By

applying realistic signal propagation that we obtained through

extensive simulations, we show that: (i) VAPS works where

traditional solutions are unfeasible (ii) VAPS leads to highly

accurate positioning, and (iii) VAPS is energy-efficient by gen-

erating very low control overhead.

The remainder of this paper is structured as follows. In Sec-

tion 2, we describe the context of the paper, and in Section 3 we

illustrate the particularities of signal propagation in position-

ing metallic objects with large dimensions. In the same sec-

tion, we clearly state the problem of using traditional methods

Figure 2: Stacks of cargo containers in a marine port terminal.

when attempting to position metallic objects with large dimen-

sions. Section 4 presents the VAPS algorithm for positioning

cargo containers, while Section 5 evaluates our algorithm via

simulations. In Section 6 we discuss the performance of our al-

gorithm and give insights on remaining open issues. Section 7

gives an overview on prior works in positioning algorithms for

multi-hop wireless networks. Finally, we conclude the paper in

Section 8.

2. Context

During the latest decade, the world has been shaped by the

influence of globalization. To sustain economic growth, many

companies have started to develop new markets outside their

home countries. Therefore, international transportation systems

became under increasing pressures to support additional de-

mands. The introduction of cargo containers resulted in consid-

erable improvements in efficiency, lowering costs, and boosting

global trade flows.

The target scenario considered in this work is the localiza-

tion of cargo containers in a marine port terminal.1 Many mod-

ern marine ports are used as intermediate destinations where the

cargo is changed form one transportation method to another. In

large ports, such as the one depicted in Fig. 1, cargo container

facilities may extend over 170 hectares, where several thousand

containers are held and moved every day. Clearly, locating and

tracking such a large number of containers require complex lo-

gistics.

When cargo containers are being held in the port, they are

usually stacked one on top of another, with little vertical space

between them (about 10 cm), and narrow aisles (about 1 m)

separating two rows of stacks (see Fig. 2). A row of stacks may

be up to 100 meters long, and 20 meters high. This particular

arrangement and the metallic composition of cargo containers

both have an impact on the propagation of signals between two

1More specifically, this scenario is the one addressed in the context of the

French project “Watch and Warn” in collaboration with the Le Havre har-

bor [17].

2



(a) Above view. (b) Transversal view.

Figure 3: Signal propagation of a sensor in a field of rectangular metallic objects (dark rectangles represent containers). A white “X” represents the transmitting

sensor.
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(a) Attenuation in an aisle between two stacks of containers.
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(b) Attenuation from one aisle to another.

Figure 4: Observed Path Loss Model. Vertical error bars represent the tolerance.

rows of stacks of containers. These particularities are described

and analyzed in the following section.

3. Problem Statement

3.1. Analyzing the waveguide effect

To better assess the effects of the particular arrangement and

characteristics of these objects on wave propagation, we con-

ducted a set of precise radio propagation simulations. To this

end, the WILDE (WIreless LAN DEsign) tool was used [18,

19]. Fig. 3 illustrates the obtained results. In these figures, dark

rectangles represent the containers disposed in rows; one wire-

less sensor (placed on the longest surface of a container and

represented with the white ‘X’ in both figures) sends a signal

whose RSSI is measured in the rest of the space. The RSSI is

represented by colors. In the aisles where the signal is transmit-

ted, the color is something between red and orange, meaning

that the signals are received with almost the same power-level

they were transmitted. In the following aisles, where the colors

are yellow, green, or blue, the received signals are attenuated.

This attenuation, however, happens sharply, and the power level

remains almost constant all along the same aisle (except for the

border effect at crossing points).

In these results, two particular phenomena can be observed.

First, wave propagation in the aisles between two rows of stacks

of containers closely resembles a waveguide. Nevertheless, it is

not a tuned waveguide and therefore path loss occurs. Fig. 4(a)

shows the observed path loss model for an aisle between two

rows of stacks of containers. Error bars represent an error mar-

gin of ± 5dBm. Since the attenuation inside an aisle is well

below the sensitivity threshold, any node transmitting inside an

aisle can be heard several hundred meters away. Clearly, the

observed model greatly differs from the traditional free-space

path loss model, where the typical range is around 50 meters.

The second observed phenomenon is that the objects act as

barriers. The metallic nature of cargo containers and their size

prevent the signals from reaching near points. This behavior

is illustrated in Fig. 4(b). Error bars represent an error margin

of ± 15dBm. Even if two adjacent aisles between containers

are a few meters away from each other, the attenuation changes

abruptly from one aisle to the next. Nevertheless, all along one

aisle, wave propagation continues to follow the waveguide-like

3



A B C D

B receives with power PB

B distance estimate is d(PB)

C and D are not in range of A

C and D can’t estimate distance to A

(a) In open space, node B is in range of node A and can estimate its

distance to it. Nodes C and D are outside node A’s range.

A B C D

B, C and D receive with powers PB ≈ PC ≈ PD

B, C and D distance estimates are d(PB) ≈ d(PC) ≈ d(PD)

(b) Inside a waveguide, nodes B, C and D are in range of node A and

can estimate its distance to it. However, because of homogeneous signal

propagation they will estimate they are closer than they actually are.

Figure 5: Distance estimation using RSSI in open space and inside a waveguide.

A B C D

(a) In open space, node A communicates with nodes C and D in a hop-

by-hop way.

A B C D

(b) Inside a waveguide, node A can communicate directly with nodes C

and D.

Figure 6: Distance estimation counting number of hops in open space and inside a waveguide.

path loss model observed in Fig. 4(a). Therefore, the attenua-

tion is almost homogeneous along an aisle.

3.2. Limitations of existing approaches

To our knowledge, all existing positioning methods assume

that objects are just small points in space, without any dimen-

sions whatsoever. Moreover, there is no consideration of the

effects that the volume and physical characteristics of an object

may have on signal propagation. Therefore, given the particular

characteristics of wave propagation in the previously presented

context, any attempt to position large metallic objects using ex-

isting techniques will lead to considerable positioning errors.

To better illustrate this, we analyze the issues that rise when

two of the most popular positioning techniques are used to po-

sition objects inside a waveguide. Further details on existing

techniques are presented in Section 7.

One of the most used techniques consists in estimating the

distance between an object and at least three reference points

whose positions are known. Then, by trilateration, the object

calculates its position relatively to the positions of the reference

points. The distance between two nodes can be calculated us-

ing for example the RSSI. If both nodes are identical (i.e., they

transmit with the same power and they have the same sensitiv-

ity threshold) the receiving node can estimate its distance to the

transmitting node by using the RSSI and a path loss model. In

Fig. 5(a), we represent a topology with four nodes. Here, node

B is the unique node under the coverage range of node A, and

therefore it can accurately estimate its distance to node A by

using RSSI and a free-space path loss model [20]. Since nodes

C and D are outside A’s range, they cannot estimate their dis-

tance. In contrast to a free-space model, inside a waveguide

(see Fig. 5(b)), nodes B, C, and D are all in the communica-

tion range of node A, and can thus estimate their distance to

it. However, because of the particularities of signal propagation

inside a waveguide, all four nodes will receive the transmitted

signal with almost the same power. By using a free-space path

loss model, they will estimate their positions to be closer than

they actually are.

Another technique consists in measuring the distance from

a node to a reference point in number of hops. This information

can be then used to calculate a distance in meters, or directly as

coordinates. In Fig. 6(a), nodes A, B, C, and D communicate

with each other in a hop-by-hop fashion. In this case, node D is

three hops away from node A. Inside a waveguide, node A can

communicate directly with nodes B, C, and D. In such a case,

the use of a hop-count technique attributes the same coordinates

to those three nodes, although they are placed at significantly

different distances from node A.

4. VAPS: Volume-Aware Positioning System

To address the new challenges in positioning with spatial

constraints, we adopt a strategy that differs from those of tra-

ditional approaches. We mainly undertake two actions. First,

every object should be equipped with more than one communi-

cating device (or sensor) so that we can integrate the notion of

dimension. We assume that the sensors on the same object are

wired to each other and exchange positioning information be-
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Figure 7: This figure shows a grid of 16 objects with three sensors each to

enable three dimensional positioning. The sensors are represented by blue cir-

cles, and are wired to each others. Note that all sensors are facing the same

directions.

tween them instantly, and without consuming any wireless re-

source. In the description of the algorithm, we call these nodes

corresponding nodes. Fig. 7 shows an example of node equip-

ment for three dimensional positioning. In this particular ex-

ample, each object is equipped with three nodes (one for each

dimension) wired to each others. Note that all nodes are on the

exact same surface on each object and therefore they all have

the same direction. Second, we consider in the design of our

algorithm the effects that metallic objects may have on signal

propagation, namely the waveguide effect. In this section, we

first specify the preliminaries of our approach. The details of

VAPS come thereafter.

4.1. Determining N discrete distinguishable power levels

Without loss of generality, we assume that all sensor nodes

have the same transmission power Pr and the same sensitiv-

ity threshold. As a consequence of the waveguide effect, sig-

nal propagation in an aisle is almost homogeneous; therefore

a transmitting node is heard with almost the same reception

power all along the aisle it is placed in. Using this particular

phenomenon, we can easily conclude that every node hearing

the maximum received power level are estimated to be in the

same aisle as the transmitting node. The transmitted signal will

propagate throughout the area and it will be heard in the ad-

jacent aisles, but with an attenuated power level. As observed

in Fig. 3, the attenuation happens sharply. This attenuation,

however, follows the waveguide effect and thus remains almost

constant all along the same aisle.

We assume that, in general, a transmission originated inside

any aisle can be heard at the next N consecutive aisles. Using

the particular waveguide/blocking effects of this context, we are

able to define N discrete and clearly distinguishable power lev-

els. The number of power levels is determined by the number

of aisles away from the transmitting node where the RSSI is

X
80 - 75 %

50 - 45 %

25 - 20 %

5 - 0 %

5 - 0 %

Figure 8: This figure shows a situation where X’s signal is easily distinguish-

able from an aisle to another till the third aisle. The received signal at the forth

and fifth aisle is just below the sensitivity threshold of the sensors.

above the sensitivity threshold of the nodes. To better illustrate

this, we take as example the topology depicted in Fig. 8.

In this particular case, there are 25 rectangular metallic ob-

jects arranged in a 5 × 5 grid. We set a transmitting node, rep-

resented with a white “X”, in the lower side of the container

located at the top left corner of the topology. Other nodes (not

depicted in the figure) located in the lower sides of the rest of

the containers measure the power of the received signal. In this

example, we assume that the sensitivity threshold is 20% of the

original power. When the transmitting node sends a message,

the nodes located on the same aisle as the transmitter receive

the signal with 80 – 75 % of its transmitting power. Nodes lo-

cated one aisle away will receive the signal with 50 – 45 % of

its original power, while nodes two aisles away will receive the

signal with 25 – 20 % of its original power. For the nodes lo-

cated three and four aisles away, the received signal will be just

below their sensitivity threshold. Nodes in the first three aisles

can easily detect the signal, and the receiving power from one

aisle to the next one is clearly distinguishable. On the other

hand, there is no clear distinction between the power received

in the fourth and fifth aisles, and in some cases, a number of

nodes will not be able to detect the transmission. In this partic-

ular example, N is thus set to 3. It means that one transmission

in an aisle is able to determine the aisle number of objects of

three aisles.

The value of N depends on several factors, including the

reception sensibility of the sensors, the width of the aisles, pos-

sible changes in the propagation characteristics of the wireless

medium, and the transmission power Pr. Note that the value

of N can be different across each direction. In the example de-

picted in Fig. 8, horizontal aisles are wider than vertical aisles,

and consequently the waveguide effect in the former is more

important than in the latter. Therefore, in the general case, we

consider Nx and Ny as different values for each direction.

4.2. Description of the algorithm

For the sake of presentation, we consider a two-dimensional

space with two axes X and Y. Nevertheless, extending the al-
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gorithm to three dimensions is straightforward.2 Let Li be the

power level measured at aisle i from the emitter and V = {L1, . . . , LN}

be the set of these measurements (i = 1 means the same aisle

of the emitter). An object (i.e., a container) has two sensors

placed on orthogonal surfaces. We refer to these sensors as

corresponding nodes and call them x-node and y-node respec-

tively to the axis they contribute to. The objects are assumed to

have a direction, such that x-nodes and y-nodes are placed on

the same surface on each one of the containers. We compute

coordinates with regard to an object placed in a corner of the

topology whose coordinates are, by definition, (X = 0,Y = 0).

We refer to this particular container as the anchor. Note that we

need only one anchor.

The anchor starts the positioning process by broadcasting a

message toward the x-axis (via its x-node). To prevent possible

collisions that may interfere with positioning, we introduce a

back-off time when broadcasting toward the y-axis (via its y-

node). Messages broadcasted toward the x-axis determine the

column number and toward the y-axis the row number. Each

message contains two pieces of information: a coordinate (X

or Y), and the axis it corresponds to. A node that receives a

message analyzes the axis information to determine whether it

should process the message or not: x-nodes only process x-axis

messages while y-nodes only process y-axis messages. If the

message is processed, the positioning information together with

RSSI information is analyzed. If the message is received with

a RSSI that is within the range [L1; L2[, then the receiving node

assumes it is located in the same row/column as the sender and

sets its corresponding coordinate as the same as the sender’s

one. Similarly, if the message is received with an RSSI within

the range [L2; L3[, the receiving node is located one row/column

away from the sender and it sets its corresponding coordinate

to Xsender + 1 (or Ysender + 1). Note that intervals must be left-

closed to avoid misinterpretation of the row/column to assign to

a node. This procedure is performed by all nodes up to the (Nx−

1)th column (resp. (Ny−1)th row). In all cases, a receiving node

notifies the new coordinate to the second corresponding node on

the same object. The procedure is summarized in Algorithm 1.

4.3. Reducing the number of broadcasted messages

One of the issues in most of the positioning algorithms is

the large amount of messages exchanged between nodes. The

consequences are, in general, higher energetic costs, collisions,

and an overall decrease in protocol performance. In order to

limit the number of messages used for positioning, and to pre-

vent collisions, some actions are undertaken. First, since we

assume that a broadcasted message can be heard as far as the

(Nx−1)th column (resp. (Ny−1)th row) away, we set the restric-

tion that only the nodes that are in the (Nx − 1)th column (resp.

(Ny − 1)th row) rebroadcast the positioning messages. The total

number of broadcasted messages, called T , is computed as:

T = R

⌈

C

(Nx − 1)

⌉

+C

⌈

R

(Ny − 1)

⌉

,Nx,Ny > 1 (1)

2Since the signal propagation model in the ZY plane is similar to the one

observed in the XY plane, it suffices to apply, in addition, the same algorithm

in this new plan (ZY) to get a three dimension positioning.

Algorithm 1 VAPS algorithm

VX = {L1, L2, L3, ..., LNX−1, LNX
}

VY = {L1, L2, L3, ..., LNY−1, LNY
}

Positioning message = (COORD, AX), AX = {X,Y}

if AX = My axis then

if RSSI > LNAX
then

for i = 0 to i < NAX do

if RSSI ≤ VAX[i] and RSSI > VAX[i + 1] then

if COORD < My Coordinate then

My Coordinate = COORD + i

Send My Coordinate to Corresponding Node

end if

end if

end for

else if RSSI ≤ LNAX
and RSSI > S ensitivity then

if COORD < My Coordinate then

My Coordinate = COORD + (NAX − 1)

Send My Coordinate to Corresponding Node

Broadcast My Coordinate

end if

end if

else

drop the message

end if

where C is the number of columns and R is the number of rows.

Thus, the number of positioning messages broadcasted is re-

duced when compared to other traditional approaches where all

nodes rebroadcast the positioning messages.

Second, besides triggering different start times for the posi-

tioning algorithm at each axis, VAPS includes a back-off pro-

cedure for rebroadcasting the positioning message reaching the

(Nx−1)th column (resp. (Ny−1)th). This procedure is similar to

the collision avoidance procedure used in channel access algo-

rithms. Upon reception of a positioning message, nodes in the

(Nx − 1)th column (resp. (Ny − 1)th row) set up a timer with a

random delay to retransmit the positioning message. The node

whose timer expires first rebroadcasts the positioning message.

The other nodes in the same row/column overhear this trans-

mission and cancel their own transmission. More specifically,

before canceling their transmission, these nodes first verify if

the reception has been performed at the highest power and if

the coordinate is the same as the one they have already stored.

It is worth mentioning that there is a tradeoff between the

number of broadcasted messages and the accuracy and robust-

ness of the system. Consider an ideal scenario where the area

conditions allow the definition of N ≥ max(C,R) distinguish-

able power levels. In such an ideal case, one positioning mes-

sage per axis would be enough in order for every objects in the

network to estimate its column and row number. Nevertheless,

in this case, even mild changes in the propagation conditions

may trigger positioning errors.

4.4. Measuring the real distance between the nodes

Since the dimensions of the objects and their arrangement

are known beforehand, it is possible to easily and precisely cal-

culate the distance between objects by using hop-count infor-

mation. Let the objects be rectangular with height a and length

b. They are arranged on a grid with a vertical space S v and

horizontal space S h between them as depicted in Fig. 9. The

6
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Figure 9: Calculation of the distance between containers.

vertical distance Dv (resp. horizontal distance Dh) between the

center of an object and the center of the next object is calculated

as Dv = (a + S v) (resp. Dh = (b + S h)). Therefore, the verti-

cal (resp. horizontal) distance between an object, and another

located n hops away is Dv = n(a + S v) (resp. Dh = n(b + S h)).

5. Evaluation

To study the performance of VAPS, we evaluate it in a sim-

ulation environment adapted to our needs. Castalia [21, 22]

is a Wireless Sensor Network (WSN) simulator based on the

OMNeT++ Discrete Event Simulation System [23]. Castalia

mainly focuses on providing a realistic wireless channel and ra-

dio model, with a realistic node behavior especially relating to

access of the radio. The algorithms are written in C++ and they

are event driven, where an event can be an incoming message

or a periodic timer. The OMNeT++ library controls the sim-

ulated time and the concurrent execution of the code running

at each node. In the remainder of this section, we first discuss

some specific implementation details of our simulations before

presenting the results.

5.1. Simulation settings

In order to perform a set of simulations that closely rep-

resent real-life conditions, the interference model used in our

simulations is assumed to be an additive model, in which all the

transmissions heard by a receiver are added to the background

noise as the interference level of the area. To accommodate the

simulations to the particular propagation characteristics of the

target scenario, we introduce the waveguide effect by setting

signal propagation along an aisle between two rows of contain-

ers in an almost homogeneous way, with very low power atten-

uation. Note that this has a direct impact on communications,

as it causes transmissions to be more prone to collide with each

other.

One of the features of Castalia, besides providing a wireless

channel propagation model, is that it allows the manual defini-

tion of connectivity between pairs of nodes, by specifying the

received power level in dBm at one node, when the transmis-

sions come from another node anywhere in the topology. We

used this unique feature in order to manually define the partic-

ular connectivity between nodes according to the propagation

characteristics of the scenario under consideration. Accord-

ing to the characterization we performed with WILDE, in the

considered scenario there are three clearly distinguishable dis-

crete power levels (N = 3); we set these to L1=0dBm, L2=-

30dBm, and L3=-60dBm. Nevertheless, a manual definition of

the reception level at one node would imply that all the received

messages from another node arrive with the exact same power

level each time. To introduce randomness in this process, and

therefore obtain more realistic results, we add a random value

extracted from a Gaussian distribution with zero mean and a pa-

rameterized standard deviation σ to each reception power level.

Several simulation runs were conducted to evaluate the po-

sitioning error of VAPS. All data points shown on the curves

represent an average over 50 runs within 95% confidence in-

terval. The simulated topology contains 100 containers mea-

suring 10 × 4 meters. This results in a total of 200 nodes, as

each object is equipped with two sensors wired together (recall

that we perform simulation only for the two dimensional case).

We assume that all nodes have the same reception sensitivity (-

95dBm) and identical maximum transmission power (10 dBm).

Furthermore, as we focus on the positioning error, we assume

that no packet loss occurs, however by using the back-off pro-

cedure in VAPS packet loss may occur rarely. The average po-

sitioning error is computed with the following equation, which

is widely used in previous works:

Erravg =

∑M
i=1

√

(xi − x′
i
)2 + (yi − y′

i
)2

M
, (2)

where M is the number of nodes, (xi, yi) is the real position of

node i and (x′
i
, y′

i
) is the estimated position of node i.

As in a real marine port terminal, containers are placed fol-

lowing a grid pattern on a 122 × 62-meter field. The anchor

object is placed at the bottom left corner of the field. All ob-

jects are 1-meter apart horizontally and 2-meters apart verti-

cally. Consequently, the waveguide effect is more accentuated

in the horizontal aisles than in the vertical aisles.

5.2. Analysis of the retransmission at the N th level

Since we assume that a broadcasted message can be heard

as far as the N th row/column away, in our algorithm we set the

restriction that only the nodes that are in the N th row/column

rebroadcast the positioning messages. As one of the motiva-

tions for this choice is to reduce positioning errors induced by

collisions, we evaluated the impact of this choice on the perfor-

mance of the algorithm. We consider three different values of

N = {1, 2, 3}.

Fig. 10 illustrates the average positioning error for retrans-

mission at different aisles. Under ideal propagation conditions

(σ = 0), when retransmitting at every aisle (N = 1), every two

aisles (N = 2), and every three aisles (N = 3), the average

positioning error is zero hop. In the presence of mild changes

on propagation conditions (σ = 6), retransmitting at every aisle

leads to higher positioning errors (about 0.4 hops), than retrans-

mitting every two and every three aisles (close to zero). When
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Figure 10: Average positioning error vs. Standard Deviation σ for message

retransmission at different aisles.
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Figure 11: Total number of sent messages for message retransmission at differ-

ent aisles.

there are considerable changes (σ = 12) on propagation con-

ditions, when retransmitting at N = 1 the average positioning

error is 2.8 hops, at N = 2 is 1.4 hops, and at N = 3 is 0.8

hops. Clearly, by restricting the retransmissions to occur only

at the last distinguishable level, the algorithm obtains a superior

performance, since the possibility of collisions is reduced.

Another motivation behind the choice of retransmission at

the N th row/column is to reduce the number of messages used

for positioning proportionally to 1/N. This is what we observe

in Fig. 11, which shows the total number of messages trans-

mitted for each setting. When retransmission is done at each

reception (N = 1), the total number of transmitted messages

can reach 460 in the presence of considerable changes of prop-

agation conditions. Retransmitting every two aisles results on a

clear drop in the total number of messages to around 240. By

setting the retransmissions at N = 3, the total number of re-

transmissions is reduced to 140. Reducing the total number of

messages has a direct impact on the protocol costs in terms of

control message overhead and energy.
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Figure 12: Total number of sent messages for different Back-off values.
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Figure 13: Average positioning error vs. Standard Deviation σ for different

Back-off values.

5.3. Impact of the back-off procedure

As previously stated, we also introduce a back-off proce-

dure to to further improve the performance of the algorithm and

to reduce the number of messages used for positioning. The

idea is to take advantage of the waveguide effect present in the

aisles between containers.

To choose an appropriate value for the back-off timer, we

conducted a set of simulations. Fig. 12 shows the total number

of transmitted messages as a function of the standard deviation

σ. The duration of the back-off timer is varied from 0 to 55 ms.

As shown in this figure, without the back-off procedure, the

total number of messages sent is about 130. This number is

reduced down to 25 by increasing the back-off timer. When

there are changes in the propagation conditions, the number of

used messages increases. This is mainly due to nodes not being

able to hear the transmission of the node whose timer expires

first, and therefore triggering their own transmissions at the end

of their timer.

Fig. 13 compares the average positioning error for different

values of the back-off timer. In the figure, under ideal condi-
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approaches.

tions (σ = 0) the positioning error is zero for all back-off val-

ues except for 55 ms, where it is around 0.3 hops. With strong

variations in the RSSI (σ = 12), the average positioning error

is about 0.7 hops when there is no back-off procedure, 0.8 for

30 ms and 50 ms, and around 0.7 for 55 ms. We can notice the

fact that setting the back-off timer to a very large value (e.g.,

55 ms) induces errors even with mild variations in the propaga-

tion conditions. It suggests that there is a trade-off between the

duration of the back-off timer and the accuracy of the system.

The trade-off occurs because with large back-off timer values,

the number of retransmitted messages is greatly reduced. This

may lead to some cases where one or several nodes are not able

to obtain their correct coordinates and thus the average position-

ing error of the system is increased. Since our system considers

the volume and the spatial arrangement of the objects, when

the average positioning error is below 0.5 hops (represented by

a horizontal dotted line), it can be approximated to zero. There-

fore, setting the back-off timer to 50 ms is a good candidate for

the rest of the simulations.

5.4. Comparison with other approaches

We compare the performance of VAPS with two other algo-

rithms (signal and topology based). The first algorithm, APS [6],

uses only the RSSI and a free-space path loss model to esti-

mate the distance from an object to a number of landmarks with

known coordinates, and then trilateration to calculate the coor-

dinates. A total of nine landmarks that broadcast periodic bea-

cons are used to cover the whole area. The second algorithm

is vCap [14], where the objects estimate their hop-count dis-

tances to three landmarks, and use this information directly as

coordinates. Both APS and vCAP are explained in Section 7.

We first investigate the advantages of VAPS without ap-

plying the back-off procedure. The idea is to show that, even

without using the back-off timer, VAPS outperforms the other

approaches. Fig. 14 shows the average positioning error as a

function of the standard deviation σ. The results show that, un-

der ideal conditions (σ = 0), the positioning error is about 6
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Figure 15: Total number of sent messages for different approaches.
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hops for the RSSI-based method, 5 hops for vCap, and 0 for

VAPS. When there are strong variations in the RSSI at each

node (σ = 12), the RSSI-based method and vCap obtain the

same values as before, while VAPS achieves an average posi-

tioning error of 0.8 hops.

The comparison is further investigated in Fig. 15, which

shows the total number of messages generated by vCap and

VAPS. The results for APS are not shown since the number of

messages generated by this algorithm is equal to the number of

landmarks multiplied by the number of beacons they have sent

during the simulation – i.e., there are no message retransmis-

sions at the nodes. For vCap, the total number of transmitted

messages is about 4,000 under ideal conditions, and increases

up to 5,000 in the presence of considerable variations in the

propagation conditions. VAPS dramatically reduces this num-

ber to around 130 (σ = 0) and to around 140 for σ = 12 without

the use of a back-off procedure. By using a back-off of 50 ms,

this value is further reduced to 25 under ideal conditions, and

around 40 when the propagation conditions are highly variable.

This reduction has a direct consequence on the protocol cost in
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terms of control message overhead and energy.

To show how the positioning error is propagated away from

the anchor object, we measure the average positioning error as

a function of the Manhattan distance [24]. Again, the results for

APS are not shown since, with this algorithm, the coordinates

are calculated by each node with the information they receive

from the landmarks, and therefore coordinate information is not

propagated away from each landmark in a hop-by-hop fashion.

Fig. 16 shows the results. We consider only the simulations

where the standard deviation is 4 and 12, since these two val-

ues simulate respectively mild and considerable changes in the

propagation conditions. In both cases, when the objects are rel-

atively close to the anchor node (3 hops away), the average po-

sitioning error is around 1 hop for the hop-count-based method,

and below 0.5 hops for VAPS. For VAPS, these errors can be

approximated to zero, since it considers the volume and spatial

constraints for the objects. For objects that are more than 14

hops away from the anchor node, the average positioning er-

ror for these standard deviations is about 8 hops for vCAP (for

both τ = 4 and τ = 12), while it is 0 hops and 1 hop for VAPS,

respectively. This figure shows that the capacity of VAPS to

correct some degrees of positioning error lead to very low er-

rors even in positioning far objects.

5.5. Impact of the Size of the System

In Fig. 17, we explore the performance of the algorithm in

larger topologies. We chose two different sizes: 4×25 which

contains the same number of nodes, but is larger towards the x-

axis, and 100×100 which contains 100 times more nodes. We

deliberately chose not to include any modifications to the al-

gorithm, such as changing the location of the anchor node or

adding additional ones. As expected, for larger topologies, the

performance of the algorithm is slightly degraded. Since the

aisles are longer on the x-axis, the nodes that are the farther

away from a transmitting node will receive a more attenuated

signal, which may cause a node to be unable to distinguish the

row it is on, thus inducing positioning errors.

6. Discussion

Feasibility. It is clear that there is a class of deployment scenar-

ios where signal propagation does not follow the traditional free

space [20] or indoor [25, 26] propagation models. In these par-

ticular cases, the use of existing positioning methods (cf. Sec-

tion 7) may lead to considerable positioning errors. The results

shown in Section 5 highlight this fact. Consequently, existing

positioning methods are simply unfeasible in such a deploy-

ment scenario. VAPS was designed to provide accurate posi-

tioning in cases where the spatial arrangement and the physical

composition of the objects have a major impact on signal prop-

agation. Along these lines, our algorithm proved to be superior

to existing approaches.

Efficiency. In the scenario tackled in this paper, the choice of

the number of levels, as well as their values, aimed at reduc-

ing the impact of changes in propagation condition changes on

the accuracy of the algorithm. VAPS also relies on a back-off

procedure and on limited retransmissions to reduce the number

of messages used for positioning. Although this increases the

probability of missing a message, the reduction in the number

of positioning messages leads to significant improvement of the

system’s efficiency. The reduction of interfering collisions fa-

cilitates the computation of exact coordinates, while reducing

the signaling cost of the algorithm. Indeed, since our algorithm

is able to use less signaling traffic, it is less penalizing to con-

current applications.

Energy Consumption. VAPS was designed to work with wire-

less communication protocols adapted to embedded applica-

tions requiring low power consumption, such as IEEE 802.15.4.

Moreover, by using fewer messages, there is a lower consump-

tion of energy. As one of the main concerns when deploying

wireless applications is the autonomy of the system, a prelimi-

nary task such as positioning should not consume the energetic

resources of the nodes. VAPS reduces the energetic cost of the

system, therefore allowing other applications to run longer.

Environment knowledge. One of the distinct features of our

algorithm is its ability to map a number of clearly distinguish-

able discrete power levels into hop-counts. In order to accu-

rately define the number of power levels to be used, and the

range of values every level should represent, the propagation

conditions must be studied and analyzed prior to launching the

algorithm. Additionally, since our approach is addressed to a

class of scenarios where wave propagation follows particular

characteristics, it is clear that this study must be conducted for

each scenario and will most likely lead to a different set of

power levels each time. The careful definition of the number

of power levels to use and their values are fundamental for the

good operation of our approach. Also, as the dimensions of the

objects and their specific arrangement are known beforehand,

VAPS has the ability to correct positioning errors when they are

below 0.5 hops. The conducted simulations showed that, even

if the approach is sensible to changes in the propagation condi-

tions, only considerable changes induce errors in the algorithm,

and those errors are nonetheless under 1 hop.
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Open issues. Even though our approach was conceived to pro-

vide accurate positioning in real life deployment scenarios with

particular wave propagation, it has been so far evaluated through

simulations. Although these simulations were conducted using

tools that closely reproduce the conditions found in a real life

scenario, it is not possible to take into consideration all the fac-

tors that could affect the performance of the algorithm. Conse-

quently, real wave propagation data obtained at a marine port

terminal is needed to complement the data obtained from simu-

lations. Additionally, a real life deployment is needed in order

to evaluate the performance of the system and to introduce fur-

ther improvements.

The results shown in Section 5 illustrate that VAPS cannot

scale to infinity. It is expected, as waveguide are not perfect,

and dispersion is expected. Nevertheless, even in larger topolo-

gies the performance of VAPS is superior to the performance

of existing positioning algorithms. A future version of the al-

gorithm should include the necessary adjustments (e.g., addi-

tional anchor nodes and additional retransmissions) in order to

deal with the issues.

In this paper, we did not consider the case where one or

more objects are missing, In this case, when the topology in-

cludes “holes”, the propagation conditions would most certainly

change in some areas, and would probably lead to inaccurate

positioning. A future version of the algorithm should include a

contention mechanism, where the system is able to detect one

or several objects missing, and act accordingly in order to re-

duce the effects this particular situation might have on the per-

formance of the algorithm.

VAPS does not consider cases where objects are able to

move around and change positions. In these cases, positioning

error will be induced by objects moving out of the coordinate

where they were located initially, and propagating wrong coor-

dinates to adjacent nodes. We also plan to include such a feature

in a future version of the algorithm, by determining how often

the algorithm should be re-run.

Our algorithm was conceived to position objects with a vol-

ume, and as such, in its design we take into account the three-

dimensional case. However, in order to simplify the analyses,

and due to the limitations of the tools used for evaluating our

approach, the description of the algorithm, as well as its eval-

uation, only include the two-dimensional case. Nonetheless,

the extension of the algorithm to the three dimensional case is

straightforward.

7. Related work

Ever since the appearance of the Global Positioning System

(GPS) and the multi-billion dollar market it spawned, the po-

sitioning of objects has been a widely studied research subject.

The existing positioning methods can be divided into two cat-

egories: signal-based methods, where the distance between a

point and several reference points with known positions is esti-

mated or calculated and then, by trilateration or other methods,

the position of the point can be determined; and topology-based

methods, where a node position is determined by using network

topology metrics such as the hop-count between nodes.

Most of the current positioning techniques are based on

physical measurements of signal propagation. Some methods

use the RSSI in order to estimate the distance between a node

and a reference point. RSSI is a measurement of the power of a

received radio signal. Using this measurement and a propaga-

tion loss model, distance from a point in space to a radio source

can be easily estimated. The RADAR Location System [5]

uses RSSI information in order to locate and track a node in-

side a building. This system relies on an off-line data collection

phase, where three base stations will record RSSI information

from nodes in order to construct a map of the area. After this

phase, a node is able to infer its position by comparing its RSSI

measurements with the previously recorded data. Niculescu et

al. propose Ad hoc Positioning System (APS) [6], which is a

simplified version of GPS. To calculate its position, a node es-

timates its distance to a minimum of three landmarks by using

RSSI or by using a distance vector algorithm if the node is mul-

tiple hops away from the landmark. Hop-TERRAIN [7] uses a

similar approach to estimate the position of a node, which will

then be iteratively refined to improve accuracy. Niculescu et al.

propose in [29] a comprehensive survey on these techniques.

More recently, several research efforts have been oriented

towards the use of topology metrics in order to determine the

position of a node. GPS-Less [30] needs a limited number of

nodes with known positions and overlapping regions of cover-

age to serve as reference points that periodically transmit bea-

con signals containing their position. Each node will infer its

proximity to a set of reference points when the ratio of received

to sent beacons metric surpasses a certain threshold. A node

locates itself to the region where the coverage regions of these

reference points intersect. In No-GEO [13], Rao et al. pro-

pose a system where the nodes are able to find their positions

from the edge of the network towards the center of the network.

Two designated bootstrap nodes broadcast beacons to the en-

tire network. Nodes use their hop-count distances to one of the

bootstrap nodes to determine whether they are perimeter nodes.

Then every perimeter node broadcasts a message to the entire

network, allowing other nodes to compute a vector containing

their distance to all perimeter nodes. Using inter-perimeter dis-

tances, each node calculates normalized coordinates for both

itself and the perimeter nodes by running a relaxation algo-

rithm. With each iteration, a node will compute its position

based in the position of its neighbors. The resulting position of

a node is the average of its neighbors’. Caruso et al. propose

vCap [14], a three-dimensional coordinate system based only in

the hop-count distances between nodes. After network deploy-

ment, three nodes located on the edge of the network will be se-

lected as anchors. These anchors will broadcast, one at a time,

an election message to the entire network so that each node can

calculate its own hop-count distance to each anchor. These dis-

tances will be directly used as three-dimensional coordinates.

A similar approach, called GPS-Free-Free, is proposed by Ben-

badis et al [15]. GPS-Free-Free needs three landmark nodes.

Each landmark will flood one at a time a message containing

its identification and a hop-counter initially set to 0. Upon re-

ception of this message, each node will update its hop-count

distance to each one of the landmarks and it will retransmit
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the received message with the hop-counter incremented by one.

After the flooding phase, each node calculates both the position

of each landmark and its own position in a two-dimensional

space by trilateration. Another system proposed by Benbadis

et al., Millipede [16], places landmarks at the perimeter of a

network. Each node starts with a preprogrammed position and

it will update it by retrieving the positions of its neighbors and

calculating an average, through a relaxation algorithm similar

to the one proposed in [13].

In summary, all of these methods assume that objects are

just small points in space, without any dimensions whatsoever.

As a consequence, there is no consideration of the effects that

the volume and physical characteristics of an object and its spa-

tial arrangement may have on signal propagation. It is therefore

clear that, in certain deployment scenarios where signal prop-

agation follows a particular path loss model (cf., Section 2),

the limitations described in Section 3 apply to all of these ap-

proaches.

8. Conclusion

In this paper, we have advocated the fact that it is fundamen-

tal to consider spatial constraints in the design of positioning

algorithms. In our work, new challenges arise from the waveg-

uide/blocking effects induced by (metallic) containers in a har-

bor. These effects lead to a homogeneous signal propagation in

the area. As existing RSSI-based positioning methods found in

the literature do rely on signal attenuation, they lead to incorrect

distance estimations. Similarly, traditional hop-count-based so-

lutions also fail as all nodes in the same aisle are neighbors of

each other.

To respond to these specificities, we have analyzed pre-

cisely the signal propagation model in an area with metallic

objects. Using the result specifications of the environment, we

introduced VAPS, a volume-aware positioning system that con-

siders the volume and the physical characteristics of the con-

tainers when computing coordinates. VAPS takes advantage

of the particular characteristics of the environment and relies

on the definition of a number of discrete RSSI levels and their

translation into hop-count distances. Through simulations, we

observed that VAPS achieves an average position error of 0,

in scenarios where traditional approaches are unable to pro-

vide accurate positioning. Furthermore, by introducing features

such as restricting message retransmissions and a randomized

back-off procedure, the total number of transmitted messages is

greatly reduced when compared to existing approaches, which

implies lower costs both in terms of control overhead and en-

ergy.
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