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© Otto-von-Gueri
ke-Universität MagdeburgTiling a Pyramidal Poly
ube with DominoesOlivier BodiniLIRMM-UMR 5506, Université Montpellier II,161 rue Ada, 34392 Montpellier Cedex 5 - Fran
ee-mail: bodini�lirmm.frandDamien JametLIRMM-UMR 5506, Université Montpellier II,161 rue Ada, 34392 Montpellier Cedex 5 - Fran
ee-mail: jamet�lirmm.frABSTRACTThe notion of pyramidal poly
ubes, namely the piling-up of bri
ks of a non-in
reasingsize, generalizes in R
n the 
on
ept of trapezoidal polyominoes. In the present paper,we prove that n-dimensional dominoes 
an tile a pyramidal poly
ube if and only if thelatter is balan
ed, that is, if the number of white 
ubes is equal to the number of bla
kones for a 
hessboard-like 
oloration, generelizing the result of [BC92] when n = 2.Keywords: polyomino, tiling, domino.Introdu
tionThe problem of domino tiling is a rather 
lassi
al problem in the literature. It 
onsistsin de
iding whether a polyomino (a simply-
onne
ted �nite union of unit integersquares) is tilable by dominoes (a union of two edge-adja
ent squares), and possibly,in 
omputing su
h a tiling.In 1990, Thurston [Thu90℄, using Conway's groups, introdu
ed new important ideaswhi
h have provided a linear time algorithm to solve the problem of domino tiling.Sin
e then, many authors have generalized these 
on
epts. They have 
onsideredtilings with bars [KK92℄, domino tilings of polyominoes with holes [Thi03℄, enumer-ation on the stru
ture of the set of tilings [DMRR04℄, random generation of tilings[LRS01, Wil04℄. Meanwhile, Moore and Robson [MR01℄ and Beauquier, Nivat, Remilaand Robson [BNRR95℄ studied the NP-
ompleteness of several tiling problems.In 1992, Bougé and Cosnard [BC92℄ proved that a trapezoidal polyomino, that is,a piling-up of re
tangles of a non-in
reasing size, is tilable by dominoes if and only ifit is balan
ed (that is, the number of white squares is equal to the number of bla
kones for a 
hessboard-like 
oloration of Z

2).



2 The aim of this paper is to extend this theorem to pyramidal poly
ubes, namely anatural extension of trapezoidal polyomino to any dimension.Roughly speaking, a pyramidal poly
ube is a piling-up of bri
ks of a non-in
reasingsize (see Figure 1).
Figure 1: Left: A trapezoidal polyomino. Right: A 3-dimensional pyramidal poly
ube.To prove this result, we introdu
e a subset of the set of pyramidal poly
ubes, thatis, the well-unfoldable pyramidal poly
ubes. Roughly speaking, a pyramidal poly
ube

P is well-unfoldable if it 
ontains a Hamiltonian path w of its basis (its lower bri
k)allowing us to unfold P as a pyramidal polyomino Pw, whi
h is tilable if and only ifso is P [BC92℄. Moreover, any tiling of Pw provides in a 
onstru
tive way a tiling of
P . Finally, we show that every pyramidal poly
ube P 
ontains a well-unfoldable onewhi
h is tilable if and only if P is tilable.This paper is sket
hed as follows: in Se
tion 1, we introdu
e several basi
 notionsused in the present paper (unit 
ubes, poly
ubes, trapezoidal polyominoes and pyra-midal poly
ubes, dominos, tilability by dominoes. . . ) and we give a shorter proof ofL. Bougé and M. Cosnard's theorem [BC92℄, using a sub-
lass of trapezoidal polyomi-noes, namely the regular ones. Se
tion 2 deals with the pyramidal poly
ubes. In thisse
tion, we introdu
e the well-unfoldable pyramidal poly
ubes, and show that su
h apoly
ube is tilable if and only if it is balan
ed. Finally, we prove that, for the domino-tiling problem, ea
h pyramidal poly
ube 
an be supposed to be well-unfoldable. Todo this, we 
onsider redu
ed pyramidal poly
ubes, obtained by removing balan
edbri
ks from the boundary of pyramidal poly
ubes. We 
on
lude this se
tion by stat-ing the main result of the present paper, namely, that a pyramidal poly
ube is tilableby dominoes if and only if it is balan
ed.1. Basi
 notionsThe aim of this se
tion is to introdu
e the basi
 notions we use in the sequel of thisarti
le. Firstly, we de�ne the notions of unit 
ubes, polyominoes, dominoes and thenotion of tilability by dominoes. Se
ondly, we provide the grid Z

n with a 
hessboard-like 
oloration whi
h gives a ne
essary 
ondition for a polyomino to be tilable bydominoes. Finally, we de�ne the notion of pyramidal poly
ubes for any dimension
n, and give a short proof of L. Bougé and M. Cosnard's theorem, stating that atrapezoidal polyomino P , namely a pyramidal poly
ube in dimension 2, is tilable bydominoes if and only if it is balan
ed, that is, the number of white unit squares isequal to the number of bla
k ones in
luded in P .



3From now on, n denotes a natural integer stri
tly greater than 1.1.1. General notionsAssume {e1, . . . , en} to be the 
anoni
al basis of the R-ve
tor spa
e R
n. For anyve
tor x ∈ R

n, let us denote by xi ∈ R, its i-th 
omponent in the basis {e1, . . . , en}.A point of Z
n is 
alled a unit 
ube. If n = 2, a unit 
ube is also 
alled a unit square.The reason of this terminology 
omes from the fa
t that one usually represents the unit
ube x as the 
ube in R

n of edge 1 and 
entered at x, or with x as its lower vertex (i.e.with the lower 
oordinates). In the sequel of the present arti
le we indi�erently useboth representations. For instan
e, the Z
n-representation is more hepful for a graphtheoreti
al approa
h whereas the R

n-one is more helpful for a topologi
al approa
h.A poly
ube is a simply-
onne
ted (for the usual topology of R
n) �nite union of unit
ubes. In dimension 2, a poly
ube is also 
alled a polyomino.Two unit 
ubes x ∈ Z

n and y ∈ Z
n are said to be adja
ent if ‖x − y‖1 =∑n

i=1
|xi − yi| = 1. A union of two adja
ent unit 
ubes is 
alled a domino (seeFigure 2).

Figure 2: Left: A verti
al domino. � Right: An horizontal domino.A poly
ube P is said to be tilable by dominoes, or just tilable for short, if P is adisjoint union of dominoes (see Figure 3).
Figure 3: Left: A polyomino P . � Right: A domino-tiling of P .Let x and y be two unit 
ubes and let us assume that {x,y} is a domino. Then, itis 
lear that ‖x‖1 and ‖y‖1 do not have the same parity. Hen
e, a ne
essary 
onditionfor a poly
ube P to be tilable is to in
lude the same number of unit 
ubes with aneven norm as the number of unit 
ubes with an odd norm. For this reason, we provide

Z
n with a 
hessboard-like 
oloration depending on the parity of ‖x‖1: a unit 
ube
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x ∈ Z

n is said to be white (resp. bla
k) if ‖x‖1 is even (resp. odd). As mentionedabove, the unit 
ubes in
luded in a domino are of di�erent 
olors, and, if a poly
ube
P is tilable by dominoes, then the number of white 
ubes in
luded in P must beequal to the number of bla
k ones. If this property holds, the poly
ube P is said tobe balan
ed.Generally, the balan
e 
ondition is not su�
ient for a poly
ube to be tilable. SeeFigure 4 for a 
ounter-example.

Figure 4: An untilable balan
ed polyomino.In order to de�ne the pyramidal poly
ubes, let us introdu
e the notion of bri
k.Let x ∈ Z
n and d ∈ N

n. The (unit) bri
k B(x, d) is the poly
ube de�ned as follows:
B(x, d) =

n⋃

λ∈
Q

n
j=1

{0,...,dj−1}

{
x +

n∑

i=1

λiei

}
.The number dn is 
alled the height of the bri
k B(x, d). In dimension 2, a bri
k is ausual re
tangle of width d1 and height d2. In dimension 3, a bri
k is a re
tangularparallelepiped of depth d1, width d2 and height d3 (see Figure 5).

Figure 5: Left: a two-dimensional bri
k � Right: a three-dimensional bri
k.Let us now de�ne the notion of pyramidal poly
ubes. Roughly speaking, a pyra-midal poly
ube is a piling-up of bri
ks of a non-in
reasing size along the ve
tor en.More pre
isely, a poly
ube P is said to be a pyramidal poly
ube, and is denoted by
P = (B1, . . . , Bk), if there exists a �nite non-in
reasing sequen
e B1 ⊇ B2 ⊇ · · · ⊇ Bk,su
h that:

P =
k⋃

i=1



Bi +
i−1∑

j=0

hjen



,where h0 = 0 and hi denotes the height of the bri
k Bi, for i ∈ {1, . . . , k}. If n = 2, apyramidal poly
ube is also 
alled a trapezoidal polyomino (see Figure 6 and Figure 7).The bri
k B1 is 
alled the basis of the pyramidal poly
ube P = (B1, . . . , Bk). Fromnow on, we only 
onsider standard representations of pyramidal poly
ubes,namely the representation (B1, . . . , Bk) where ea
h bri
k is of height 1.
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Figure 6: Left: a trapezoidal polyomino. � Right: a 3-dimensional pyramidal poly
ube.

Figure 7: Left: a sequen
e of bri
ks of a non-in
reasing size � Right: the asso
iatedpyramidal poly
ube.1.2. Trapezoidal polyominoesBefore proving L. Bougé and M. Cosnard's theorem, let us �rst introdu
e a notationand a terminology for the spe
ial 
ase of trapezoidal polyominoes.Notation. � Sin
e, the tilability of a polyomino is invariant by an integer-ve
tortranslation, one 
an identify a trapezoidal polyomino P with the heights (h1, . . . , hl)of the 
olumns piled-up over the unit 
ubes of the basis (see Figure 8).
Figure 8: The trapezoidal polyomino whose height-representation is P = (1, 1, 3, 5, 4, 2, 2).



6 A parti
ular 
lass of trapezoidal polyominoes is the 
lass of regular ones. A trape-zoidal polyomino P = (h1, . . . , hk) is said to be regular if there exists i0 ∈ {1, . . . , k}su
h that P = (1, 2, . . . , i0 − 1, i0, i0 + 1, . . . , 2, 1) (see Figure 9). A �rst remark is
Figure 9: The regular trapezoidal polyomino whose height-representation is P =
(1, 2, 3, 4, 3, 2, 1).that a regular trapezoidal polyomino is not balan
ed. Indeed, the 
olumns with evenheight are balan
ed while the ones with odd height have always an ex
ess of the same
olor. We 
an now easily dedu
e that:Theorem 1 [BC92℄ A trapezoidal polyomino P is tilable by dominoes if and only ifit is balan
ed.Proof. We have already mentioned that the balan
e 
ondition is ne
essary. Con-versely, let us suppose that P is balan
ed. Then, P is not regular and, by de�nition
ontains at least one domino on its boundary (see Figure 10). By removing it from

Figure 10: Tiling a non-regular balan
ed trapezoidal polyomino.
P , we obtain an other balan
ed trapezoidal polyomino stri
tly in
luded in P . We
on
lude by indu
tion on the number of unit 
ubes of P . 22. The pyramidal poly
ubesIn this se
tion, we investigate the general 
ase of pyramidal poly
ubes. For 
larityissues, we give all the proofs for the 3-dimensional 
ase. The forth
omingmaterial extends in a straightforward way to any dimension.A �rst intuitive idea to tile a pyramidal poly
ube P with dominoes is to pro
eedby erosion, that is, by removing balan
ed bri
ks from the boundary of P with the
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onstraint to keep a pyramidal poly
ube. It is exa
tly what we did in the proof ofTheorem 1 in the two-dimensional 
ase. In fa
t, this method fails in the general 
ase(see Figure 11): we obtain a pyramidal poly
ube from whi
h we 
annot remove anybalan
ed bri
k from the boundary by keeping a pyramidal poly
ube. Su
h a pyramidalpoly
ube is said to be redu
ed. More pre
isely, a redu
ed pyramidal poly
ube is apyramidal poly
ube P , su
h that, for any balan
ed bri
k B interse
ting P , P \ B isnot a pyramidal poly
ube.
Figure 11: A tilable pyramidal poly
ube untilable by erosion.A quite unexpe
ted fa
t is that the n-dimensional tiling problem for pyramidalpoly
ubes 
an be redu
ed to a two-dimensional tiling problem for trapezoidal poly-ominoes. In fa
t, given a pyramidal poly
ube P , after having removed all the balan
edbri
ks we 
an from the boundary of P , we obtain a pyramidal poly
ube P1, whi
h istilable if and only if so is P . Moreover, P1 
an be asso
iated to a trapezoidal poly-omino P2 with the same balan
e. Finally, every tiling of P2 provides in a 
anoni
alway a tiling of P1, and then provides a tiling of P .In this se
tion, we �rst introdu
e the notion of well-unfoldable pyramidal poly
ubesand show that, su
h a poly
ube is tilable if and only if it is balan
ed. Next, weintrodu
e the strati�able pyramidal poly
ubes whi
h are shown to be unfoldable.Finally, we prove that every redu
ed pyramidal poly
ube is strati�able, and hen
e istilable if and only if it is balan
ed. By de�nition of redu
ed pyramidal poly
ubes, wededu
e that a pyramidal poly
ube is tilable if ad only if it is balan
ed.2.1. The well-unfoldable pyramidal poly
ubesThe aim of this se
tion is to show that su
h a pyramidal poly
ube in
ludes a parti
ularHamiltonian path in its basis, 
alled an Ariadne's thread, redu
ing the tiling problemto a tiling problem in two dimensions.Let us begin with giving several de�nitions. Let P be a poly
ube. The adja
en
ygraph of P is the bipartite graph GP whose verti
es are the unit 
ubes in
luded in Ppartitioned by their 
olor and whose edges are the adja
en
y relations between unit
ubes. With this point of view, a tiling of P by dominoes is equivalent to a perfe
tmat
hing of P (see Figure 12). Let P be a pyramidal poly
ube. The adja
en
y graphof its basis is 
alled the adja
en
y basis graph of P .In 3 dimensions, another way to de�ne pyramidal poly
ubes is to 
onsider them asa union of 
olumns piled-up over a plane. Let us formulate a similar point a view inthe any dimension 
ase. We denote by C(x, h) and we 
all 
olumn of height h ∈ N

⋆
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Figure 12: Left to right: a poly
ube � its adja
en
y graph � a perfe
t tiling.piled-up over the unit 
ube x ∈ Z

2, the following poly
ube:
C(x, h) =

h−1⋃

i=0

{x + (i − 1)en}.Let us noti
e that the 
olum of height 1 over the unit 
ube x is nothing but x itself.Hen
e, viewing the n-dimensional poly
ube as a union of 
olumns piled-up overan hyperplane, we 
an 
onsider a pyramidal poly
ube P = (B1, . . . , Bk) as a map
P̃ : B1 −→ N

⋆ mapping ea
h unit 
ube of B1 to the height of the 
olumn piled-upover it. Considering a standard representation of P = (B1, . . . , Bk), that is, ea
hbri
k is of height 1, an expli
it formula of P̃ is (see Figure 13):
P̃ : B1 −→ N

⋆

x 7→ max {j ∈ {1, . . . , k} | x ∈ Bj} .

PSfrag repla
ements 1

1

111

3 3

34

Figure 13: Left: a sequen
e of bri
ks of non-in
reasing size � Center: the asso
iatedpyramidal poly
ube. � Right: its height-representionLet P = (B1, . . . , Bk) be a pyramidal poly
ube. Let w = (w1, . . . , wm) be aHamiltonian path of the adja
en
y basis graph of P . Let hi ∈ N
⋆ be the height of the
olumns piled-up over the unit 
ube wi, i ∈ {1, . . . , m}. Then,

P =

m⋃

i=1

C(wi, hi).



9Let us 
onsider the polyomino Pw = (h1, . . . , hm) (in a height-representation), 
alledthe w-unfold of P (see Figure 14). Sin
e Pw is 
onne
ted, we easily dedu
e that Pw

Figure 14: Left to right: a pyramidal poly
ube � a Hamiltionian path of its adja
en
ybasis graph � the 
orresponding unfold.and P have the same balan
e. Moreover, a quite interesting fa
t is:Proposition 2 The adja
en
y graph of Pw is isomorphi
 to a partial graph of theadja
en
y graph of P . In parti
ular, if Pw is tilable then so is P .Proof. Roughly speaking we want to show that unfolding a pyramidal poly
ube doesnot 
reate any adja
en
y relation. Let Φ : P −→ Pw be the map de�ned by:
Φ : P −→ Pw

wi + jien 7→ ie1 + jie2,for i ∈ {1, . . . , m} and ji ∈ {0, . . . , hm − 1}. It is 
lear that Φ is one-to-one. Let
ie1 + je2 and i′e1 + j′e2 be two unit squares of Pw and let us assume them to beadja
ent, that is, |i′ − i| + |j′ − j| = 1.

• If |i′ − i| = 1, then j = j′. Sin
e wi and wi′ are adja
ent by de�nition of w, wededu
e that wi + jen and wi′ + j′en are adja
ent too.
• If |j′ − j| = 1, then i = i′ and wi + jen and wi′ + j′en are adja
ent.

2A parti
ular 
lass of pyramidal poly
ubes is the 
lass of the ones admitting a trape-zoidal unfold. Su
h a pyramidal poly
ube is said to be well-unfoldable. A Hamiltionianpath of the adja
en
y basis graph of a pyramidal poly
ube P providing a trapezoidalunfold is 
alled an Ariadne's thread of P . A dire
t 
onsequen
e of the previousproposition is:Corollary 3 A well-unfoldable pyramidal poly
ube is tilable by dominoes if and onlyif it is balan
ed.Proof. We have already seen that the balan
e 
ondition is ne
essary. Conversely, let
P be a well-unfoldable balan
ed pyramidal poly
ube, w be an Ariadne's thread of Pand Pw be the w-unfold of P . Then, Pw is balan
ed and is tilable from Theorem 1,and we 
on
lude that P is tilable by Proposition 2. 2Unfortunately, every pyramidal poly
ube is not ne
essarily well-unfoldable (seeFigure 15). It remains now to exhibit a non-empty set of well-unfoldable pyramidalpoly
ubes.
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Figure 15: A non well-unfoldable pyramidal poly
ube.2.2. The strati�able pyramidal poly
ubesRoughly speaking, a pyramidal poly
ube P = (B1, . . . , Bk) is said to be strati�able ifea
h bri
k Bi is a disjoint union of unbalan
ed bri
ks. In this se
tion, we show thatea
h strati�able pyramidal poly
ube is well-unfoldable and then, is tilable if and onlyif it is balan
ed.De�nition 1 (Strati�able pyramidal poly
ube) A pyramidal poly
ube P =

(B1, . . . , Bk) is said to be strati�able if there exist a �nite sequen
e (S1, . . . , Sm)of unbalan
ed bri
ks su
h that, for all j ∈ {1, . . . , m}, ⋃j

i=1
Si is a bri
k, and a �nitenon-in
reasing sequen
e (m1, . . . , mk) of {1, . . . , m} su
h that, for all j ∈ {1, . . . , k},⋃j

i=1
Si = Bj .

PSfrag repla
ements S1

S2S3

S4

S5Figure 16: Left to right: a pyramidal poly
ube � a strati�
ation su
h that S1 = B2and S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = B1.We state now the main result of this se
tion:Theorem 4 A strati�able pyramidal poly
ube is well-unfoldable.Proof. Let us �rst noti
e that a bri
kB(x, d) is balan
ed if and only if one of the di's iseven. Indeed, if all the di's are odd, then the number of unit 
ubes in
luded in B(x, d)is odd and B(x, d) 
annot be balan
ed. Conversely, let Dk =
∏k

j=1
{0, . . . , dj − 1},



11for k ∈ {1, 2, 3}. If one di's is even, for instan
e d3, then
B(x, d) =

⋃

λ∈D3

{x + λ1e1 + λ2e2 + λ3e3}

=
⋃

λ∈D2

d3−1⋃

λ3=0

{x + (λ1e1 + λ2e2) + λ3e3}.Moreover, for any 2-uple λ ∈ D2, the poly
ube ⋃d3−1

λ3=0
{x + (λ1e1 + λ2e2) + λ3e3} isbalan
ed sin
e d3 is even and the result follows.Se
ondly, by a similar de
omposition of a bri
k, we dedu
e that a balan
ed(resp. unbalan
ed) bri
k admits a Hamiltonian path linking any 
ouple of endpointsof an even edge (resp. linking two diametri
ally opposite unit 
ubes).Let (S1, . . . Sm) be a strati�
ation of P and let (m1, . . . , mk) be the 
orrespondingnon-in
reasing sequen
e. Let Tj =

⋃j

i=1
Si. Then, for all j ∈ {1, . . . , k}, Tmk

= Bkand Tj is balan
ed if and only if j is even.
• Assume that mk is even. Then Bk admits a Hamiltonian path linking twoendpoints of an even edge of Bk. Sin
e Smk+1 is unbalan
ed, it is adja
ent to

Bk by an odd edge (see Figure 17). Then, we extend the Hamiltonian path of Bk

Figure 17: Left to right: adjoining an unbalan
ed bri
k to a balan
ed one.to an Ariadne's thread of (Bk, Bk ∪ Smk+1) linking two diametri
ally oppositeunit 
ubes of Bk ∪ Smk+1.
• If mk is odd, then Bk admits a Hamiltonian path linking two diametri
allyopposite unit 
ubes of Bk and, whatever the 
ommon edge between Smk+1and Bk, we 
an extend the Hamiltonian path of Bk to an Ariadne's thread of

(Bk, Bk ∪Smk+1) linking the endpoints of one of its even edges (see Figure 18).We 
on
lude by iteration on m. 2Unfortunately, every pyramidal poly
ube is not strati�able (see Figure 19).
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Figure 18: Left to right: adjoining two unbalan
ed bri
ks.

Figure 19: An unstrati�able pyramidal poly
ube.2.3. The redu
ed pyramidal poly
ubesIn the present se
tion we show that every pyramidal poly
ube 
ontains a strati�ablepyramidal poly
ube, also 
alled redu
ed pyramidal poly
ube. The main signi�
an
eof a redu
ed pyramidal poly
ubes is that it is tilable by dominoes if and only if theoriginal pyramidal poly
ube from whi
h it is 
omputed is tilable by dominoes.Let us now re
all the notion of redu
ed pyramidal poly
ube:De�nition 2 (Redu
ed pyramidal poly
ube) A pyramidal poly
ube P is saidto be redu
ed if for any balan
ed bri
k B interse
ting P , P \ B is not a pyramidalpoly
ube.Let us now prove the main result of this se
tion:Theorem 5 A redu
ed pyramidal poly
ube is strati�able.Proof. Similarly as before, we only treat the three-dimensional 
ase. Let P =
(B1, . . . , Bk) be a redu
ed pyramidal poly
ube. If k = 1, then P is 
learly strati�able.Let us suppose that any redu
ed pyramidal poly
ube with height k− 1 is strati�able.Sin
e P = (B1, . . . , Bk) is supposed to be redu
ed, then so is P ′ = (R2, . . . , Rk), andhen
e, P ′ is strati�able.Several 
ases 
an o

ur depending on B1 and B2. First let usnoti
e that B1 has at most one even edge (see Figure 20). We dedu
e that the 
on�g-urations of B2 in B1 
an only be the following ones (see Figure 21), and we see in ea
h
ase how to dedu
e a strati�
ation of P from a strati�
ation of (B2, . . . , Bk). Indeed,it is su�
ient to see that B1 is a union of B2 and unbalan
ed bri
k (S1, . . . , Sm) with
B2 ∪ S1 ∪ · · · ∪ Sj , for all j ≤ m is a bri
k, whi
h is immediate (see Figure 21). 2A 
onsequen
e of this theorem is:



13
Figure 20: If B1 has two even edges, then P is not redu
ed.

Figure 21: The di�erent possible 
on�gurations for B1 and B2.Corollary 6 Let P be a pyramidal poly
ube and P ′ be a redu
ed pyramidal poly
ubeof P , 
omputed by removing balan
ed bri
ks from the boundary of P . Then P is tilableby dominoes if and only if so is P ′.Proof. By 
onstru
tion, it is 
lear that P is tilable if so is P ′. Conversely, let ussuppose that P is tilable. Then P is balan
ed and P ′ too. From Theorem 5, wededu
e that P ′ is well-unfoldable and by Corollary 3, we 
on
lude that P ′ is tilableby dominoes. 2We 
an now state the main result of this paper:Theorem 7 A pyramidal poly
ube is tilable by dominoes if and only if it is balan
ed.Proof. The balan
e 
ondition is 
learly ne
essary. Conversely, assume P to be abalan
ed pyramidal poly
ube and P ′ be a redu
ed pyramidal poly
ube 
omputedfrom P by removing balan
ed bri
ks from the boundary of P . Then, P ′ is balan
edand is tilable by dominoes by Theorems 5 and 4 and Corollary 3. We 
on
lude withCorollary 6. 23. Con
lusionIn the present paper, we have generalized to any dimension a result due to L. Bougéand M. Cosnard [BC92℄, stating that a trapezoidal polyomino is tilable by dominoes ifand only if it is balan
ed, 
onsidering the pyramidal poly
ubes as a natural extension



14of the trapezoidal polyominoes. A �rst tra
k to be investigated 
ould be to exhibit ashorter proof of this result as done for the two-dimensional 
ase. Se
ondly, it 
ouldbe interested to generalize this kind approa
h (using a parti
ular Hamiltionian path)to more general tiles (bars of length 3, re
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