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THE DECREASE VALUE THEOREM WITH

AN APPLICATION TO PERMUTATION STATISTICS

Dominique Foata and Guo-Niu Han

Dedicated to Dennis Stanton,
on the occasion of his sixtieth birthday.

ABSTRACT. The decrease value theorem is restated and given a special-
ization more adapted to Permutation Statistic Calculus. As an applica-
tion, the computation of a factorial multivariable generating function for
the wreath product of the cyclic group of finite order by the symmetric
group is given in full detail.

1. Introduction

In one of our recent papers [FH07] we have derived the decrease value

theorem, that makes the calculation of a fundamental multivariable statis-

tical distribution on words possible. The multivariable statistic in question
involves the basic notions of decrease and increase, whose definitions are
now recalled, together with the classical descent and rise.

Let [0, r]∗ be the set of all words, whose letters belong to the finite
alphabet [0, r] = {0, 1, . . . , r} and let v = y1y2 · · · yn be such a word. An
integer i ∈ [1, n] is said to be a descent (or descent place) of v if yi > yi+1;
it is a decrease of v if yi = yi+1 = · · · = yj > yj+1 for some j such
that i ≤ j ≤ n − 1. The letter yi is said to be a descent value and a
decrease value of v, respectively. The set of all decreases (resp. descents)
is denoted by DEC(v) (resp. DES(v)). Each descent is a decrease, so that
DES(v) ⊂ DEC(v).

In parallel with the notion of decrease, an integer i ∈ [1, n] is said to
be an increase (resp. a rise) of v if yi = yi+1 = · · · = yj < yj+1 for some j
such that i ≤ j ≤ n (resp. if yi < yi+1). By convention, yn+1 = +∞. The
letter yi is said to be an increase value (resp. a rise value) of v. Thus, the
rightmost letter yn is always a rise and also an increase value. The set of
all increases (resp. rises) of v is denoted by INC(v) (resp. RISE(v)). Each
rise is an increase, so that RISE(v) ⊂ INC(v).
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Furthermore, a position i (1 ≤ i ≤ n) is said to be a record if yj ≤ yi
for all j such that 1 ≤ j ≤ i− 1. The letter yi is said to be a record value.
The set of all records of v is denoted by REC(v).

The multivariable statistic is now defined by means of six sequences of
commuting variables (Xi), (Yi), (Zi), (Ti), (Y

′
i ), (T

′
i ) (i = 0, 1, 2, . . . ): for

each word v = y1y2 . . . yn from [0, r]∗ the weight ψ(v) is defined to be

(1.1) ψ(v) :=
∏

i∈DES

Xyi

∏

i∈RISE\REC

Yyi

∏

i∈DEC\DES

Zyi

×
∏

i∈(INC\RISE)\REC

Tyi

∏

i∈RISE∩REC

Y ′
yi

∏

i∈(INC\RISE)∩REC

T ′
yi
,

where the argument “(v)” has not been written for typographic reasons.
For example, i ∈ RISE \REC stands for i ∈ RISE(v) \ REC(v).

It is important to note that for each word v = y1y2 · · · yn every

integer i ∈ [1, n] belongs to one and only one of the sets DES(v),
(RISE \REC)(v), (DEC \DES)(v), ((INC \RISE) \ REC)(v), (RISE∩REC)(v),
((INC \RISE) ∩ REC)(v).

Example. For the word v = 3 2 4 4 5 5 5 3 1 1 1 4 1 3 5 the sets DES, DEC,
INC, RISE, REC of v are indicated by bullets.

w = 3 2 4 4 5 5 5 3 1 1 1 4 1 3 5
DES = • • • •
DEC = • • • • • •
RISE = • • • • • •
INC = • • • • • • • • •
REC = • • • • • • •

We have ψ(v) = X3Y2T
′
4Y

′
4Z5Z5X5X3T1T1Y1X4Y1Y3Y

′
5 .

Now, let C be the (r + 1)× (r + 1) matrix

(1.2) C =







































0
X1

1− Z1

X2

1− Z2
· · ·

Xr−1

1− Zr−1

Xr

1− Zr
Y0

1− T0
0

X2

1− Z2
· · ·

Xr−1

1− Zr−1

Xr

1− Zr
Y0

1− T0

Y1
1− T1

0 · · ·
Xr−1

1− Zr−1

Xr

1− Zr

...
...

...
. . .

...
...

Y0
1− T0

Y1
1− T1

Y2
1− T2

· · · 0
Xr

1− Zr
Y0

1− T0

Y1
1− T1

Y2
1− T2

· · ·
Yr−1

1− Tr−1
0







































.
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THE DECREASE VALUE THEOREM

Theorem 1.1 (Decrease Value Theorem). The generating function for
the set [0, r]∗ by the weight ψ is given by

(1.3)
∑

w∈[0,r]∗

ψ(w) =

∏

0≤j≤r

(

1 +
Y ′
j

1− T ′
j

)

det(I − C)
,

where I is the identity matrix of order (r + 1).

The proof of the Decrease Value Theorem is fully given in our previous
paper [FH07], together with its two equivalent formulations:

∑

w∈[0,r]∗

ψ(w) =

∏

0≤j≤r

1− Zj

1− Zj +Xj

∏

0≤j≤r

1− T ′
j

1− T ′
j
+ Y ′

j

1−
∑

0≤k≤r

∏

0≤j≤k−1

1− Zj

1− Zj +Xj

∏

0≤j≤k−1

1− Tj

1− Tj + Yj

Xk

1− Zk +Xk

,(1.4)

∑

w∈[0,r]∗

ψ(w) =

∏

1≤j≤r

1− Zj

1− Zj +Xj

∏

0≤j≤r

1− T ′
j

1− T ′
j
+ Y ′

j

1−
∑

1≤k≤r

∏

1≤j≤k−1

1− Zj

1− Zj +Xj

∏

0≤j≤k−1

1− Tj

1− Tj + Yj

Xk

1− Zk +Xk

.(1.5)

There is a specialization of (1.5) that deserves a special attention,
which is the following. For convenience, introduce three sequences of
commuting variables (ξi), (ηi), (ζi) (i = 0, 1, 2, . . . ) and make the following
substitutions:

Xi ← ξi, Zi ← ξi, Yi ← ηi, Ti ← ηi, Y
′
i ← ζi, T

′
i ← ζi, (i = 0, 1, 2, . . . ).

The new weight ψ′(v) attached to each word v = y1y2 · · · yn is then

(1.6) ψ′(v) =
∏

i∈DEC(v)

ξi
∏

i∈(INC\REC)(v)

ηi
∏

i∈(INC∩REC)(v)

ζi,
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and identity (1.5) becomes:

(1.7)
∑

v∈[0,r]∗

ψ′(v) =

∏

1≤j≤r

(1− ξj)

∏

0≤j≤r

(1− ζj)

1−
∑

1≤k≤r

∏

1≤j≤k−1

(1− ξj)

∏

0≤j≤k−1

(1− ηj)
ξk

.

The further specializations of (1.6) and (1.7) require the following
notations. For each word v = y1y2 · · · yn let λv designate its length

(λv = n) and tot v = y1 + y2 + · · ·+ yn the sum of its letters. Next, given
a positive integer l, let decl v be the number of letters of v, which are
decrease values and multiple of l; finally, for i = 0, 1, . . . , l− 1 let |v|imod l

denote the number of letters of v congruent to i mod l and inreci v the
number of letters of v, congruent to i mod l, which are also increase and

record values.
Now, let u, s, Yi, Zi (i = 0, 1, 2, . . . ) be a new set of variables and

let γ denote the homomorphism defined by the following substitutions of
variables:

(1.8)

ξj ←

{

uqjslZ0, if j ≡ 0mod l;
uqjsiZi, if j ≡ imod l and 1 ≤ i ≤ l − 1;

ηj ← uqjsiZi, if j ≡ imod l and 0 ≤ i ≤ l − 1;

ζj ← uqjsiYiZi, if j ≡ imod l and 0 ≤ i ≤ l − 1.

It follows from (1.6) and (1.8) that

(1.9) γ ψ′(v) = uλvqtot vsl decl v
∏

0≤i≤l−1

(siZi)
|v|imod lY inreci v

i .

For each r ≥ 0 consider the following multivariable generating function
for the set [0, r]∗:

(1.10) Fr(u; q, s, (Yi), (Zi))

:=
∑

v∈[0,r]∗

uλvqtot vsl decl v
∏

0≤i≤l−1

(siZi)
|v|imod lY inreci v

i .

Using the traditional notations for the q-ascending factorials (x; q)n = 1
if n = 0 and (x; q)n = (1 − x)(1 − qx) · · · (1 − qn−1x) if n ≥ 1, the first
goal of the paper is to show that Fr(u; q, s, (Yi), (Zi)) can be expressed as
an explicit hypergeometric series in the variable u, as stated in the next
theorem, where it is assumed that Zl ≡ Z0.
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THE DECREASE VALUE THEOREM

Theorem 1.2. For each r ≥ 0 the following evaluation holds:

(1.11) Fr(u; q, s, (Yi), (Zi)) =

∏

1≤i≤l

(uqisiZi; q
l)⌊(r−i)/l⌋+1

∏

0≤i≤l−1

(uqisiYiZi; ql)⌊(r−i)/l⌋+1
Z0(1− q

lsl)

×
(

Z0 − Z0q
lsl +

l
∑

i=1

qisiZi −
l

∑

i=1

qisiZi

(uqlslZ0; q
l)⌊(r−i)/l⌋+1

(uZ0; ql)⌊(r−i)/l⌋+1

)−1

.

The proof of Theorem 1.2 is given in Section 2. It is based on the
decrease value theorem and makes use of the traditional techniques of q-
telescoping. The above identity on word generating series is next used to
show that the infinite series

∑

r≥0 t
rFr(u; q, s, (Yi), (Zi)) can be expressed

as a factorial series
∑

n≥0An(s, t, q, (Yi), (Zi)) u
n/(tl; ql)n+1, where each

coefficient An(s, t, q, (Yi), (Zi)) is a generating polynomial for an algebraic
structure by a well-defined multivariable statistic.

This algebraic structure is the following. Let l be a positive integer
and consider the wreath product Cl ≀Sn of the cyclic group Cl of order l
by the symmetric group Sn of order n (see, e.g., [RR06] for a complete
description). The elements of Cl ≀Sn may be viewed as ordered pairs (w, ǫ),
where w = x1x2 · · ·xn is a permutation of 12 · · ·n and ǫ = ǫ1ǫ2 · · · ǫn a
word of length n, whose letters belong to {0, 1, . . . , l− 1}. Finally, Cl ≀Sn

is equipped with the total order “<” defined by:

(j, i) < (j′, i′) if and only if either i > i,′ or i = i′ and j < j′.

For each argument A let χ(A) = 1 or 0, depending on whether A is true
or false and let |ǫ|i denote the number of letters equal to i in ǫ, so that
1 · |ǫ|1 +2 · |ǫ|2 + · · ·+ (l− 1) · |ǫ|l−1 = tot ǫ. The statistics associated with
(w, ǫ) are the following:

exc(w, ǫ) := #{j : 1 ≤ j ≤ n, xj > j, ǫj = 0};

fexc(w, ǫ) := l · exc(w, ǫ) + tot ǫ;

des(w, ǫ) := #{j : 1 ≤ j ≤ n− 1, (xj , ǫj) > (xj+1, ǫj+1)};

fdes(w, ǫ) := l · des(w, ǫ) + ǫ1;

maj(w, ǫ) :=
∑

1≤j≤n−1

j χ
(

(xj , ǫj) > (xj+1, ǫj+1)
)

;

fmaj(w, ǫ) := l ·maj(w, ǫ) + tot ǫ;

fixi(w, ǫ) := #{j : 1 ≤ j ≤ n, (xj , ǫj) = (j, i)} (0 ≤ i ≤ l − 1).

For each n ≥ 0 consider the generating polynomial for Cl ≀Sn:

(1.12) Wn(s, t, q, (Yi), (Zi))

:=
∑

(w,ǫ)∈Cl≀Sn

sfexc(w,ǫ)tfdes(w,ǫ)qfmaj(w,ǫ)
∏

0≤i≤l−1

Z
|ǫ|i
i Y

fixi(w,ǫ)
i .

5
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Theorem 1.3. Let Fr(u; q, s, (Yi), (Zi)) be given by (1.11). Then, the
following identity holds

(1.13)
∑

n≥0

(1 + t+ · · ·+ tl−1)Wn(s, t, q, (Yi), (Zi))
un

(tl; ql)n+1

=
∑

r≥0

tr Fr(u; q, s, (Yi), (Zi)).

The proof of Theorem 1.3 is made in two steps. First, the left-hand side
of (1.13) is shown to be equal to the generating function for the so-called
wreathed permutations, expressed as a series

∑

tr Gr(u; q, s, (Yi), (Zi)).
This is the content of Section 3. Second, each coefficient of tr in the above
series is shown to be equal to the generating series Fr(u; q, s, (Yi), (Zi)),
given in (1.10). This is accomplished, in Section 4, by means of a bijection,
whose construction is directly inspired by the classical standardization

procedure. Finally, we derive several specializations of Theorem 1.3, in
particular, the following theorem, which extends MacMahon’s classical
result of the equidistribution of exceedances and descents on permutations
(see [Lo83, Chap. 10]).

Theorem 1.4. The two statistics “fdes” and “fexc” are equidistributed

over Cl ≀Sn. Let W
(l)
n,k denote the number of elements (w, ǫ) from Cl ≀ Sn

such that fdes(w, ǫ) = k. Then, the following recurrence formula holds

(1.14) W
(l)
n,k = (k + 1)W

(l)
n−1,k +W

(l)
n−1,k−1

+ · · ·+W
(l)
n−1,k−(l−1) + (ln− k)W

(l)
n−1,k−l

for n ≥ 2 and 0 ≤ k ≤ nl−1 and the initial conditions:W
(l)
0,0 = 1,W

(l)
0,k = 0

for k 6= 0; W
(l)
1,k = 1 for k = 0, 1, . . . , l − 1 and 0 for any other value of k.

2. Proof of Theorem 1.2

To obtain the right-hand side of (1.11) it suffices to calculate the image
under γ of the right-hand side of (1.7). First, remembering that Zl ≡ Z0,

γ
∏

1≤j≤r

(1− ξj) = γ
l
∏

i=1

⌊(r−i)/l⌋
∏

j=0
(1− ξjl+i)

= γ
l−1
∏

i=1

⌊(r−i)/l⌋
∏

j=0

(1− ξjl+i)×
⌊(r−l)/l⌋

∏

j=0

(1− ξjl+l)

=
l−1
∏

i=1

⌊(r−i)/l⌋
∏

j=0

(1− uqjl+isiZi)×
⌊(r−l)/l⌋

∏

j=0

(1− uqjl+lslZl)
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=
l
∏

i=1

⌊(r−i)/l⌋
∏

j=0

(1− uqisiZi(q
l)j)

=
l
∏

i=1

(uqisiZi; q
l)⌊(r−i)/l⌋+1.

In the same manner,

γ
∏

0≤j≤r

(1− ζj) =
l−1
∏

i=0
(uqisiYiZi; q

l)⌊(r−i)/l⌋+1;

γ
∏

1≤j≤k−1

(1− ξj) =
l
∏

i=1

(uqisiZi; q
l)⌊(k−1−i)/l⌋+1;

γ
∏

0≤j≤k−1

(1− ηj) =
l−1
∏

i=0
(uqisiZi; q

l)⌊(k−1−i)/l⌋+1;

so that the image of (1.7) under γ becomes

(2.1)
∑

v∈[0,r]∗

γψ′(v) =

l
∏

i=1

(uqisiZi; q
l)⌊(r−i)/l⌋+1

l−1
∏

i=0
(uqisiYiZi; ql)⌊(r−i)/l⌋+1

× (1− S)−1,

where

S =
∑

1≤k≤r

(uqlslZ0; q
l)⌊(k−1)/l⌋

(uZ0; ql)⌊(k−1)/l⌋+1
γ(ξk),

which can be rewritten:

S =
l

∑

i=1

⌊(r−i)/l⌋
∑

j=0

(uqlslZ0; q
l)j

(uZ0; ql)j+1
uqljqisiZi.

Introduce

G(m) =
∑

0≤j≤m

(uqlslZ0; q
l)j

(uZ0; ql)j+1
uqlj ,

so that

S =

l
∑

i=1

qisiZiG(⌊(r − i)/l⌋).

As
(uqlslZ0; q

l)j+1

(uZ0; ql)j+1
−

(uqlslZ0; q
l)j

(uZ0; ql)j
=

(uqlslZ0; q
l)j

(uZ0; ql)j+1
uqlj Z0(1 − q

lsl), we

have:

G(m) =
1

Z0(1− qlsl)

((uqlslZ0; q
l)m+1

(uZ0; ql)m+1
− 1

)

,

and then

S =
l

∑

i=1

qisiZi

Z0(1− qlsl)

( (uqlslZ0; q
l)⌊(r−i)/l⌋+1

(uZ0; ql)⌊(r−i)/l⌋+1
− 1

)

.

We obtain the righthand side of (1.11) by substituting the above S into
(2.1).
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3. Wreathed permutations

The generating polynomial Wn(s, t, q, (Yi), (Zi)) for the group Cl ≀Sn

has been defined in (1.12). Recall the notation for the q-binomial coefficient
[

n
k

]

q
:= (q; q)n/((q; q)k (q; q)n−k) for 0 ≤ k ≤ n and the classical identities

1

(t; q)n+1
=

∑

r≥0

[

n+ r

r

]

q

tr;

[

n+ r

r

]

q

=
∑

b∈NIWn(r)

qtot b;

where NIWn(r) (resp. NIWn) denotes the set of all words b = b1b2 · · · bn of
length n, whose letters are nonnegative integers satisfying r ≥ b1 ≥ b2 ≥
· · · bn ≥ 0 (resp. b1 ≥ b2 ≥ · · · bn ≥ 0) (see [An76, Chap. 3]). Using those
two identities we have:

1 + t+ · · ·+ tl−1

(tl; ql)n+1
=

∑

r′≥0

(tlr
′

+ tlr
′+1 + · · ·+ tlr

′+l−1)

[

n+ r′

r′

]

ql

=
∑

r≥0

tr
[

n+ ⌊r/l⌋

⌊r/l⌋

]

ql

=
∑

r≥0

tr
∑

b∈NIWn(⌊r/l⌋)

ql tot b

=
∑

r≥0

tr
∑

b∈NIWn,
lb1≤r

ql tot b.

Hence,

(3.1)
1 + t+ · · ·+ tl−1

(tl; ql)n+1
Wn(s, t, q, (Yi), (Zi))

=
∑

r≥0

tr
∑

b∈NIWn,
lb1≤r

ql tot b
∑

(w,ǫ)∈Cl≀Sn

sfexc(w,ǫ)tfdes(w,ǫ)qfmaj(w,ǫ)
∏

0≤i≤l−1

Y
fixi(w,ǫ)
i Z

|ǫ|i
i

=
∑

r≥0

tr
∑

b∈NIWn, (w,ǫ)∈Cl≀Sn

lb1+fdes(w,ǫ)≤r

sfexc(w,ǫ)ql tot b+fmaj(w,ǫ)
∏

0≤i≤l−1

Y
fixi(w,ǫ)
i Z

|ǫ|i
i .

For each element (w, ǫ) ∈ Cl ≀Sn form the word z = z1z2 · · · zn, where zj
is defined to be the number of k such that j ≤ k ≤ n − 1 and (xk, ǫk) >
(xk+1, ǫk+1) with respect to the order imposed on Cl≀Sn. In other words, zj
is the number of descents in the right factor (xj , ǫj)(xj+1, ǫj+1) · · · (xn, ǫn).
The next proposition is easy to verify.

Proposition 3.1. We have: des(w, ǫ) = z1, maj(w, ǫ) = tot z.

Now, let b = b1b2 · · · bn ∈ NIWn and (w, ǫ) = (x1, ǫ1)(x2, ǫ2) · · · (xn, ǫn)∈
Cl ≀Sn be given. We define the word c = c1c2 · · · cn by

(3.2) cj := l(bj + zj) + ǫj (1 ≤ j ≤ n).

8



THE DECREASE VALUE THEOREM

As both words b and z are monotonic nonincreasing, we have (bj + zj) ≥
(bj+1+zj+1) (1 ≤ j ≤ n−1). If the inequality is strict, then cj > cj+1 since
0 ≤ ǫj+1 ≤ l−1. If bj+zj = bj+1+zj+1, then zj = zj+1 and, consequently,
(xj, ǫj) < (xj+1, ǫj+1), so that ǫj ≥ ǫj+1. Therefore, cj ≥ cj+1. The word c
is then monotonic nonincreasing. We further have the following properties:

(i) cj = cj+1 ⇒ (xj , ǫj) < (xj+1, ǫj+1);
(ii) cj ≡ ǫj (mod l);
(iii) c1 = l b1 + fdes(w, ǫ);
(iv) tot c = l tot b+ fmaj(w, ǫ).

Note that (iii) and (iv) are immediate consequences of Proposition 3.1 and
the definition of c.

A triple (c, w, ǫ) such that (w, ǫ) = (x1, ǫ1)(x2, ǫ2) · · · (xn, ǫn)∈ Cl ≀Sn

and c = c1c2 · · · cn ∈ NIWn and such that properties (i) and (ii) hold
is called a wreathed permutation of order n. The set of all wreathed
permutations (c, w, ǫ) of order n is denoted by WPn and the subset of
WPn of all (c, w, ǫ) such that c1 ≤ r by WPn(r).

It follows from (3.2) that, for each r ≥ 0 the mapping

(b, w, ǫ) 7→ (c, w, ǫ)

provides a bijection of the set of all triples (b, w, ǫ) such that b ∈ NIWn,
(w, ǫ) ∈ Cl ≀Sn and l b1 + fdes(w, ǫ) ≤ r onto WPn(r), having properties
(iii) and (iv).

By (3.1)

1 + t+ · · ·+ tl−1

(tl; ql)n+1
Wn(s, t, q, (Yi), (Zi))

=
∑

r≥0

tr
∑

(c,w,ǫ)∈WPn(r)

sfexc(w,ǫ)qtot c
∏

0≤i≤l−1

Y
fixi(w,ǫ)
i Z

|ǫ|i
i ,

so that, if we let

(3.3) Gr(u; s, q, (Yi), (Zi)) :=
∑

(c,w,ǫ)∈WP(r)

uλwsfexc(w,ǫ)qtot c
∏

0≤i≤l−1

Y
fixi(w,ǫ)
i Z

|ǫ|i
i ,

we have the identity:

(3.4)
∑

n≥0

(1 + t+ · · ·+ tl−1)Wn(s, t, q, (Yi), (Zi))
un

(tl; ql)n+1

=
∑

r≥0

trGr(u; s, q, (Yi), (Zi)).

9
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Example. With l = 3 the monotonic nonincreasing word c is calculated
from the triple (b, w, ǫ):

Id = 1 2 3 4 5 6 7 8 9 10
b = 5 5 4 2 2 2 0 0 0 0
w = 1 8 7 4 10 2 6 9 5 3
ǫ = 0 0 1 1 1 0 2 2 1 0
z = 3 3 2 1 1 1 0 0 0 0
c = 24 24 19 10 10 9 2 2 1 0

Note that

des(w, ǫ) = 3 = z1; maj(w, ǫ) = 2 + 3 + 6 = 11;

tot b = 20; tot ǫ = 8;

fdes(w, ǫ) = 3 · des(w, ǫ) + ǫ1 = 9;

24 = c1 = 3 · b1 + fdes(w, ǫ) = 3 · 5 + 9;

fmaj(w, ǫ) = 3 ·maj(w, ǫ) + tot ǫ = 3 · 11 + 8 = 41;

101 = tot c = 3 · tot b+ fmaj(w, ǫ) = 3 · 20 + 41.

4. Standardization

By comparison with (1.13) we see that Theorem 1.3 is proved if we show
that Fr(u; s, q, (Yi), (Zi)), given by (1.10), is equal to Gr(u; s, q, (Yi), (Zi)),
given by (3.3), for all r ≥ 0, that is, if we prove

∑

v∈[0,r]∗

uλvqtot vsl decl v
∏

0≤i≤l−1

(siZi)
|v|imod lY inreci v

i

=
∑

(c,w,ǫ)∈WP(r)

uλwsfexc(w,ǫ)qtot c
∏

0≤i≤l−1

Y
fixi(w,ǫ)
i Z

|ǫ|i
i .

To do this, it suffices to construct a bijection

v 7→ (c, w, ǫ)

of [0, r]n (the set of all words of length n with letters from the alphabet
[0, r]) onto WPn(r) having the properties:

(i) tot v = tot c;
(ii) decl v = exc(w, ǫ);
(iii) |v|imod l = |ǫ|i for i = 0, 1, . . . , l − 1;
(iv) inreci v = fixi(w, ǫ) for i = 0, 1, . . . , l − 1.

For such a bijection the word c is to be the monotonic nonincreasing
rearrangement of v, the permutation w an adequate labelling from 1 to n
of the n letters of v, and ǫ a word whose letters are the residues of the

10
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letters of v mod l. Such a bijection appears to be a standardization of
each word by a certain element from Cl ≀ Sn. Earlier standardizations
by the symmetric group Sn (resp. the hyperoctahedral group Bn) have
been constructed by Gessel and Reutenauer [GR93] (resp. in [FH09]). The
procedure we now develop proceeds from the same principle.

Recall that a nonempty word v = y1y2 · · · yn is a Lyndon word, if either
n = 1, or n ≥ 2 and, with respect to the lexicographic order, the inequality
y1y2 · · · yn > yiyi+1 · · · yny1 · · · yi−1 holds for every i such that 2 ≤ i ≤ n.
Let v, v′ be two nonempty primitive words (none of them can be written
as va0 for a ≥ 2 and some word v0). We write v � v′ if and only if
va ≤ v′a with respect to the lexicographic order for an integer a large
enough. As shown for instance in [Lo83, Theorem 5.1.5] (also see [Ch58],
[Sch65]) each nonempty word v can be written uniquely as a product
l1l2 · · · lk, called its Lyndon factorization, where each li is a Lyndon word
and l1 � l2 � · · · � lk. In the example below the Lyndon factorization
of v has been materialized by vertical bars.

Now, start with the Lyndon factorization l1l2 · · · lk of a word v from
[0, r]n. With such a v associate a permutation σ from Sn in the following
manner: each letter yi of v belongs to a Lyndon word factor lh, so that
lh = v′yiv

′′. Then, form the infinite word A(yi) := yiv
′′v′yiv

′′v′ · · · If yi
and yi′ are two letters of v, say that yi precedes yi′ if A(yi) > A(yi′)
for the lexicographic order, or if A(yi) = A(yi′) and yi is to the right
of yi′ in the word v. This precedence determines a total order on the n
letters of v. The letter that precedes all the other ones is given label 1,
the next one label 2, and so on. When each letter yi of v is replaced by
its label, say, lab(yi), each Lyndon word factor lj becomes a new word τj .
The essential property is that each τj starts with its minimum element
and those minimum elements read from left to right are in decreasing

order. We can then interpret each τj as the cycle of a permutation and the
(juxtaposition) product τ1τ2 · · · τk as the (functional) product of disjoint
cycles. This product, said to be written in canonical form, defines a unique
permutation σ from Sn ([Lo83], § 10.2).

For example,

v = 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6
σ = 16 | 12 18 22 21 | 10 | 7 | 4 8 17 20 11 15 9 | 2 5 13 19 3 6 14 | 1

The labels on the second row are obtained as follows: read the letters
equal to 6 (the maximal letter) from left to right and form their as-
sociated infinite words: 64213236421 · · ·, 66316626631 · · ·, 6316621131 · · ·,
662663166 · · ·, 62663166 · · ·, 66666 · · · Those letters 6 read from left to
right will be given the labels 4, 2, 5, 3, 6, 1. We continue the labellings by
reading the letters equal to 5, then 4, . . . in the above word v.

11
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No decrease yi in v can be the rightmost letter of a Lyndon word
factor lh. We have then lh = · · · yiyi+1 · · · yjyj+1 · · · with yi ≥ yi+1 ≥
· · · ≥ yj > yj+1. Consequently, A(yi) > A(yi+1) and lab(yi) < lab(yi+1).
Conversely, if lab(yi) < lab(yi+1) and yi, yi+1 belong to the same Lyndon
factor, then yi is a decrease in v. To each decrease yi in v there corresponds
a unique cycle τh of σ and a pair lab(yi) lab(yi+1) of successive letters of τh
such that lab(yi) < lab(yi+1) and lab(yi+1) = σ(lab(yi)).

Consider the monotonic nonincreasing rearrangement c = c1c2 · · · cn
of v and form the three-row matrix

1 2 · · · n
c1 c2 · · · cn
σ(1) σ(2) · · · σ(n)

Then, if yi is a decrease in v, the lab(yi)-th column of the previous matrix
is of the form lab(yi)

yi
lab(yi+1)

with lab(yi) < lab(yi+1).

Consequently, yi is a decrease in v if and only if σ(lab(yi)) > lab(yi). As
σ(i) > σ(i+ 1)⇒ ci > ci+1, the above three-row matrix can be expressed
as

Id = 1 · · · m1 | m1+1 · · · m1+m2 | · · · | m1+· · ·+mk−1+1 · · · n
c = a1 · · · a1 | a2 · · · a2 | · · · | ak · · · ak
σ = σ(1) · · · σ(m1) |σ(m1+1) · · · σ(m1+m2) | · · · |σ(m1+· · ·+mk−1 +1) · · · σ(n)

where a1 > a2 > · · · > ak ≥ 0 and m1 ≥ 1, m2 ≥ 1, . . . , mk ≥ 1
and σ(1) < · · · < σ(m1), σ(m1 + 1) < · · · < σ(m1 + m2), . . . ,
σ(m1+ · · · + mk−1+1) < · · · < σ(n). For each i = 1, . . . , k let ai be
the residue of ai mod l and let
(

w
ǫ

)

:=

(

σ(1) · · ·σ(m1)σ(m1+1) · · ·σ(m1+m2) · · ·σ(m1+· · ·+mk−1 + 1) · · ·σ(n)
a1 · · · a1 a2 · · · a2 · · · ak · · · ak

)

It then follows that (c, w, ǫ) is a wreathed permutation and properties (i),
(ii) and (iii) hold. For the proof of (iv) we note that a letter yi of v is
an increase and record value if and only if yi is a one-letter factor in the
Lyndon factorization of v, that is, if and only if lab yi is a cycle of length 1
of w, or equivalently, a fixed point of w. All the steps previously described
are perfectly reversible. This achieves the proof of Theorem 1.3

With the running example take l = 3 we can form the table:

v = 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6
σ = 16 | 12 18 22 21 | 10 | 7 | 4 8 17 20 11 15 9 | 2 5 13 19 3 6 14 | 1

Id= 1 2 3 4 5 6 | 7 | 8 | 9 10 11 12 13 | 14 15 16 17 18 | 19 20 21 22
c = 6 6 6 6 6 6 | 5 | 4 | 3 3 3 3 3 | 2 2 2 2 2 | 1 1 1 1
w = 1 5 6 8 13 14 | 7 | 17 | 4 10 15 18 19 | 2 9 16 20 22 | 3 11 12 21
ǫ = 0 0 0 0 0 0 | 2 | 1 | 0 0 0 0 0 | 2 2 2 2 2 | 1 1 1 1

12
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The word v is given, with its corresponding Lyndon factorization; the
word σ is obtained from v by replacing each letter yi by its label lab(yi)
and to be regarded as the product of the cycles duly materialized; c is
just the monotonic nonincreasing rearrangement of v; w is the sequence
σ(1)σ(2) · · ·σ(n); ǫ is derived from c by replacing each ci by its residue
mod 3.

The eight decreases of v which are multiple of 3, and the eight ex-
cedances of (w, ǫ) have been reproduced in boldface. The four increase
and record values of v are reproduced in italic, together with the four
one-letter factors of σ, and the four fixed points of w, that is, 16, 10, 7, 1.

5. Specializations

LetWn(s, t, q) (resp. Fr(u; q, s)) be the polynomialWn(s, t, q, (Yi), (Zi))
(resp. the series F (u; q, s, (Yi), (Zi)) ), when Yi = Zi = 1 for all i, so that

Wn(s, t, q) =
∑

(w,ǫ)∈Cl≀Sn

sfexc(w,ǫ)tfdes(w,ǫ)qfmaj(w,ǫ);(5.1)

Fr(u; q, s) =
(uqlsl; ql)⌊r/l⌋

(u; ql)⌊r/l⌋+1
(1− qlsl)(5.2)

×
(

1− qlsl +
l

∑

i=1

qisi −
l

∑

i=1

qisi
(uqlsl; ql)⌊(r−i)/l⌋+1

(u; ql)⌊(r−i)/l⌋+1

)−1

.

Theorem 1.3 yields the following result.

Theorem 5.1. The generating function for the polynomials Wn(s, t, q)
reads:

(5.3)
∑

n≥0

(1 + t+ · · ·+ tl−1)Wn(s, t, q)
un

(tl; ql)n+1
=

∑

r≥0

tr Fr(u; q, s).

When n tends to infinity, remember that 1/(u; q)n tends to the q-
exponential series eq(u) =

∑

n≥0 u
n/(q; q)n (see, e.g., [An76], chap. 2).

Accordingly, when r tends to infinity, Fr(u; q, s) tends to

F∞(u; q, s) =
eql(u)

eql(uqlsl)
(1−qlsl)

(

1−qlsl+
l

∑

i=1

qisi−
l

∑

i=1

qisi
eql(u)

eql(uqlsl)

)−1

=
eql(u)

eql(uqlsl)
(1−qlsl)

(

(1− qlsl)

+
qs(1− qlsl)

1− qs

(

1−
eql(u)

eql(uqlsl)

))−1

13
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=
eql(u)

eql(uqlsl)
(1− qs)

(

(1− qs) + qs
(

1−
eql(u)

eql(uqlsl)

))−1

=
eql(u)

eql(uqlsl)
(1− qs)

(

1− qs
eql(u)

eql(uqlsl)

)−1

=
(1− qs)eql(u)

eql(uqlsl)− qseql(u)
.

Theorem 5.2. Let

Wn(s, 1, q) =
∑

(w,ǫ)∈Cl≀Sn

sfexc(w,ǫ)qfmaj(w,ǫ).

Then, the following identity holds:

(5.4)
∑

n≥0

Wn(s, 1, q)
un

(ql; ql)n
=

(1− qs)eql(u)

eql(uqlsl)− qseql(u)
.

Proof. There suffices to multiply both sides of identity (5.3) by (1− t)
and let t tend to 1. The right-hand side tends to F∞(u; q, s), which has
just been calculated.

Let u = (1− ql)u and then q → 1 in (5.4). This leads to the identity:

∑

n≥0

Wn(s, 1, 1)
un

n!
=

1− s

−s+ exp(u(sl − 1))
,(5.5)

where

Wn(s, 1, 1) =
∑

(w,ǫ)∈Cl≀Sn

sfexc(w,ǫ).(5.6)

The next step is to calculate Fr(u; q, 1). First, note that

(uql; ql)m
(u; ql)m+1

=
1

1− u
and

(uql; ql)m
(u; ql)m

=
1− uqml

1− u
.

Now, let s = 1 in (5.2). We get:

Fr(u; q, 1) =
(uql; ql)⌊r/l⌋

(u; ql)⌊r/l⌋+1
(1− ql)

×
(

1− ql +
l

∑

i=1

qi −
l

∑

i=1

qi
(uql; ql)⌊(r−i)/l⌋+1

(u; ql)⌊(r−i)/l⌋+1

)−1

=
1− ql

1− u
×

(

1− ql +
l

∑

i=1

qi −
l

∑

i=1

qi
1− uql(⌊(r−i)/l⌋+1)

1− u

)−1
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=
1− ql

1− u
×

(

1− ql − u
l

∑

i=1

qi
1− ql(⌊(r−i)/l⌋+1)

1− u

)−1

=
(

1− u− u
l

∑

i=1

qi
1− ql(⌊(r−i)/l⌋+1)

1− ql

)−1

.

Let r = kl + s with 0 ≤ s ≤ l − 1. Then

l(⌊(r − i)/l⌋+ 1) = l(⌊(kl + s− i)/l⌋+ 1)

= l(k + ⌊(s− i)/l⌋+ 1)

=

{

l(k + 0 + 1), if 1 ≤ i ≤ s;
l(k − 1 + 1), if s+ 1 ≤ i ≤ l.

Hence,

l
∑

i=1

qi
1− ql(⌊(r−i)/l⌋+1)

1− ql
=

s
∑

i=1

qi
1− ql(k+1)

1− ql
+

l
∑

i=s+1

qi
1− qlk

1− ql

=
1− ql(k+1)

1− ql
q − qs+1

1− q
+

1− qlk

1− ql
qs+1 − ql+1

1− q

=
1

1− ql
1

1− q

(

q(1− ql)− qlk+s+1(1− ql)
)

=
q

1− q
(1− qlk+s) = q

1− qr

1− q
.

Consequently, Fr(u; q, 1) =
(

1− u− uq
1− qr

1− q

)−1

=
(

1− u
1− qr+1

1− q

)−1

,

so that, using the traditional notation for the q-analogs of integers,

(5.7) Fr(u; q, 1) =
(

1− u[r + 1]q
)−1

.

The following theorem has then be proved.

Theorem 5.3. The factorial generating function for the polynomials

(5.8) Wn(1, t, q) =
∑

(w,ǫ)∈Cl≀Sn

tfdes(w,ǫ)qfmaj(w,ǫ) (n ≥ 0)

reads

(5.9)
∑

n≥0

(1+t+· · ·+tl−1)Wn(1, t, q)
un

(tl; ql)n+1
=
∑

r≥0

tr
(

1−u[r+1]q
)−1
.

Several authors ([AR01], [ABR01], [ABR05], [ABR06], [CHGe07],
[HLR05], [FH09]) have derived identity (5.9) in the particular case l = 2
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(hyperoctahedral group). Theorem 5.3 has several consequences. Write
W (l)(1, t, q) := Wn(1, t, q) to indicate that the polynomial also depends
on l. In particular,

(5.10) W (1)
n (1, t, q) = An(t, q) =

∑

σ∈Sn

tdes σqmaj σ,

which is precisely the q-Eulerian polynomial introduced by Carlitz [Ca54],
and also combinatorially interpreted by him [Ca75]. As (5.9) holds for
every l, we also have

∑

n≥0

An(t, q)
un

(t; q)n+1
=
∑

r≥0

tr
(

1−u[r+1]q
)−1
,(5.11)

so that

W (l)
n (1, t, q) =

(tlql; ql)n
(t; q)n

An(t, q) (n ≥ 0).(5.12)

In view of (5.12) there is no use working out the other formulas for
W (l)(1, t, q) from scratch. We just have to report to Carlitz’s original paper
[Ca54], dealing with the polynomials An(t, q), and use (5.12). First,

(5.13) (1− q)W (l)
n (1, t, q) = (1− tlql)W

(l)
n−1(1, t, q)

− (−q + tq(1− q) + · · ·+ tl−1ql−1(1− q) + tlql)W
(l)
n−1(1, tq, q).

Next, let W
(l)
n (1, t, q) =

∑

kW
(l)
n,k(q)t

k and look for the coefficients of tk

on both sides. We get:

(5.14) W
(l)
n,k(q) = [k + 1]qW

(l)
n−1,k(q) + qk+1W

(l)
n−1,k−1(q)

+qk+2W
(l)
n−1,k−2(q)+· · ·+q

k+l−1W
(l)
n−1,k−(l−1)(q)+q

k[nl−k]qW
(l)
n−1,k−l(q).

With q = 1 in (5.14) we obtain the recurrence formula (1.14) of Theo-
rem 1.4.

Note that for l = 1 identity (1.14) becomes the classical recurrence

formula for the Eulerian numbers An,k :=W
(1)
n,k

An,k = (k + 1)An−1,k + (n− k)An−1,k−1

(see, e.g., [FS70]), which are the coefficients of the classical Eulerian

polynomial An(t, 1) =
∑

k An,kt
k. For q = 1 identity (5.12) becomes:

(5.15) W (l)
n (1, t, 1) =

(1− tl)n

(1− t)n
An(t, 1).
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As the exponential generating function for the Eulerian polynomials (see,
e.g., [FS70]) reads

∑

n≥0

An(t, 1)
un

n!
=

1− t

−t+ exp(u(t− 1))
,(5.16)

identity (5.16) implies that
∑

n≥0

W (l)
n (1, t, 1)

un

n!
=

1− t

−t+ exp(u(tl − 1))
.(5.17)

From identities (5.5) and (5.17) we conclude that

(5.18) W (l)
n (t, 1, 1) =W (l)

n (1, t, 1) =
nl−1
∑

k=0

W
(l)
n,kt

k,

the coefficientsW
(l)
n,k satisfying recurrence (5.15). This proves Theorem 1.4.

A good exercise of Combinatorics consists of proving directly that both

coefficientsW
(l,fdes)
n,k := #{(w, ǫ) ∈ Cl ≀Sn, fdes(w, ǫ) = k} andW

(l,fexc)
n,k :=

#{(w, ǫ) ∈ Cl ≀Sn, fexc(w, ǫ) = k} satisfy recurrence formula (1.14). For

W
(l,fdes)
n,k it suffices to analyze the impact of the insertion of the biletter

(

n
i

)

into the n slots of an element from Cl ≀Sn−1. ForW
(l,fexc)
n,k the variation of

“fexc” is to be analyzed when the following operation is performed: replace
the j-th biletter

(

xj

ǫj

)

of an element
(

w
ǫ

)

=
(

x1 ... xj ... xn−1

ǫ1 ... ǫj ... ǫn−1

)

from Cl ≀Sn−1

by
(

n
k

)

, and insert the biletter
(

xj

k′

)

to the right. We do not reproduce the
solution of this exercise!

6. Concluding remarks

The Decrease Value Theorem, stated and proved in [FH07], was re-
garded as our Ur-result in our studies on q-calculus of permutation statis-
tics. The motivation of this paper has been to extend its application to
another group structure, namely the wreath product Cl ≀Sn. This theorem
makes it possible to have a full control of all decreases in each word. By
means of a standardization procedure, the decreases can then be carried
over to excedances of the underlying permutations.

As was done in our two papers [FH08] and [FH09] dealing with the
symmetric, and hyperoctahedral group, respectively, we could as well have
made use of the so-called V -word decomposition theorem for words, a
theorem directly inspired from a result by Kim-Zeng [KZ01] valid for
permutations, for deriving Theorem 1.2. The Decrease Value Theorem has
the advantage of providing the adequate identity immediately without any
further combinatorial construction.
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There is also an extension of Theorem 1.3, where the set {0, 1, . . . , l−1}
is split into two subsets I, J such that 0 ∈ I and the total order imposed
on Cl ≀Sn has the properties:

(6.1)
(a) (j, i) < (j′, i′) when i > i′ for all j, j′;
(b) (1, i) < (2, i) < · · · < (n, i) when i ∈ I;
(c) (n, i) < · · · < (2, i) < (1, i) when i ∈ J .

When J = ∅, we recover the total order used in the previous sections.
For l = 2, I = {0}, J = {1}, we get the natural order defined on the
hyperoctahedral group Bn, namely, −n < · · · < −1 < 1 < · · · < n with
the convention: −j ≡ (j, 1), j ≡ (j, 0) for all j = 1, 2, . . . , n.

Referring to formula (1.11) let

Hr(u; q, s, (Zi)) := Z0(1− q
lsl)

×
(

Z0 − Z0q
lsl +

l
∑

i=1

qisiZi −
l

∑

i=1

qisiZi

(uqlslZ0; q
l)⌊(r−i)/l⌋+1

(uZ0; ql)⌊(r−i)/l⌋+1

)−1

,

a series that does not depend on (Yi). The extension of (1.13) for the total
order defined in (6.1) reads:

(6.2)
∑

n≥0

(1 + t+ · · ·+ tl−1)Wn(s, t, q, (Yi), (Zi))
un

(tl; ql)n+1

=
∑

r≥0

tr

∏

i∈J

(−usiqiYiZi; q
l)⌊(r−i)/l⌋+1

∏

i∈J

(−usiqiZi; ql)⌊(r−i)/l⌋+1

∏

i∈(I\{0})∪{l}

(uqisiZi; q
l)⌊(r−i)/l⌋+1

∏

i∈I

(uqisiYiZi; ql)⌊(r−i)/l⌋+1

×Hr(u; q, s, (Zi)).

We do not reproduce the proof of this extension. Note that it fully implies
the result we had derived in [FH09] for the hyperoctahedral group. Also
note that the first statistical study of the latter group has been made by
Reiner [Re93a], [Re93b], [Re93c], Re95a].

Several papers have recently been published dealing with statistics on
wreath products. The first analysis made by Bagno [B04] was followed
by Haglund et al. [HLR05], who studied another aspect of permutation
statistics on wreath products in connection with the theory of perfect
matchings and rook placement q-counting. Bernstein [DB06] has worked
out a theory for the so-called Ca ≀ Sn q-maj Euler-Mahonian bivariable

polynomials and obtained a solid formulary. The definitions he took
for his generalized descent and major index do not coincide with the
ones presented here. Bagno and Garber [BG06] generalize results by
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Ksavrelof and Zeng [KZ03] on the multidistribution of the excedance
number associated with the numbers of fixed points and cycles. Some more
or less explicit three-variable statistical distributions are derived. Regev
and Roichman [RR06] have worked out recurrence formulas of binomial-
Stirling type for wreath product statistics related to left minima. Finally,
Mendes and Remmel [MR07] have developed a brick-tabloid symmetric
function approach for calculating generating functions for statistics for
tuples of permutations.
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