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Doubloons and q-secant numbers

Based on the evaluation at t = -1 of the generating polynomial for the hyperoctahedral group by the number of descents, an observation recently made by Hirzebruch, a new q-secant number is derived by working with the Chow-Gessel q-polynomial involving the flag major index. Using the doubloon combinatorial model we show that this new q-secant number is a polynomial with positive integral coefficients, a property apparently hard to prove by analytical methods.

Introduction

This paper, in harmony with our previous two papers on doubloons [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF][START_REF] Foata | The doubloon polynomial triangle[END_REF], is motivated by our intention of finding a combinatorial connection between the Eulerian polynomials, on the one hand, and the trigonometric functions, tangent and secant, on the other hand, when the connection is further carried over to a q-analog environment.

Let (t; q) n := (1t)(1tq) • • • (1tq n-1 ) if n ≥ 1 and (t; q) 0 := 1 be the traditional q-ascending factorial and [ j ] q := 1 + q + • • • + q j-1 be the q-analog of the positive integer j. The q-analogs A n (t, q), introduced by Carlitz ( [START_REF] Carlitz | q-Bernoulli and Eulerian numbers[END_REF], [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF]), of the Eulerian polynomials, may be defined by the identity (1.1)

A n (t, q) (t; q) n+1 = j≥0 t j ([j + 1] q ) n (n ≥ 0).

For each n ≥ 0 the q-analog A n (t, q) is a polynomial with positive integral coefficients [in short, a PIC polynomial], such that A n (t, 1) is equal to the traditional Eulerian polynomial A n (t) introduced by Euler himself [Eul1755], who also derived the exponential generating function:

(1.2)

n≥0 u n n! A n (t) = 1 -t -t + exp(u(t -1

))

.

As A n (1, 1) = A n (1) = n!, each PIC polynomial A n (t) (resp. A n (t, q)) has been regarded as a generating function for the symmetric group S n by several integral-valued statistics (resp. pairs of such statistics) ( [START_REF] Riordan | An Introduction to Combinatorial Analysis[END_REF], [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF], [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF]). Note that (1.2) is easily derived from (1.1).

In the same manner, the next two identities B n (t, q) (t; q 2 ) n+1 = j≥0 t j ([2j + 1] q ) n (n ≥ 0); (1.3)

n≥0 u n n! B n (t) =
(1t) exp(u(t -1)) -t + exp(2u(t -1)) ; (1.4) may serve to define two families of polynomials (B n (t)), (B n (t, q)) (n ≥ 0).

Again, both B n (t) and B n (t, q) are PIC polynomials and B n (t) = B n (t, 1). Moreover, (1.4) is easily derived from (1.3). The interpretation of B n (t) as a generating polynomial for the hyperoctahedral group B n , together with the derivations of (1.3) for q = 1 and (1.4), was first obtained by Reiner [START_REF] Reiner | Signed permutation statistics[END_REF], also by Cohen [START_REF] Arjeh | Eulerian polynomials of spherical type[END_REF] in the general context of the Coxeter groups of spherical type. Formula (1.3) was derived and fully interpreted by Chow and Gessel [CG07].

While studying the signatures of the toric varieties, Hirzebruch [Hi09] is led to calculate the values of both polynomials A n (t) and B n (t) at t = -1. He first quotes Euler's identities [Eul1755] (1.5)

A 2n (-1) = 0 (n ≥ 1); (-1) n A 2n+1 (-1) = T 2n+1 (n ≥ 0), where the coefficients T 2n+1 (n ≥ 0) are the tangent numbers occurring in the Taylor expansion of tan u: Then, he notes that B 2n+1 (-1) = 0 (n ≥ 0); (-1) n B 2n (-1) = 2 2n E 2n (n ≥ 0), (1.7) where the coefficients E 2n (n ≥ 0) are the secant numbers occurring in the Taylor expansion of sec u

tan u = n≥0 u 2n+1 (2n + 1)! T 2n+1 (1.6) = u 1! 1 + u 3 3! 2 +
sec u = 1 cos u = n≥0 u 2n (2n)! E 2n (1.8) = 1 + u 2 2! 1 + u 4 4! 5 + u 6 6! 61 + u 8 8! 1385 + u 10 10! 50521 + • • • since, by (1.4), n≥0 (iu) n 2 n n! B n (-1) = 2 e iu + e -iu = sec u = n≥0 u 2n (2n)! E 2n .
It so happens that (1.7) is just the relation needed to construct a new qanalog of the secant number, in parallel with what has been done already for the tangent number.

Theorem 1.1. Let (B n (t, q)) (n ≥ 0) be the sequence of polynomials defined by (1.3) and let

(1.9) E 2n (q) := (-1) n q n 2 B 2n (-q -2n , q) (n ≥ 1).

Then, (a) each E 2n (q) is a PIC polynomial;

(b) it admits the factorization

(1.10) E 2n (q) = (1 + q 2 )(1 + q 4 ) • • • (1 + q 2n )F 2n (q),
where

F 2n (q) is a PIC polynomial; (c) E 2n (1) = 2 n F 2n (1) = 2 2n E 2n (E 2n the secant number); (d) B 2n+1 (-q -(2n+1) , q) = 0 (n ≥ 0).
Property (c) follows from (1.7) and (1.9). Property (d) is proved in Section 5. As is often the case, it is much harder to derive the factorization shown in (b) and prove that the coefficients of E 2n (q) are positive. It requires a long combinatorial development, given in the next three Sections. We reproduce the first values of the polynomials B n (t, q) and E 2n (q) in Tables 1.1 and 1.2.

B 1 (t, q) = 1 + qt;
B 2 (t, q) = 1 + (2q + 2q 2 + 2q 3 )t + q 4 t 2 ; B 3 (t, q) = 1 + (3q + 5q 2 + 7q 3 + 5q 4 + 3q 5 )t + (3q 4 + 5q 5 + 7q 6 + 5q 7 + 3q 8 )t 2 + q 9 t 3 ; B 4 (t, q) = 1 + (4q + 9q 2 + 16q 3 + 18q 4 + 16q 5 + 9q 6 + 4q 7 )t + (6q 4 + 16q 5 + 30q 6 + 40q 7 + 46q 8 + 40q 9 + 30q 10 + 16q 11 + 6q 12 )t 2 + (4q 9 + 9q 10 + 16q 11 + 18q 12 + 16q 13 + 9q 14 + 4q 15 )t 3 + q 16 t 4 .

Table 1.1. The polynomials B n (t, q). E 2 (q) = (1 + q 2 )2; E 4 (q) = (1 + q 2 )(1 + q 4 )(6 + 8q + 6q 2 ); E 6 (q) = (1 + q 2 )(1 + q 4 )(1 + q 6 )(20 + 60q + 104q 2 + 120q 3 + 104q 4 + 60q 5 + 20q 6 ); E 8 (q) = (1 + q 2 )(1 + q 4 )(1 + q 6 )(1 + q 8 )(70 + 336q + 910q 2 + 1760q 3 +2702q 4 +3440q 5 +3724q 6 +3440q 7 +2702q 8 +1760q 9 +910q 10 + 336q 11 + 70q 12 ).

Table 1.2. The polynomials E 2n (q).

Following the method developed in [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF] and [START_REF] Foata | The doubloon polynomial triangle[END_REF], the proof of Theorem 1.1 (a) and (b) will consist of making the polynomial E 2n+2 (q), defined in (1.9), appear as a generating function by an appropriate statistic "smaj," combined with a sign "sgn"

E 2n+2 (q) = w∈B 2n+2 sgn w q smaj w (n ≥ 1)
and constructing a sign-reversing involution on B 2n+2 , in such a way that after its application the remaining terms in the sum have positive signs. We leave out the banal case: E 2 (q) = 2(1 + q 2 ).

The final step is then to prove the identity

(1.11) E 2n+2 (q) = (1 + q 2 )(1 + q 4 ) • • • (1 + q 2n+2 ) w∈SN 2n+2 q smaj w ,
where the sum is over a specific class SN 2n+2 of signed permutations, called normalized signed doubloons (see Section 4). More importantly, the generating polynomial for SN 2n+2 occurring in (1.11) will be explicitly calculated by means of the doubloon polynomials (d n,j (q)) (n ≥ 1, 2 ≤ j ≤ 2n), which are defined by the recurrence (D1) d 0,j (q) = δ 1,j (Kronecker symbol); (D2) d n,j (q) = 0 for n ≥ 1 and j ≤ 1 or j ≥ 2n + 1; (D3) d n,2 (q) = j q j-1 d n-1,j (q) for n ≥ 1;

(D4) d n,j (q) -2 d n,j-1 (q) + d n,j-2 (q) = -(1 -q) j-3 i=1 q n+i+1-j d n-1,i (q) -(1 + q n-1 ) d n-1,j-2 (q) + (1 -q) 2n-1 i=j-1 q i-j+1 d n-1,i (q) 
for n ≥ 2 and 3 ≤ j ≤ 2n; the first values being: d 1,2 (q) = 1; d 2,2 (q) = q; d 2,3 (q) = q + 1; d 2,4 (q) = 1; d 3,2 (q) = 2q 3 +2q 2 ; d 3,3 (q) = 2q 3 +4q 2 +2q; d 3,4 (q) = q 3 +4q 2 +4q+1; d 3,5 (q) = 2q 2 + 4q + 2; d 3,6 (q) = 2q + 2; d 4,2 (q) = 5q 6 +12q 5 +12q 4 +5q 3 ; d 4,3 (q) = 5q 6 +17q 5 +24q 4 +17q 3 +5q 2 ; d 4,4 (q) = 3q 6 + 15q 5 + 29q 4 + 29q 3 + 15q 2 + 3q; d 4,5 (q) = q 6 + 9q 5 + 25q 4 + 34q 3 + 25q 2 + 9q + 1; d 4,6 (q) = 3q 5 + 15q 4 + 29q 3 + 29q 2 + 15q + 3; d 4,7 (q) = 5q 4 + 17q 3 + 24q 2 + 17q + 5; d 4,8 (q) = 5q 3 + 12q 2 + 12q + 5.

Those polynomials were introduced and used in [START_REF] Foata | The doubloon polynomial triangle[END_REF] to evaluate a new q-analog (1.12) T 2n+1 (q) := (-1) n q ( n 2 ) A 2n+1 (-q -n , q)

of the tangent number based on the Carlitz q-Eulerian polynomial A n (t, q) defined in (1.1). It was shown that T 2n+1 (q) was a PIC polynomial equal to

(1.13) T 2n+1 (q) = (1 + q)(1 + q 2 ) • • • (1 + q n ) 2n+2 k=2 d n,k (q).
The parallel expression for the PIC polynomials E 2n+2 (q) is next stated.

Theorem 1.2. For each n ≥ 1 the polynomial E 2n+2 (q) has the following expression:

E 2n+2 (q) = (1 + q 2 )(1 + q 4 ) • • • (1 + q 2n+2 ) 2n k=2 d n,k (q 2 )P n,k (q), (1.14)
where the coefficients P n,k (q) (n ≥ 1, 2 ≤ j ≤ 2n) are defined by

P n,k (q) := 2n+1-k i=0 q n-1-2i i+k l=i+1 2n + 2 l q l . (1.15)
The quantities Q n,k (q) := q n+1-k P n,k (q) are PIC polynomials. Their first values are listed in Table 1.3. Q 1,2 (q) = 6 + 8q + 6q 2 ; Q 2,2 (q) = 15 + 26q + 30q 2 + 26q 3 + 15q 4 ; Q 2,3 (q) = 20 + 30q + 32q 2 + 30q 3 + 20q 4 ; Q 2,4 (q) = Q 2,2 (q) Q 3,2 (q) = 28 + 64q + 98q 2 + 112q 3 + 98q 4 + 64q 5 + 28q 6 ; Q 3,3 (q) = 56 + 98q + 120q 2 + 126q 3 + 120q 4 + 98q 5 + 56q 6 ; Q 3,4 (q) = 70 + 112q + 126q 2 + 128q 3 + 126q 4 + 112q 5 + 70q 6 ; Q 3,5 (q) = Q 3,3 (q); Q 3,6 (q) = Q 3,2 (q); Q 4,2 (q) = 45 +130q +255q 2 +372q 3 +420q 4 +372q 5 +255q 6 +130q 7 +45q 8 ; Q 4,3 (q) = 120+255q+382q 2 +465q 3 +492q 4 +465q 5 +382q 6 +255q 7 +120q 8 ; Q 4,4 (q) = 210+372q+465q 2 +502q 3 +510q 4 +502q 5 +465q 6 +372q 7 +210q 8 ; Q 4,5 (q) = 252+420q+492q 2 +510q 3 +512q 4 +510q 5 +492q 6 +420q 7 +252q 8 ; Q 4,6 (q) = Q 4,4 (q); Q 4,7 (q) = Q 4,3 (q); Q 4,8 (q) = Q 4,2 (q). Table 1.3. The polynomials Q n,k (q). The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 4. In the last Section we obtain a global expression for the generating polynomial for the group B n by a five-variable statistic, which takes the two classical descent definitions into account.

To end this introduction we point out that the identity

(1.16) T 2n+1 = 2 n 2n k=2 d n,k ,
which is the q = 1 version of (1.13), is originally due to Christiane Poupard [START_REF] Poupard | Deux propriétés des arbres binaires ordonnés stricts[END_REF], who worked out the recurrence for the now called Poupard triangle

d n,k := d n,k (1) (n ≥ 1, 2 ≤ k ≤ 2n), obtainable from (D1)-(D4) for q = 1.
We reproduce the first values of the Poupard triangle (d n,k ), together with the first values of (1.17) The q = 1 version of identity (1.14) reads:

Q n,k := Q n,k (1) = P n,k (1) = 2n+1-k i=0 i+k l=i+1 2n + 2 l . Both d n,k and Q n,k are displayed in triangles (2 ≤ k ≤ 2n, 1 ≤ n ≤ 4),
(1.18) 2 n+1 E 2n+2 = 2n k=2 d n,k Q n,k .
For instance, (1.18) for n = 2 yields:

2 3 E 6 = 8 × 61 = 488 = 1 × 112 + 2 × 132 + 1 × 112.
There exists a rich formulary of relations for tangent and secant numbers (see, e.g., the old monograph by Nielsen [START_REF] Nielsen | Traité élémentaire des nombres de Bernoulli[END_REF]). Identities (1.16) and (1.18) provide a new parametrization of those coefficients by means of the Poupard triangle (d n,k ).

Statistics on the hyperoctahedral group

The elements of the hyperoctahedral group B n , usually called signed permutations, may be viewed as words w = x 1 x 2 • • • x n , where each x i belongs to the set {-n, . . . , -1, 1, . . . , n} and |x

1 ||x 2 | • • • |x n | is a permu- tation of 12 . . . n.
The set (resp. the number) of negative letters among the x i 's is denoted by Neg w (resp. neg w). In the same manner, let Pos w (resp. pos w) be the set (resp. the number) of all positive letters in w. It is convenient to write i := -i for each integer i. There are 2 n n! signed permutations of order n. The symmetric group S n may be considered as the subset of all w from B n such that Neg w = ∅.

For each statement A let χ(A) = 1 or 0 depending on whether A is true or not. The usual number of descents and major index of each word

w = x 1 x 2 • • • x n are defined by des w := n-1 i=1 χ(x i > x i+1 ); (2.1) maj w := n-1 i=1 i χ(x i > x i+1 ). (2.2)
When B n is regarded as a Coxeter group, an extra descent is counted, when the first letter x 1 of the signed permutation w

= x 1 x 2 • • • x n is negative.
In the literature two definitions are then used:

des B w := χ(x 1 < 0) + des w; (2.3) fdes w := χ(x 1 < 0) + 2 des w. (2.4)
Furthermore, a flag major index "fmaj" defined by (2.5) fmaj w := 2 maj w + neg w, has been adopted for B n , because it is equidistributed with the Coxeter length "ℓ" for B n (see, e.g., [START_REF] Adin | Descent Numbers and Major Indices for the Hyperoctahedral Group[END_REF], [START_REF] Foata | Signed words and permutations, I: a fundamental transformation[END_REF]), a property that extends the corresponding property for the symmetric group S n , which says that the major index "maj" and the number of inversions "inv" (the Coxeter length for S n ) are equidistributed.

Proposition 2.1. The polynomial B n (t, q) defined by (1.3) has the following combinatorial interpretation:

(2.6) B n (t, q) = w∈B n t des B w q fmaj w .
In other words, B n (t, q) is the generating polynomial for the hyperoctahedral group B n by the pair (des B , fmaj).

The proof of the proposition can be found in [CG07]. This is also a consequence of Theorem 6.2, that takes both "des B " and "fdes" into account (see (6.15) and (6.16)).

From the definition of the polynomials E 2n+2 (q) given in (1.9) and (2.6) it follows that E 2n+2 (q) = (-1) n+1 q (n+1) 2 B 2n+2 (-q -2n+2 , q) may be expressed as

E 2n+2 (q) = (-1) n+1 w=x 1 •••x 2n+2 ∈B 2n+2 (-1) χ(x 1 <0)+des w q smaj w , (2.7)
where "smaj" is a new statistic -call it signed major index -defined for each signed permutation w

= x 1 x 2 • • • x 2n+2 ∈ B 2n+2 by (2.8) smaj w := (n + 1) 2 -2(n + 1) χ(x 1 < 0) + des w + 2 maj w + neg w.
A compressed major index "cmaj" was defined in [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF], [START_REF] Foata | The doubloon polynomial triangle[END_REF] on the symmetric group S n . Extend its definition to each w ∈ B 2n+2 , as follows (2.9) cmaj w := maj w -(n + 1) des w + (n -1)n/2.

The next lemma only needs a straightforward calculation.

Lemma 2.2.

For each w = x 1 x 2 • • • x 2n+2 ∈ B 2n+2 we have: smaj w -2 cmaj w = 3n + 1 + neg w -2(n + 1)χ(x 1 < 0); (2.10) so that smaj w -2 cmaj w = n + neg w -1, if x 1 < 0. (2.11)
The mirror image of a signed permutation w

= x 1 x 2 • • • x 2n+2 is defined by r w := x 2n+2 • • • x 2 x 1 .
It is easily verified that des r w = (2n + 1)des w;

(2.12) maj r w = (2n + 2)(2n + 1)/2 -(2n + 2) des w + maj w.

(2.13) Those two relations suffice to prove the next lemma.

Lemma 2.3. For each w = x 1 x 2 • • • x 2n+2 ∈ B 2n+2 we have: (2.14) smaj r w -smaj w = 2(n + 1) χ(x 1 < 0) -χ(x 2n+2 < 0) ; (2.15) (-1) des r w+χ(x 2n+2 <0) × (-1) des w+χ(x 1 <0) = -(-1) χ(x 1 <0)+χ(x 2n+2 <0) .
The sum displayed in (2.7) may be decomposed into four subsums:

w=x 1 •••x 2n+2 ∈B 2n+2 = x 1 x 2n+2 >0, x 1 <x 2n+2 + x 1 x 2n+2 >0, x 1 >x 2n+2 + x 1 <0, x 2n+2 >0 + x 1 >0, x 2n+2 <0 = x 1 x 2n+2 >0, x 1 <x 2n+2 + r x 1 x 2n+2 >0, x 1 <x 2n+2 + x 1 <0, x 2n+2 >0 + r x 1 <0, x 2n+2 >0 .
It follows from Lemma 2.3 that the sum of the first two subsums vanishes, and the fourth one is equal to the product of the third one by q 2n+2 . Thus, (2.16)

E 2n+2 (q) = (-1) n+1 (1 + q 2n+2 ) w=x 1 •••x 2n+2 ∈B 2n+2 , x 1 <0<x 2n+2
(-1) des w+1 q smaj w since χ(x 1 < 0) = 1 for every w occurring in the sum. To pursue the calculation of E 2n+2 (q) we use the doubloon calculus, as developed in our previous two papers.

Doubloons

A doubloon of order (2n + 1) is defined to be a permutation of the word 012

• • • (2n+1), represented as a 2×(n+1)-matrix δ = a 0 ••• a n b 0 ••• b n . The word a 0 • • • a n b n • • • b 0 is called the reading ρ(δ) of δ. Define stat δ := stat ρ(δ),
whenever "stat" is equal to "des," "maj," "fmaj," "cmaj," or "smaj." Let F δ := a 0 , L δ := b 0 . The set of all doubloons of order (2n + 1) is denoted by D 2n+1 . The subset of all doubloons δ such that L δ = j (resp. F δ = i and L δ = j) is denoted by D 2n+1,j (resp.

D i 2n+1,j ). Each doubloon δ = a 0 ••• a n b 0 ••• b n from D 2n+1
is said to be interlaced (resp. normalized ), if for every k = 1, 2, . . . , n the sequence (a k-1 , a k , b k-1 , b k ) or one of its three cyclic rearrangements is monotonic increasing or decreasing (resp. decreasing). Let I i 2n+1 (resp. I i 2n+1,j , resp. N i 2n+1 , resp. N i 2n+1,j ) denote the set of all doubloons δ from D i 2n+1 , which are interlaced (resp. interlaced with L δ = j, resp. normalized, resp. normalized with L δ = j).

For instance, the doubloon δ = 0 4 3 2 1 5 is normalized, since both sequences (4, 2, 1, 0) and (5, 4, 3, 1), which are cyclic rearrangements of (0, 4, 2, 1) and (4, 3, 1, 5), respectively, are decreasing.

The geometry of interlaced and normalized doubloons has been studied in [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF]. The connection between interlaced doubloons and split-pair arrangements, introduced by Graham and Zang [START_REF] Graham | Enumerating split-pair arrangements[END_REF], is explicitly made in [START_REF] Foata | The doubloon polynomial triangle[END_REF].

We now recall several properties on doubloons already proved in [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF], [START_REF] Foata | The doubloon polynomial triangle[END_REF].

For each doubloon δ = a 0 a 1 ••• a n b 0 b 1 ••• b n from D 2n+1 and each integer h let δ + h be the doubloon (3.1) δ + h := a 0 + h a 1 + h • • • a n + h b 0 + h b 1 + h • • • b n + h ,
where each entry is expressed as a residue mod(2n + 2).

Property 3.1. The mapping δ → δ + h is a bijection of I i 2n+1,j (resp. N i 2n+1,j ) onto I i+h 2n+1,j+h (resp. N i+h 2n+1,j+h ) (superscript and subscript being taken mod(2n + 2)).

See [START_REF] Foata | The doubloon polynomial triangle[END_REF], Proposition 2.1.

Property 3.2. Let 0 ≤ i < j and δ = a 0 a 1 ••• a n b 0 b 1 ••• b n be a doubloon from D i 2n+1,j , so that δ -i = 0 a 1 -i ••• a n -i j-i b 1 -i ••• b n -i belongs to D 0 2n+1,j-i . Then, (3.2) des(δ -i) = des δ, cmaj(δ -i) = cmaj δ + i.
See [START_REF] Foata | The doubloon polynomial triangle[END_REF], Lemma 3.2.

Property 3.3. For each integer k there is a sign-reversing involution on D 0 2n+1,k \ I 0 2n+1,k having the property that

(3.3) δ∈D 0 2n+1,k (-1) n+des δ q cmaj δ = δ∈I 0 2n+1,k q cmaj δ .
Moreover,

δ∈I 0 2n+1,k q cmaj δ = (1 + q)(1 + q 2 ) • • • (1 + q n ) δ ′ ∈N 0 2n+1,k q cmaj δ ; (3.4)
Proof. Refer to the proofs of Theorems 4.2 and 1.6 in [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF], and observe that the first column 0 k is left invariant under each macro flip.

Signed doubloons

Now, we extend the notion of doubloon to the group of signed permutations and speak of signed doubloons, but only for those signed permuta-

tions w = x 1 x 2 • • • x 2n+2 ∈ B 2n+2
occurring in the summation displayed in (2.16). They have the property that F w := x 1 < 0 < x 2n+2 =: L w.

We represent them as 2 × (n + 1)-matrices w =

x

1 x 2 • • • x n+1 x 2n+2 x 2n+1 • • • x n+2 .
The set of all those signed doubloons will be denoted by SD 2n+2 .

For

each w = x 1 x 2 • • • x n+1 x 2n+2 x 2n+1 • • • x n+2
from SD 2n+2 let φ w be the increasing bijection of {x 1 , x 2 , . . . , x 2n+2 } onto {0, 1, 2, . . . , 2n + 1} and form the (unnsigned) doubloon

δ w := φ w (x 1 ) φ w (x 2 ) • • • φ w (x n+1 ) φ w (x 2n+2 ) φ w (x 2n+1 ) • • • φ w (x n+2 ) .
The signed doubloon w is characterized by the pair (δ w , -Neg w). Moreover, stat w = stat δ w whenever "stat" is equal to "des," "maj," "fmaj," "cmaj," or "smaj." The signed doubloon w is said to be interlaced (resp. normalized), if δ w is interlaced (resp. normalized).

As F w < 0 < L w when w belongs to SD 2n+2 , the mapping

(4.1) w → (δ w , -Neg w)
is a bijection of the set SD 2n+2 onto the set of pairs (δ, J) such that δ ∈ D 2n+1 , and J a subset of {1, 2, . . . , 2n + 2} such that F δ + 1 ≤ #J ≤ L δ.

For instance, if δ = 042 315 ∈ D 5 , then F δ + 1 = 1 ≤ #J ≤ 3 = Lδ. Take J = {3}, {1, 3}, {2, 3, 5} for example, the three signed doubloons w ∈ SD 6 associated with those three subsets J are the following: We next make the composition product of the two mappings described in (3.1) and (4.1).

Theorem 4.1. For each pair (i, k) of integers such that 1 ≤ k ≤ 2n and 0 ≤ i ≤ 2n + 1k the mapping

(4.3) w → (δ w -i, -Neg w)
is a bijection of the set SD i 2n+2,i+k of the signed doubloons w satisfying F δ w = i, L δ w = i + k onto the set of pairs (δ, J) such that δ ∈ D 0 2n+1,k and J ⊂ [1, 2n + 2] with i + 1 ≤ #J ≤ i + k. Moreover, if w is interlaced (resp. normalized), so is δ wi, and conversely. Finally, if δ = δ wi, then (4.4) des w = des δ; smaj w = 2 cmaj δ -2i + #J + n -1.

Proof. The theorem is a consequence of Properties 3.1 and 3.2 and the properties of the bijection w → (δ w , -Neg w) given in (4.2). Identity (2.16) may be rewritten as

E 2n+2 (q) = (-1) n+1 (1 + q 2n+2 ) w∈SD 2n+2 (-1) des w+1 q smaj w = (1 + q 2n+2 ) 2n k=1 2n+1-k i=0 w∈SD i 2n+2,i+k (-1) n+des w q smaj w . Let (4.5) P n,i,k (q) := q n-1-2i i+k l=i+1 2n + 2 l q l .
Using the preceding theorem and Property 3.3 we evaluate the third sum as follows.

w∈SD i 2n+2,i+k (-1) n+des w q smaj w = δ∈D 0 2n+1,k i+1≤#J≤i+k (-1) n+des δ q 2 cmaj δ-2i+#J+n-1 = q n-1-2i δ∈D 0 2n+1,k (-1) n+des δ q 2 cmaj δ i+k l=i+1 2n + 2 l q l = P n,i,k (q) δ∈D 0 2n+1,k (-1) n+des δ q 2 cmaj δ = P n,i,k (q) δ∈I 0 2n+1,k q 2 cmaj δ = (1 + q 2 ) • • • (1 + q 2n )P n,i,k (q) δ∈N 0 2n+1,k q 2 cmaj δ (4.6) = (1 + q 2 ) • • • (1 + q 2n )P n,i,k (q) d n,k (q 2 ),
where the last equality follows from [START_REF] Foata | The doubloon polynomial triangle[END_REF], Theorem 1.2. By multiplying (4.6) by (1 +q 2n+2 ) and summing over all pairs (k, i) such that 1 ≤ k ≤ 2n and 0 ≤ i ≤ 2n + 1k we derive identity (1.14), keeping in mind that

P n,k (q) = 0≤i≤2n+1-k P n,i,k .
This achieves the proofs of both Theorems 1.1 and 1.2, except part (d).

Let SN i 2n+2,i+k be the set of the normalized signed doubloons w satisfying F δ w = i, L δ w = i + k. It also follows from Theorem 4.1 that

w∈SN i 2n+2,i+k q smaj w = P n,i,k (q) δ∈N 0 2n+1,k q 2 cmaj δ . (4.7)
From (4.6) it follows that

w∈SD i 2n+2,i+k (-1) n+des w q smaj w = (1 + q 2 ) • • • (1 + q 2n ) w∈SN i 2n+2,i+k q smaj w . (4.8)
By multiplying (4.8) by (1 + q 2n+2 ) and summing over all pairs (k, i) such that 1 ≤ k ≤ 2n and 0 ≤ i ≤ 2n + 1k we derive identity (1.11).

Proof of Theorem 1.1 (d)

Recall that for each w = x 1 x 2 • • • x 2n+1 ∈ B 2n+1 we have used the notations F w := x 1 and L w := x 2n+1 . As B 2n+1 (t, q) = w∈B 2n+1 t des B w q fmaj w , we may write (5.1) B 2n+1 (-q -(2n+1) , q) = w∈B 2n+1

(-1) sgn w q smaj w , where sgn w := (-1) des w+χ(F w<0) ; (5.2) smaj w := 2 maj w + neg w -(2n + 1)(des w + χ(F w < 0), (5.3) as there is no ambiguity to adopt this definition of "smaj" for signed permutations from B 2n+1 .

For proving the identity A 2n (-q -n , q) = 0 in [START_REF] Foata | Doubloons and new q-tangent numbers[END_REF] we had recourse to the classical properties of the dihedral group acting on S 2n . Actually, the mirror image r provided the sign-reversing involution that was needed. With the group B 2n+1 the supplementary descent to be counted, when the first letter is negative, makes it necessary to include another dihedral group involution, as well as a sign change operation.

In this section the elements of B 2n+1 will be regarded as two-row matrices w = |w|

ǫ := |x 1 | |x 2 | ••• |x 2n+1 | ǫ 1 ǫ 2 ••• ǫ 2n+1 , where |w| := |x 1 ||x 2 | • • • |x 2n+1 |
becomes an ordinary permutation and ǫ := ǫ 1 ǫ 2 • • • ǫ 2n+1 is the sign word defined by ǫ i := 1 or -1, dependeing on whether x i is positive or negative (1 ≤ i ≤ 2n + 1).

Three operations r, c, s are now introduced and further extended to all of B 2n+1 : first, the mirror image

r : y 1 y 2 • • • y 2n+1 → y 2n+1 • • • y 2 y 1 ,
defined for every arbitrary word; second, the complement to (2n + 2), defined for each permutation from S 2n+1 , by

c : y 1 y 2 • • • y 2n+1 → (2n + 2 -y 1 )(2n + 2 -y 2 ) • • • (2n + 2 -y 2n+1 );
third, the sign change s, defined for each binary word, such as ǫ = ǫ 1 ǫ 2 • • • ǫ 2n+1 , whose letters are equal to +1 or -1, by

s : ǫ 1 ǫ 2 • • • ǫ 2n+1 → ǫ 1 ǫ 2 • • • ǫ 2n+1 .
We use the same symbols for their extensions to B 2n+1 :

(5.4) r :

|w| ǫ = |x 1 | |x 2 | ••• |x 2n+1 | ǫ 1 ǫ 2 ••• ǫ 2n+1 → r |w| r ǫ = |x 2n+1 | ••• |x 2 ||x 1 | ǫ 2n+1 ••• ǫ 2 ǫ 1 ; (5.5) c : |w| ǫ = |x 1 | ••• |x 2n+1 | ǫ 1 ••• ǫ 2n+1 → c |w| ǫ = (2n+2-|x 1 |)•••(2n+2-|x 2n+1 |) ǫ 1 ••• ǫ 2n+1 ; (5.6) s : |w| ǫ = |x 1 | |x 2 |••• |x 2n+1 | ǫ 1 ǫ 2 ••• ǫ 2n+1 → |w| s ǫ = |x 1 | |x 2 | ••• |x 2n+1 | ǫ 1 ǫ 2 ••• ǫ 2n+1 .
Note that the three involutions r, c, s, defined on B 2n+1 by (5.4), (5.5) and (5.6) commute. The composition product b := c s r can also be written as

(5.7) b : |w| ǫ = |x 1 | ••• |x 2n+1 | ǫ 1 ••• ǫ 2n+1 → c r |w| r s ǫ = (n+2-|x 2n+1 |)•••(n+2-|x 1 |) ǫ 2n+1 ••• ǫ 1 .
Theorem 5.1. The composition product b defined in (5.7) is a signreversing involution of B 2n+1 , i.e., (5.12)

The third lemma requires a careful analysis.

Lemma 5.4. For each w

= |w| ǫ = |x 1 | |x 2 | ••• |x 2n+1 | ǫ 1 ǫ 2 ••• ǫ 2n+1 ∈ B 2n+1 we have: sgn c w = (-1) χ(F w<0)-χ(L w<0) sgn w; (5.13) smaj c w = -smaj w -(2n + 1) χ(F w < 0) -χ(L w < 0) . (5.14) Proof. If |x i | ǫ i > |x i+1 | ǫ i+1 (resp. |x i | ǫ i < |x i+1 | ǫ i+1 ) say that i is an interior descent (resp. rise), if |x i | > |x i+1 | (resp. |x i | < |x i+1 |) and ǫ i = ǫ i+1 .
Denote the set of all descents (resp. rises) of w by DES w (resp. RISE w), the set of all interior descents (resp. rises) being designated by DES i w (resp. RISE i w), so that DES w = DES i w + DES ǫ and RISE w = RISE i w + RISE ǫ.

First, DES i w = RISE i c w and RISE i w = DES i c w. Hence,

des w + des c w = (# DES ǫ + # DES i w) + (# DES ǫ + # DES i c w) = (# DES i w+# DES ǫ) + (# RISE i w+# RISE ǫ) + (# DES ǫ-# RISE ǫ) = 2n + (# DES ǫ -# RISE ǫ) := 2n + drise ǫ.
In the same way, let DRISE ǫ :

= i i χ(i ∈ DES ǫ) -χ(i ∈ RISE ǫ) . Then, maj w + maj c w = i i χ(i ∈ DES ǫ) + i χ(i ∈ DES i w) + i i χ(i ∈ DES ǫ) + i χ(i ∈ DES i c w) = i i χ(i ∈ DES w) + i χ(i ∈ RISE w) + i i χ(i ∈ DES ǫ) -χ(i ∈ RISE ǫ) = (1 + 2 + • • • + 2n) + DRISE ǫ = n(2n + 1) + DRISE ǫ. Let d 1 < d 2 < • • • (resp. r 1 < r 2 < • • •) denote
the sequence of the descents (resp. rises) of ǫ, when reading the word ǫ from left to right. Four cases are now considered.

(a) ǫ 1 = ǫ 2n+1 = -1; the rises and descents alternate in such a way that 1 ≤ r

1 < d 1 < r 2 < d 2 < • • • < r k < d k ≤ 2n and k ≥ 0. Hence, drise ǫ = 0 and DRISE ǫ = k i=1 (d i -r i ) = pos w. (b) ǫ 1 = +1, ǫ 2n+1 = -1; the alternation becomes: 1 ≤ d 1 < r 1 < d 2 < r 2 < • • • < d k < r k < d k+1 ≤ 2n (k ≥ 0). In this case, drise ǫ = 1 and DRISE ǫ = pos w. (c) ǫ 1 = ǫ 2n+1 = 1; the sequence is then: 1 ≤ d 1 < r 1 < d 2 < r 2 < • • • < d k < r k ≤ 2n (k ≥ 0). Hence, drise ǫ = 0 and DRISE ǫ = -neg w. (d) ǫ 1 = -1, ǫ 2n+1 = 1; then 1 ≤ r 1 < d 2 < r 2 < • • • < r k < d k < r r+1 ≤ 2n (k ≥ 0). Hence, drise ǫ = -1 and DRISE ǫ = -neg w.
Thus, sgn w +sgn c w = des w +χ(ǫ 1 < 0) +des c w +χ(ǫ 1 < 0) ≡ drise ǫ (mod 2), which is 0 when ǫ 1 and ǫ 2n+1 are of the same sign (cases (a) and (c)), equal to 1 when ǫ 1 = 1 , ǫ 2n+1 = -1 (case (b)) and -1 when ǫ 1 = -1 and ǫ 2n+1 = +1 (case (d)). Gathering in a common formula: sgn w + sgn c w ≡ χ(ǫ 1 = 1)χ(ǫ 2n+1 = 1). This implies (5.13). = sgn w(-1) χ(F w<0)-χ(L w<0) (-1) χ(L w<0)+χ(F w<0) = sgn w; smaj r c w = smaj c w + (2n + 1)(χ(F c w < 0)χ(L c w < 0)) = smaj c w + (2n + 1)(χ(F w < 0)χ(L w < 0)) =smaj w; sgn s r c w =sgn r c w =sgn w; smaj s r c w =smaj r c w = smaj w.

Which descent for the hyperoctahedral group?

The purpose of this Section is to work out a global expression for the generating polynomial for B n by the five-term statistic (neg, pos, Ξ, des, fmaj), where Ξ w is equal to 1 or 0, depending on whether the first letter of w is negative or positive, and to derive the specializations when the pair (Ξ, des) is replaced either by "des B ," or by "fdes," defined in (2.3) and (2.4). Our main result is the following. Theorem 6.1. Let (6.1) B n (X, Y, Z; t, q) = w∈B n X neg w Y pos w Z χ(x 1 <0) t des w q fmaj w .

Then,

(6.2) B n (X, Y, Z; t, q) (t; q 2 ) n+1 = t -Z t -1 s≥0 t s (qX + Y )[s + 1] q 2 n + Z -1 t -1 s≥0 t s (qX + Y )[s + 1] q 2 -Xq 2s+1 n .
When q = 1, write B n (X, Y, Z; t) := B n (X, Y, Z; t, 1). The exponential generating function for the latter polynomials can be derived in the following form.

Theorem 6.2. The following identity holds:

(6.3) n≥0 u n n! B n (X, Y, Z; t) = Z -t + (1 -Z) exp(uX(t -1)) -t + exp(u(X + Y )(t -1)) .
Proof of Theorem 6.1. Let w = x 1 x 2 • • • x n be a signed permutation from B n and φ be the unique increasing bijection of the set {x 1 , x 2 , . . . , x n } onto the interval [n] := {1, 2, . . . , n}. The word σ = σ(1)σ(2)

• • • σ(n) := φ(x 1 )φ(x 2 ) • • • φ(x n
) is then an (ordinary) permutation from S n and the map w → (Neg w, σ) a bijection of B n onto the Cartesian product 2 [n] ×S n having the following properties: χ(x 1 < 0) = χ(σ(1) ≤ neg w); des w = des σ; fmaj w = fmaj σ.

For convenience, introduce the polynomial

A k n (Z; t, q) := σ Z χ(σ(1)≤k) t des σ q maj σ (σ = σ(1) • • • σ(n) ∈ S n )
and express B n (X, Y, Z; t, q) in terms of the latter polynomials, to get:

B n (X, Y, Z; t, q) = n k=0 |E|=k Neg w=E (qX) neg w Y pos w Z χ(x 1 <0) t des w q 2 maj w = n k=0 (qX) k Y n-k |E|=k (E,σ) Z χ(σ(1)≤k) t des σ q 2 maj σ = n k=0 n k (qX) k Y n-k A k n (Z; t, q 2 ). Next, with each permutation σ = k σ(2) • • • σ(n) starting with k associate the permutation σ ′ = σ ′ (1) • • • σ ′ (n -1) := ψ(σ(2)) • • • ψ(σ(n)), where ψ is the unique increasing bijection of [n] \ {k} onto [n -1]. If σ(2) ≤ k -1, then des σ = des σ ′ +1, while maj σ = maj σ ′ +des σ ′ +1 and σ ′ (1) ≤ k -1. If σ(2) ≥ k + 1, then des σ = des σ ′ , while maj σ = maj σ ′ + des σ ′ and σ ′ (1) ≥ k. Hence, σ(1)=k, σ(2)≤k-1 Z χ(σ(1)≤k) t des σ q maj σ = Z σ ′ (1)≤k-1 t des σ ′ +1 q maj σ ′ +des σ ′ +1 = Z σ ′ (1)≤k-1 (tq) χ(σ(1)≤k-1) (tq) des σ ′ q maj σ ′ ; while σ(1)=k, σ (2)≥k+1 
Z χ(σ(1)≤k) t des σ q maj σ = Z σ ′ (1)≥k

t des σ ′ q maj σ ′ +des σ ′ = Z σ ′ (1)≥k (tq) χ(σ(1)≤k-1) (tq) des σ ′ q maj σ ′ . Altogether σ(1)=k Z χ(σ(1)≤k) t des σ q maj σ = Z A k-1 n-1 (tq; tq, q).
In the same manner, σ(1)=k Z χ(σ(1)≤k-1) t des σ q maj σ = A k-1 n-1 (tq; tq, q).

Consequently, we have the relation:

(6.4) A k n (Z; t, q) = A k-1 n (Z; t, q) + (Z -1)A k-1 n-1 (tq; tq, q). By iteration we are led to:

(6.5) A k n (Z; t, q) = A 0 n (Z; t, q) + Z -1 t -1 k j=1 k j (t -1)(tq -1) • • • (tq j-1 )A 0 n-j (tq j , tq j , q).
But, the variable Z vanishes from A k n (Z; t, q) when k = 0 and then A 0 n (Z; t, q) = A n (t, q), which is the Carlitz q-analog of the Eulerian polynomial ([Ca54], [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF]) appearing in (1.1). Hence,

A k n (Z; t, q) = A n (t, q) + Z -1 t -1 k j=1 k j (-1) j (t; q) j A n-j (tq j , q) = t -Z t -1 A n (t, q) + Z -1 t -1 k j=0 k j (-1) j (t; q) j A n-j (tq j , q).
The next step is to report this new expression of A k n (Z; t, q) into the polynomial B n (X, Y, Z; t, q). We get:

B n (X, Y, Z; t, q) = n k=0 n k (qX) k Y n-k A k n (Z; t, q 2 ) = n k=0 n k (qX) k Y n-k t -Z t -1 A n (t, q 2 ) + Z -1 t -1 k j=0 k j (-1) j (t; q 2 ) j A n-j (tq 2j , q 2 ) = t -Z t -1 (qX + Y ) n A n (t, q 2 ) + Z -1 t -1 j,l,m≥0 j+l+m=n n! j! l! m! (qX) j+l Y m (-1) j (t; q 2 ) j A l+m (tq 2j , q 2 ),
where k = j + l.

Next, with r = l + m we get

B n (X, Y, Z; t, q) (t; q 2 ) n+1 = t -Z t -1 (qX + Y ) n A n (t, q 2 ) (t; q 2 ) n+1 + Z -1 t -1 j+r=n n! r! j! (-qX) j A r (tq 2j , q 2 ) (tq 2j ; q 2 ) r+1 l+m=r r! l! m! (qX) l Y m = t -Z t -1 (qX + Y ) n A n (t, q 2 ) (t; q 2 ) n+1 + Z -1 t -1 j+r=n n! r! j! (-qX) j A r (tq 2j , q 2 ) (tq 2j ; q 2 ) r+1 (qX + Y ) r .
Furthermore, n≥0

B n (X, Y, Z; t, q) (t; q 2 ) n+1

u n n! = t -Z t -1 n≥0
A n (t, q 2 ) (t; q 2 ) n+1

((qX + Y )u) n n! + Z -1 t -1 j≥0 (-qXu) j j! r≥0
A r (tq 2j , q 2 ) (tq 2j , q 2 ) r+1

((qX + Y )u) r r! .

Now, make use of the classical identity on the Carlitz q-Eulerian polynomials n≥0 u n n!

A n (t, q) (t; q) n+1 = s≥0 t s exp(u[s + 1] q ), to obtain (6.6) n≥0

B n (X, Y, Z; t, q) (t; q 2 ) n+1

u n n! = t -Z t -1 s≥0 t s exp((qX + Y )u [s + 1] q 2 ) + Z -1 t -1 j≥0 (-qXu) j j! s≥0
(tq 2j ) s exp((qX + Y )u [s + 1] q 2 ).

There remains to extract the coefficient of u n on both sides. This leads to:

(6.7) B n (X, Y, Z; t, q) n! (t; q 2 ) n+1 = t -Z t -

1 s≥0 t s (qX + Y ) [s + 1] q 2 n + Z -1 t -1 C,
where C is the coefficient of u n in j≥0 (-qXu) j j! s≥0 (tq 2j ) s m≥0

((qX + Y )u [s + 1] q 2 ) m m! , that is, C = s≥0 t s j≥0
(-qX) j j! q 2js ((qX + Y ) [s + 1] q 2 ) n-j (nj)! Reporting the last expression in (6.7) yields identity (6.2).

Proof of Theorem 6.2. When q = 1 in (6.2), we obtain (6.8) B n (X, Y, Z; t)

(1 -t) n+1 = t -Z t -1 s≥0 t s (X + Y )(s + 1) n + Z -1 t -1 s≥0 t s (X + Y )(s + 1) -X n .
Hence, which is identity (6.3) by replacing u by u(1t).

n≥0 u n (1 -t) n B n (X, Y, Z; t) = (Z -t)
Next, we derive specializations of Theorems 6.1 and 6.2 when the pair (Ξ, des) is replaced by "des B " and "fdes" (see (2.3) and (2.4)). We get:

w∈B n X neg w Y pos w t des B w q fmaj w = B n (X, Y, t; t, q); (6.9) w∈B n X neg w Y pos w t fdes w q fmaj w = B n (X, Y, t; t 2 , q). (6.10) Also, note that B n (0, 1, 1; t, q) is the Carlitz q-Eulerian polynomial A n (t, q). First,

B n (X, Y, t; t, q) (t; q 2 ) n+1 = s≥0 t s (qX + Y )[s + 1] q 2 -Xq 2s+1 n ; (6.11) B n (1, 1, t; t, q) (t; q 2 ) n+1 = w∈B n t des B w q fmaj w = s≥0 t s [2s + 1] q n . (6.12) Second, B n (X, Y, t; t 2 , q) (t 2 ; q 2 ) n+1 = t 2t t -1 s≥0 t 2s (qX + Y ) [s + 1] q 2 n + t -1 t 2 -1 s≥0 t 2s (qX + Y )[s + 1] q 2 -Xq 2s+1 n , so that (1 + t)B n (X, Y, t; t 2 , q) (t 2 ; q 2 ) n+1 = s≥0 t 2s+1 (qX + Y ) [s + 1] q 2 n (6.13) + s≥0 t 2s (qX + Y )[s] q 2 + Y q 2s n .

In particular, (1 + t)B n (1, 1, t; t, q) (t 2 ; q 2 ) n+1 = w∈B n t fdes w q fmaj w = s≥0 t s [s + 1] q n . (6.14)

  w , -Neg w) = (δ, J), then (see (2.11)) (4.2) des w = des δ; smaj w = 2 cmaj δ + #J + n -1.

  (sgn, smaj) |w| ǫ = (-sgn, smaj)b |w| ǫ . The proof of the theorem is based on the next three lemmas. The first two ones being easy to verify are given without proofs. Lemma 5.2. For each w = |w| ǫ ∈ B 2n+1 we have sgn r w = sgn w • (-1) χ(L w<0)+χ(F w<0) ; (5.9) smaj r w = smaj w + (2n + 1) χ(F w < 0)χ(L w < 0) . (5.10) Lemma 5.3. For each w = |w| ǫ ∈ B 2n+1 we have: sgn s w =sgn w; (5.11) smaj s w =smaj w.

  Finally, smaj c w + smaj w = 2(maj c w + maj w)+ neg c w + neg w -(2n + 1)(des c w + des w + 2χ(ǫ 1 < 0)) = 2n(2n + 1) + 2 DRISE ǫ + 2 neg w -(2n + 1)(2n + drise ǫ + 2χ(ǫ 1 < 0)) = 2 DRISE ǫ + 2 neg w -(2n + 1)(drise ǫ + 2χ(ǫ 1 < 0)) w + 2 neg w -(2n + 1)2 = 0, in case (a); 2 pos w + 2 neg w -(2n + 1) = 2n + 1, in case (b); -2 neg w + 2 neg w -(2n + 1)0 = 0, in case (c); -2 neg w + 2 neg w -(2n + 1) = -(2n + 1), in case (d).Altogether, smaj c w =smaj w -(2n + 1) χ(ǫ 1 = -1)χ(ǫ 2n+1 = -1) . This proves (5.14) and also Lemma 5.4.Proof of Theorem 5.1. Let w ∈ B 2n+1 . By the previous three lemmas sgn r c w = sgn c w • (-1) χ(L c w<0)+χ(F c w<0)

  2s ) j ((qX + Y ) [s + 1] q 2 ) n-j qX + Y )[s + 1] q 2 -Xq 2s+1 n

  s≥0

  (X + Y )(s + 1) -X) = (Z -t)(exp(u(X +Y ))+(1-Z) exp(uY ) s≥0 t s exp(u(X +Y )s) = (Zt) exp(u(X + Y )(1 -Z)) exp(uY ) 1t exp(u(X + Y )) ,

The specializations of (6.12) and (6.14) for q = 1 are banal and not reproduced. However, it is worth writing the exponential generating functions for the polynomials B n (1, 1, t; t) and B n (1, 1, t; t 2 ) directly obtained from (6.3):

. (6.16)

The statistics "fdes" and "fmaj" were introduced by Adin and Roichman [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF]. Identity (6.14) with their equivalent adaptations were derived by Brenti et al. [START_REF] Adin | Descent Numbers and Major Indices for the Hyperoctahedral Group[END_REF], Haglund et al. [START_REF] Haglund | Statistics on wreath products, perfect matchings, and signed words[END_REF] and reproved by the authors ( [START_REF] Foata | Signed words and permutations, III: the MacMahon Verfahren[END_REF], [START_REF] Foata | Signed words and permutations, V; a sextuple distribution[END_REF]) as specializations of identities involving severalvariable statistics. Note that (6.16) implies that w∈B n (-1) fdes w is null for every n ≥ 1. Accordingly, the statistic "fdes" would have been a wrong choice for obtaining a q-extension!