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Abstract: We investigate grand unified theories (GUTs) in scenarios where electroweak
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Goldstone boson from a strongly interacting sector. The evolution of the standard model
(SM) gauge couplings can be predicted at leading order, if the global symmetry of the
composite sector is a simple group G that contains the SM gauge group. It was noticed
that, if the right-handed top quark is also composite, precision gauge unification can be
achieved. We build minimal consistent models for a composite sector with these properties,
thus demonstrating how composite GUTs may represent an alternative to supersymmetric
GUTs. Taking into account the new contributions to the EW precision parameters, we
compute the Higgs effective potential and prove that it realizes consistently EW symmetry
breaking with little fine-tuning. The G group structure and the requirement of proton sta-
bility determine the nature of the light composite states accompanying the Higgs and the
top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum
numbers. We analyse the signatures of these composite partners at hadron colliders: dis-
tinctive final states contain multiple top and bottom quarks, either alone or accompanied
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1 Introduction

Two paradigms have been proposed to account for the stability of the electroweak (EW)
scale against quantum corrections, the so-called gauge hierarchy problem. One is a weakly
coupled theory where the mass of the elementary scalar responsible for electroweak sym-
metry breaking (EWSB), that is the Higgs boson, is protected from ultraviolet scales by
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supersymmetry. The other involves a new strongly coupled sector, which generates the
EW scale dynamically, in analogy with the origin of the QCD scale. The latter idea has
been realized in several ways. A particularly attractive possibility is to achieve EWSB
thanks to a Higgs-like composite field, emerging as a Nambu-Goldstone boson (NGB) from
the strongly interacting sector: this is known as the composite-Higgs scenario [1–7]. It is
generically favoured by precision measurements with respect to the simplest form of tech-
nicolour [8–10] or Higgsless models [11], and it has a more economical particle content with
respect to little-Higgs models [12, 13].

Whatever solution of the hierarchy problem is adopted, there are several robust indi-
cations for the unification of the gauge interactions at a scale MGUT, close but definitely
smaller than the Planck scale MP , where gravitational interactions become strong. As a
matter of fact, grand unified theories (GUTs) [14–18] elegantly account for the quanti-
zation of the electric charge, the quantum numbers of quarks and leptons and the basic
relations between their Yukawa couplings, the cancellation of the gauge anomalies, the
evidence for non-zero neutrino masses. While GUTs have been intensively studied mostly
in the supersymmetric framework [19–25], the above-listed virtues of GUTs do not rely on
the existence of low-energy supersymmetry. It is therefore sensible to try to realize precise
gauge coupling unification in other extensions of the standard model (SM) that provide a
natural explanation of the EW-GUT hierarchy.

In comparison with supersymmetric scenarios, strongly coupled models suffer from
the obstruction to perturbative computations. Moreover, at first sight they do not share
the striking prediction of precise gauge coupling unification, which pertains to the mini-
mal supersymmetric SM. This gap has been significantly reduced over the years, thanks
to the modern understanding of strongly coupled systems via the AdS/CFT correspon-
dence [26–28], and in particular through the study of extra-dimensional scenarios of the
Randall-Sundrum type [29], which permitted to extract both qualitative and quantitative
information on EWSB, electroweak precision tests (EWPTs) and phenomenology. Fol-
lowing such developments, the investigation of gauge coupling unification has been pur-
sued [30–38]. Actually, it turned out that some key features of strongly coupled models
can be studied with no need to specify a dual extra-dimensional construction and indepen-
dently from the details of the strong dynamics. In particular, a proposal for precise gauge
coupling unification in the composite-Higgs scenario was advanced [39].

In this paper we further investigate composite-Higgs scenarios which exhibit gauge
coupling unification, from a purely four-dimensional perspective. We will make use of two
basic properties of the strongly interacting sector. The first is an approximate conformal
symmetry, spontaneously broken at low energies, around Λc ∼ few TeV, thus generating
a mass gap in the spectrum of composite resonances. For energies above Λc and up to
the unification scale MGUT, the composite sector alone is well described by a strongly
interacting conformal field theory (CFT). The conformal symmetry fixes the behaviour
of the correlators of the composite sector, in particular those that affect the propagators
of weakly coupled external fields. In the case of interest, these are the SM gauge fields,
with the corresponding gauge couplings. It can be shown that the contribution of such
composite sector to their running is logarithmic [40].
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The second crucial ingredient is the invariance of the composite sector under a set G
of global symmetry transformations, analogous to the approximate SU(3)L×SU(3)R chiral
symmetry of QCD. If the SM gauged group, GSM ≡ SU(3)C×SU(2)L×U(1)Y, is embedded
in a simple group G, then gauge coupling unification becomes independent from the strong
dynamics at leading order. This is because the one loop contribution of the composite sector
to the gauge coupling beta functions is universal, that is to say bcomp

i − bcomp
j = 0 for i, j =

1, 2, 3. Moreover, the universal coefficient bcomp is constant between Λc and MGUT because
of the conformal symmetry.1 At this point one is in the position to study quantitatively
gauge unification, and subsequently undertake the construction of composite GUTs.

It is remarkable that both the conformal symmetry and the G-symmetry of the com-
posite sector are also instrumental to generate hierarchical Yukawa couplings, by an elegant
mechanism known as “partial compositeness” [41, 42]. The light SM fermions are taken to
be elementary particles external to the composite sector, weakly coupled to it by mixing
with composite fermionic operators. The Yukawa couplings arise from this mixing at low
energies, and the hierarchies between them are due to the different scaling dimensions of
the various operators (at least one for each SM chiral fermion). The required large anoma-
lous dimensions can be generated if the composite sector is strongly coupled over a large
range of energies, which naturally happens when it is close to an infrared-attractive fixed
point, indicating that it is approximately conformal. Since the composite sector is respon-
sible for generating the EW scale, it must carry EW charges. Now, in order to generate
quark masses, it must also contain operators charged under colour. Then, the composite
operators transform non-trivially under the full GSM, which of course must be a subgroup
of the global symmetry G of the composite sector. Therefore the only extra assumption to
move from the ordinary composite-Higgs scenario to the composite GUT scenario is the
requirement of G being simple.

Besides the breaking of the conformal symmetry at Λc, the strong dynamics does also
lead to the spontaneous breaking of part of the global symmetry, G → K. This is necessary
in order to obtain the Higgs as a Nambu-Goldstone boson (NGB), in analogy to the light
pseudo-scalar mesons of QCD, that are the approximate NGBs of SU(3)L × SU(3)R →
SU(3)V. The unbroken subgroup K does not need to be simple, since this breaking is an
infrared effect, which does not modify the gauge coupling evolution at leading order over
the large hierarchy. Part of the global symmetries of the composite sector will be eventually
broken explicitly by the gauge and fermion couplings to the elementary fields. Since these
couplings are perturbatively small, the global symmetry G of the composite sector holds in
good approximation over the whole hierarchy between Λc and MGUT. Nonetheless, below
Λc the explicit breaking generates a non-trivial effective potential for the NGBs of the
composite sector, leading to EWSB.

In composite GUTs, the Higgs will be generically accompanied by other pseudo Nambu-

1In principle, the composite sector could exit the strong coupling regime before MGUT, thus modifying

bcomp. This requires a breaking of the conformal symmetry at the intermediate scale where the transition

between the two regimes occurs. The universality of the beta function coefficients is maintained also in this

case, as long as G is preserved. However, this option would introduce an unnecessary model-dependence.

Therefore we will not consider it in this paper.

– 3 –



J
H
E
P
0
6
(
2
0
1
1
)
0
2
9

Goldstone bosons (pNGBs) that fill with it a complete multiplet of the global symmetry
K. These necessarily light extra scalar fields are a distinctive feature of composite GUTs,
to be contrasted with the usual weakly coupled GUTs, where the Higgs partners live at
the GUT scale. The set of light scalars typically includes a coloured triplet that can
potentially mediate proton decay. In supersymmetric GUTs the proton decay issue is
usually cured imposing R-parity and making the triplet super-heavy (∼ MGUT), which
requires to implement a doublet-triplet splitting mechanism. In composite GUTs, instead,
the colour triplet (more in general, any operator generated by the strong dynamics) that
might mediate proton decay cannot be decoupled, since its mass scale is around or below
Λc ∼ few TeV. The remedy will be to forbid the triplet couplings to SM fermions, and
more in general to suppress baryon number violating operators, by imposing an appropriate
symmetry. Similarly, composite operators that mediate lepton number violation need to
be suppressed, not to generate too large neutrino masses.

The last important feature of composite GUTs is the presence of extra vector-like
fermions at the EW scale, that eventually are responsible for the correction to the SM gauge
coupling evolution, such that unification is achieved at MGUT ∼ 1015 GeV, with a precision
comparable to that of the MSSM. It is quite remarkable [39] that these extra fermions are
automatically predicted, once one implements in a straightforward way the attractive fea-
tures of the composite-Higgs scenario described above. Partial compositeness implies that
the larger the mass of a SM fermion, the stronger its coupling is to the composite sector,
and in turn the modification of its elementary properties. The degree of compositeness of
the light SM fermions is thus small, but that of the top quark has to be large. In fact, the
well-motivated possibility exists that the right-handed top quark is an entirely composite
chiral fermion.2 In this case, it must be accompanied by a set of composite partners, filling
a complete multiplet of the global symmetry K. In order to make these chiral top part-
ners massive and to cancel gauge anomalies, one is forced to introduce extra elementary
fermions. We will analyze in detail the impact of these new exotic particles on precise uni-
fication, EWPTs, and in EWSB, as well as their manifestation at the large hadron collider
(LHC). Their observation would constitute another crucial signature of composite GUTs.

In this paper we will not attempt to build an explicit ultraviolet completion for the
composite GUT scenario, that is to say, we will not construct a specific model at the scale
MGUT. This definitely remains a very important task, in a territory that is presently largely
unexplored. At least one comment is in order to settle the ground and avoid confusions. The
full GUT must possess a gauge symmetry GGUT, which is a simple group containing GSM.
One may conceive that GGUT is broken only in the elementary sector, which is promptly
realized assuming that the GUT breaking fields do not couple to the composite sector.3

Then, the composite sector would retain a global symmetry G = GGUT. However, the

2It will be clear in the following why the left-handed top should not be composite.
3To be concrete, think of chiral fermions in a complex representation of GGUT, such as a 5 or a 10 of

SU(5). One example is provided by the SM fermions, which form chiral SU(5) multiplets that only feel GUT

breaking effects through Yukawa and gauge couplings. The required composite sector can be generated if

there exist another set of such chiral fermions (i) charged under an additional gauge interaction in the

non-perturbative regime and (ii) sufficiently weakly coupled to the GGUT breaking sector.
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identification of the two groups may appear minimal but it is not necessary nor natural:
the symmetry of the GUT theory may be larger, and boil down to a low energy global
symmetry G ⊂ GGUT or, if the initial global symmetry of the strong sector was larger than
the gauged GGUT, one could have G ⊃ GGUT. The only requirement is that GSM belongs
to the intersection of G and GGUT. We will see that the suppression of baryon and lepton
number violation implies further constraints on the interplay between these two groups.

The paper is organized as follows. In the next subsection we recall the general setup for
the study of composite-Higgs scenarios, for the non-practitioners. In section 2 we describe
in detail the evolution of gauge couplings when the SM Higgs boson and the right-handed
top quark are composite states, and what the conditions for precision unification are. In
section 3 we discuss the global symmetries of the composite sector that are required in
order to respect the EWPTs, to implement gauge coupling unification and to avoid proton
decay. The model which emerges as the simplest viable possibility has a global symmetry
G = SO(11), with unbroken subgroup K = SO(10). The exotic fermion quantum numbers
are then specified, and their contribution to EW precision parameters is computed. In
section 4 we compute the effective potential for the pNGBs in this model, and derive the
constraints for a satisfactory EWSB. In section 5 we describe the collider phenomenology
of the Higgs and top quark composite partners in three different variants of the model. We
finally summarize the substantial features of our composite GUT models in section 6.

1.1 The setup of composite-Higgs models

The lagrangian for composite-Higgs models can be expressed, in the same spirit of
refs. [42, 43], as

L = LGSM
elementary + LG→Kcomposite + LGSM

mixing . (1.1)

There is a sector of elementary weakly coupled fields, whose dynamics is described by
LGSM

elementary, invariant under the SM gauge symmetries, GSM. The field content of this
sector is the one of the SM, without the Higgs. In addition, there exists a new strongly
interacting sector, described by LG→Kcomposite, made of composite bound states. Such sector
is characterized by a scale mρ, associated to the mass of the lightest massive resonances
(massless composites are also present), and by an inter-composite coupling gρ. The latter
is larger than the elementary weak couplings (generically denoted by gelem), although it
can be significantly smaller than the naive dimensional analysis (NDA) estimate in fully
strongly interacting theories, that is gρ ∼ 4π. The composite sector is invariant under
a global symmetry G, which contains GSM as a subgroup. At a scale close to mρ, G is
spontaneously broken to K, giving rise to a set of NGBs parametrizing the coset space G/K;
this set includes the Higgs doublet H. The NGBs remain massless in the limit gelem → 0,
and their dynamics is described by a non-linear σ-model with characteristic scale f . This
scale controls the interaction among the NGBs and it is related to the composite sector
parameters as

mρ = gρf , (1.2)
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in analogy with QCD, where eq. (1.2) relates the pion decay constant fπ to the mass of the
QCD resonances. Also, LG→Kcomposite is approximately conformal invariant at energies above
Λc & mρ, and it remains strongly coupled over the whole hierarchy between Λc and MGUT.

The interaction between the elementary and composite sectors is described by LGSM
mixing,

that in general respects only the SM gauge symmetries. We assume that LGSM
mixing has

the form dictated by partial compositeness, which applies both to the coupling of the
elementary gauge bosons as well as of the elementary fermions. Generically, the former
can be expressed as

giAiµJ µi , (1.3)

where Ai is the elementary gauge boson, coupled with strength gi to the corresponding
composite sector current Ji. Analogously, there is a coupling for each elementary chiral
fermion. In order to describe the Yukawa couplings, it is convenient to write these couplings
as

λψLψLOψL + λψRψROψR + h.c. , (1.4)

where the chiral fermions ψL,R are coupled to the composite operators OψL,R with strength
λψL,R . The operators OψL,R transform under G in such a way as to generate a coupling
between ψL, ψR and H at low energies, below mρ. Therefore, the low energy values of
λψL,R are constrained to reproduce the observed Yukawa couplings [41, 42]:4

yψ '
λψLλψR
gρ

. (1.5)

Of course both eq. (1.3) and eq. (1.4) must respect the SM gauge symmetries. In addi-
tion, extra global symmetries might be approximately preserved (in particular, consistency
will require to impose baryon and lepton number conservation, as discussed later). How-
ever, eq. (1.3) and eq. (1.4) do not respect the G symmetry, therefore introducing a (weak)
explicit breaking of the global symmetries of the composite sector, in particular of the NGB
symmetries. As a consequence, an effective potential for the NGBs will be generated by
loops of elementary fields. For instance, the mass of the Higgs field will receive corrections
that scale like g2

elemm
2
ρ/(4π)2, with the scale mρ acting as the cut-off for the elementary

loops. This is in analogy to QCD, where the charged pion mass receives divergent loop
corrections from the photon that are cut at the ρ meson mass scale.

The effective potential, which is an expansion in the small explicit breaking couplings,
gelem/gρ, and in the number of elementary loops, will induce a VEV for the Higgs, v '
246 GeV, breaking the EW symmetry. This introduces the last parameter of our framework,
ξ ≡ v2/f2, which describes the departure from an elementary Higgs scenario, obtained
in the limit ξ → 0, or from a so-called Higgsless scenario, in the limit ξ → 1 (in this
case the longitudinal gauge boson scattering amplitudes are unitarized as in technicolour).
The deviations from the SM predictions introduced by the composite sector will then be
proportional to ξ, and thus the EWPTs set an upper bound on this parameter, as reviewed

4Here we assume that each chiral elementary fermion couples dominantly to a unique composite operator,

which is responsible for inducing the corresponding Yukawa coupling. Nonetheless, extra couplings to other

operators could be present, if allowed by the gauge (and global) symmetries of the full lagrangian.
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in section 3.1. Besides, ξ constitutes a rough measure of the degree of fine-tuning in the
model.5 We shall aim, for concreteness, at ξ ' 0.1, representing a 10% fine-tuning, which
would be highly competitive with respect to alternative scenarios (e.g. supersymmetric
constructions). Note that v ' 246 GeV and ξ ' 0.1 imply f ' 750 GeV, which we take as
a reference value.

2 Gauge coupling evolution

In the spirit of GUTs, we assume that the SM gauge interactions have a common strength at
high energies, which we observe at low energies as three different gauge couplings due to the
GUT spontaneous symmetry breaking, occurring at the scale MGUT, and the consequent
differential running to lower energies. Actually, an indication in favour of this assumption
is provided by the SM particle content, since the evolution of the SM gauge couplings
from the EW scale to high energies yields a rough convergence of their values, at the 20%
level. The contribution of the SM fields to the renormalization of the gauge couplings can
be parametrized at one-loop by the β-function coefficients bSM

i , where i = 1, 2, 3 refer to
the U(1)Y, SU(2)L, SU(3)C groups, respectively. While the contribution of the fermions is
universal (i.e. independent from i), since they fill complete SU(5) multiplets, the ones of
the gauge bosons and of the Higgs are not.

The usual test for gauge coupling unification at one-loop consists in the comparison
of the ratio of β-function coefficients, R ≡ (b1 − b2)/(b2 − b3), with the value determined
by the measurements of the gauge couplings at the scale mZ , Rexp = 1.395 ± 0.015. The
SM prediction is RSM ' 1.9. Although thresholds might arise at scales close to MGUT or
at intermediate scales, there are no observational nor theoretical reasons why they should
be large enough to achieve precision unification. On the other hand, the new physics
associated with EWSB, which is required in particular to address the hierarchy problem,
may significantly contribute to the β-function coefficients and improve unification with
respect to the SM. We explain in the following how the needed states can arise in the
context of composite-Higgs models [39].

2.1 Composite sector contribution to the β-functions

In general, a new strongly coupled sector may modify completely the gauge coupling evolu-
tion with respect to the SM. If such a sector is responsible for EWSB, it necessarily affects
at leading order the evolution of the SU(2)L and U(1)Y couplings above the composite-
ness scale Λc. While in the SM the contribution of the Higgs doublet to the evolution is
relatively small, a larger number of degrees of freedom seems required to break the EW
symmetry dynamically, so that no study of gauge coupling unification is feasible if the
contribution of the composite sector cannot be computed.

5Composite models naturally tend to predict v = f (or v = 0), which is ruled out phenomenologically

(see section 3.1). Achieving a separation of scales requires a tuning of the parameters of the model,

specifically of those responsible for the generation of the Higgs effective potential: this is the incarnation,

in composite-Higgs scenarios, of what is customarily dubbed as the little hierarchy problem.
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Besides the obstruction to perturbative computations around the scale Λc, that in-
troduces a possibly large threshold, we do not know the structure of the EWSB sector
between Λc and the unification scale MGUT, making the analysis of unification highly
model-dependent. Still, some deal of information may be extracted on the basis of sym-
metry considerations and of the consistency with electroweak data, as we now describe.

As a first general consideration, recall that the composite sector is supposed to stabilize
the hierarchy between the electroweak scale and the unification (Planck) scale. This is
achieved thanks to its approximate conformal symmetry, broken only at low energies ∼ Λc.
Then, if the composite sector is nearly conformal and weakly coupled to a set of external
gauge fields, its main contribution to the running of the external gauge couplings will be
logarithmic [40].6 This is precisely what happens in theories with no intermediate scales,
like the SM between the electroweak and the Planck scale, or SU(3)C×U(1)em above ΛQCD,
where QCD is described by quarks and gluons.

Therefore, the contribution of the composite sector to the running of the gauge cou-
plings αi ≡ g2

i /4π, as a function of the renormalization scale µ, can be written as

d

d lnµ

(
1
αi

)
⊃
bcomp
i

2π
, (2.1)

and can be visualized diagrammatically as in figure 1. In general, the relative values of the
coefficients bcomp

i cannot be computed perturbatively, nor the absolute size can be estimated
in a model-independent way. Still, it was shown by Polyakov that bcomp

i > 0 [40], and recent
studies aim to put lower bounds on these coefficients, as a function of the dimension of the
scalar operators of a generic CFT [46, 47]. These bounds could be of particular relevance
for unification. Here we will assume that bcomp

i is small enough for the SM gauge couplings
not to hit a Landau pole before MGUT.7

The differential running, that is, the dependence on the scale µ of the quantities
δij(µ) ≡ 1/αi(µ)−1/αj(µ), is affected at leading order by incomplete SU(5) representations,
e.g., in the case of the SM, the gauge bosons and the Higgs doublet. One knows, therefore,
the amount of “SU(5) breaking” that should be introduced with respect to the SM in
order to achieve precision unification. Then, the question is whether there are symmetries
of the EWSB sector that allow to compute its contribution to the differential running,
independently from the strong dynamics.

6The fact that the sector is conformal does not mean that it cannot contribute to the scale dependence

of external fields coupled to it. What does not run is the intra-composite coupling. Technically, the

logarithmic running follows from the fact that the correction to the gauge boson propagators is given by

〈JJ〉CFT insertions, where J is the CFT current coupled to the gauge bosons, and conformal invariance

implies that 〈J(p)J(−p)〉 ∝ p2 log p2 [40, 44, 45].
7A warped extra-dimensional scenario yields bcomp

i = 2π/(α
(5)
i k) ∼ N , where k is the AdS curvature

radius, α
(5)
i are the five-dimensional gauge couplings, and N is the number of colours of the dual conformal

theory [44, 45]. However, the calculability in the warped extra-dimension requires a small ratio between

the number of flavours and the number of colours, F/N � 1, since this is the expansion parameter of the

theory. Unfortunately, in the scenario discussed in this paper, the number of flavours has to be large, due

to the large global symmetry group G, while the absence of a Landau pole requires bcomp
i αi(MGUT)/2π ∼

Nαi(MGUT)/2π � 1, posing an upper bound on N . Therefore we will not rely on warped extra-dimension

estimates nor on large-N arguments in this work.
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i i

Figure 1:

1 A

1

Figure 1. Diagrammatic representation of the leading-order contribution from the strong sector
to the SM gauge coupling running, parametrized in eq. (2.1).

A straightforward (perhaps, the only) possibility [39] is to assume that the EWSB
sector has a global symmetry G, which is a simple group containing GSM (therefore G can
be SU(5) or a larger simple group). In this case the EWSB sector does not contribute to δij
at the one-loop level, because bcomp

i = bcomp for i = 1, 2, 3. Besides, since the Higgs doublet
H arises as a light composite state from the G-symmetric sector, it does not contribute to
the running. At most, it gives a small contribution below Λc, the scale where G is broken
spontaneously to K, that may be non-simple. Similarly, all low energy composite states
may contribute to the differential running only below Λc, as a sub-leading threshold effect.

In particular, if some of the SM fields are composite, they do not contribute to the
differential running above Λc, therefore it is convenient to denote with belem

i the β-function
coefficients of the elementary SM fields only. Specifically, when H is part of the composite
sector, the SM prediction RSM ' 1.9 is modified by the subtraction of H, giving RSM−H =
2. The extra required correction to achieve precise unification will be provided by the
interactions between the elementary and the composite fermions, as we now discuss.

The interactions of the elementary fields with the composite sector break explicitly
G and thus their effect on the differential running must be quantified. These are the SM
gauge interactions of composite operators, eq. (1.3), as well as the fermion mixing terms,
eq. (1.4). The contribution of these interactions to the running can be parametrized as [39]

d

d lnµ

(
1
αi

)
⊃
Bcomp
ij

2π
αj
4π

+
Ccomp
iψ

2π
λ2
ψ

16π2
, (2.2)

where j is summed over SM gauge bosons, and ψ over fermions. These are formally two-
loop contributions, as shown in figure 2, but with unknown coefficients. Since they are not
universal, and not calculable a priori, they constitute an intrinsic theoretical uncertainty on
unification in this scenario.8 These non-leading corrections can be as large as the leading
ones if the mixing with the composite sector is large, as it is the case for the top quark.

2.2 Top compositeness and precision unification

Since the values of the SM gauge couplings gi are fixed by experiment, the only couplings
between the elementary and composite sectors that could modify significantly the running
are the λψ’s which, in the framework of partial-compositeness, are related to the Yukawa

8Note that these two-loop contributions can be interpreted as threshold corrections associated with the

ultraviolet brane in the warped extra-dimension picture. They can be explicitly computed by integrating

over the bulk, and they are enhanced by the logarithm of the ultraviolet-infrared hierarchy.
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i i

Aj

i i

ψ

Figure 1:

1 A

1

Figure 2. Example of sub-leading diagrams contributing to the differential running of the SM
gauge couplings, on the left with a loop of elementary gauge bosons, and on the right with a loop
of elementary fermions.

couplings as explained in section 1.1. Explicitly, below Λc the couplings in eq. (1.4) gener-
ate, e.g. for a right-handed fermion ψR, the lagrangian

− L ⊃ (λψRf)ψRΨL +MψRΨRΨL + h.c. , (2.3)

where Ψ is a vector-like composite fermion (with the gauge quantum numbers of ψR)
that arises as an excitation of the operator OψR . By diagonalizing the associated mass
matrix, the massless SM fermion can be written as ψSM

R = cos θψR ψR + sin θψR ΨR, with
tan θψR = λψRf/MψR . The fact that MψR ' gρf then leads to eq. (1.5).

The ψR composite component becomes large when sin θψR ∼ 1, which requires a
strongly coupled elementary field, λψR ∼ gρ. Then, the last term in eq. (2.2) may be-
come as large as a one-loop contribution:

d

d lnµ

(
1
αi

)
⊃
Ccomp
iψR

2π
|λψR |2

16π2
∼
Ccomp
iψR

2π
g2
ρ

16π2
∼ O(1)

2π
, (2.4)

where in the last step we used the rough strong coupling estimates gρ ∼ 4π and
Ccomp
iψR

∼ O(1).9

Motivated by the large mass of the top quark, a natural possibility is to take the
coupling of the right-handed top tR to be large, thus making the SM top quark mostly
composite.10 In this case the distinction between composite and elementary fields becomes
ambiguous: the large G-violating coupling λtR introduces a large uncertainty in the pre-
diction for unification. The composite sector dynamics is significantly modified by λtR ,
that cannot be treated as a small perturbation any longer. To overcome this ambiguity,
one is led to consider the possibility of full compositeness of tR as proposed in [39], that
is a scenario with no elementary state with the quantum numbers of tR in the low energy
theory. The role of the right-handed top is then played by a composite state, denoted for
simplicity tR, belonging to a chiral K-multiplet TR ≡ (tR, xR), which is assumed to be

9The large-N estimates would be gρ ∼ 4π/
√
N and Ccomp

iψR
∼ O(1)N , where N is the number of colours

of the strongly coupled theory (thought of as a QCD-like theory).
10In general, the tL cannot be mostly composite, since gauge invariance would imply that bL is also

mostly composite, which is strongly disfavoured by measurements of the Zbb̄ coupling. However, this could

be cured, as we will briefly review in section 3.1, if the theory respects an extra parity symmetry [48]. The

alternative possibilities of mostly composite bR or τR [49] may also be interesting.
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massless before EWSB (no partner TL exists). Then, due to the unified G-symmetry of the
composite sector above Λc, the contribution of tR must be subtracted from the β-function
coefficients belem

i .
If the low energy content of the elementary sector were just given by the SM without H

and tR, the ratio of β-function coefficients would be RSM−H−tR ' 1.7, which is closer to but
still far from the experimental value. However, a closer look at the composite-top scenario
reveals that other chiral elementary fermions are needed to make the theory consistent. We
give below two independent arguments leading to this conclusion. In particular, under well-
motivated assumptions, we will show that a state t′L with SM charges (3,1)2/3 should also
be subtracted from the differential running, so that the correct expectation for unification
turns out to be RSM−H−tR−t′L ' 1.45, which is remarkably close to Rexp.11 In this scenario
one may argue that precision unification is realized.

The first argument goes as follows. The elementary fermions of the complete GUT
theory must belong to full GGUT-multiplets. The symmetry breaking at the GUT scale
may well split the GGUT-multiplets containing the elementary SM fermions, giving a mass
∼ MGUT to the elementary right-handed top, telem

R , but not to the other SM species.
However, the components which acquire a mass ∼ MGUT must form vector-like pairs (or
be Majorana fermions, e.g. sterile neutrinos). Therefore, the remaining massless states
should form full GGUT-multiplets up to vector-like pairs of states. The decoupling of each
vector-like pair amounts to the subtraction of its contribution from the gauge coupling
evolution. In particular, telem

R may decouple only if it pairs with an exotic fermion t′L, and
thus one achieves precision unification as described in the previous paragraph. Note that
unification is enforced only by (i) the Higgs and right-handed top compositeness, and (ii)
the G-symmetry of the composite sector. In addition, exotic chiral fermions are predicted,
in order to complete the GGUT-multiplet of t′L.

We remark that this first argument holds only when the GUT symmetry is fully real-
ized in four dimensions. On the contrary, in extra-dimensional scenarios where the GUT
symmetry is realized in the bulk and it is broken explicitly on our brane by boundary
conditions, the 4-dim chiral fermion zero-modes do not need to fill GGUT-multiplets (see
e.g. ref. [62–67]). In fact, in this case there is no unified gauge symmetry on our 4-dim
brane. In these scenarios it may still be sensible to study precision unification of the 4-dim
gauge couplings at MGUT, since GUT scale thresholds can be kept small; then, one cannot
appeal to the above argument to subtract t′L from the running.

The second argument for the existence of exotic fermions [39] applies when the K-
multiplet containing the right-handed top also contains other states, TR ≡ (tR, xR). Then,
the extra chiral fermions xR necessarily require conjugate partners, in order to acquire a
mass large enough to satisfy the experimental bounds. Also, such partners are needed to
cancel the gauge anomalies, that were absent with the SM fermion content, but would be
generated by the chiral fermions xR alone. Therefore, one must introduce exotic elementary
fermions xL, with the same charges of xR (see also ref. [50]). It is equivalent, and perhaps

11The MSSM predicts RMSSM = 1.4, but this sharp agreement with experiment at one-loop level is

deteriorated when higher order corrections are included.
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more elegant, to introduce a set of elementary exotic fermions {t′L, xL} that have the
quantum numbers of a full K-multiplet, with a lagrangian

− L ⊃Mt t′Lt
elem
R +

(
λt′t
′
LtR + λxxLxR

)
f + h.c. . (2.5)

The elementary t′L pairs with telem
R making it super-heavy, withMt ∼MGUT, the elementary

xL pairs with the composite xR acquiring a mass mx = λxf , and the composite tR remains
massless (neglecting the tiny mixing ∼ f/MGUT).

The exotic fermions contribute of course to the gauge coupling evolution, in a way that
depends on the choice of K and of the K-representation containing tR, i.e. TR. However,
when K is simple, the prediction for unification is univocal: the composite fermions form full
SU(5) representations, and so does the set {t′L, xL}. As a consequence, the addition of xL
to the differential running is equivalent to the subtraction of t′L, realizing precise unification
as already discussed. Note that the case of simple K tallies with the first argument for
exotic fermions. When K is not simple, the prediction for unification becomes model-
dependent. Precise unification can still be obtained, if the set of xL corrects appropriately
the β-function coefficients, that is, if RSM−H−tR+xL ' Rexp. We will come back briefly to
this possibility at the end of section 3.2.

A comment is in order on the field content of the elementary sector at the EW scale.
In general, composite-Higgs scenarios might have the potential to avoid the doublet-triplet
splitting problem of supersymmetric GUTs, since H emerges from the composite sector at
the EW scale, independently from the GUT symmetry breaking sector. However, we have
shown that to achieve unification one needs to introduce light elementary fermions in split
SU(5) representations, contrary to the supersymmetric case. We will see in section 3.3 that
such splitting is needed also to prevent proton decay.

Finally, one may wonder if gauge anomalies constrain the emergence of chiral fermions
from the composite sector and/or the set of chiral fermions of the elementary sector. In
fact, if a G-symmetric sector that undergoes condensation were anomalous under the SM,
one would predict that the composite spectrum contains chiral fermions, because they must
reproduce the anomaly (see e.g. ref. [50]). Of course such anomaly should be compensated
by the elementary sector: in particular, a composite tR must be compensated by the absence
of telem

R , to recover the usual SM anomaly cancellation. The composite sector may well be,
instead, anomaly-free. In fact, this is automatically the case when its global symmetry G
contains a subgroup SO(10) ⊃ GSM. Then, either the composite sector contains no chiral
fermions at all, or it contains a set that is anomaly free (e.g. a full SO(10) representation).
In this case also the elementary sector should be anomaly free (e.g. the SM fermions plus
a full SO(10) representation of exotic fermions). In all cases, the composite-GUT scenario
under consideration is consistent by construction, since it has the SM chiral fermion content
plus a set of vector-like fermions (both partially composite).

3 Global symmetries of the composite sector

In this section we identify the global symmetries of the strongly interacting EWSB sector.
We begin with a review of the constraints coming from the electroweak precision tests
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(EWPTs), that will restrict the choice of the global symmetry group. The reader already
familiar with EWPTs can move directly to section 3.2, where the minimal groups compat-
ible with precision unification are classified. We then confront with the constraints coming
from baryon and lepton number conservation. Finally, having determined all the needed
global symmetries, we specify the quantum numbers of the exotic fermions associated with
the composite top quark, and we estimate their contributions to EWPTs.

3.1 Constraints from the electroweak precision tests

In this section we shall briefly review the constraints on the EWSB sector coming from
EWPTs, specializing to the case of composite-Higgs models. As customary, when evaluat-
ing extensions of the SM, we shall resort to an effective field theory description, following
closely the analysis given in ref. [43], where the relevant higher dimensional operators have
been studied (we will use the same conventions). These are generated by the strong dynam-
ics, and in particular they generically arise through tree-level exchange of heavy resonances.
Therefore, such operators will be suppressed by powers of mρ. However, this naive estimate
has to be refined with some further considerations: (i) The Higgs H belongs entirely to the
composite sector, and therefore it couples to it with strength gρ, so that higher dimensional
operators modifying the EW vacuum or the H properties shall be suppressed by powers of
gρ/mρ = 1/f . (ii) The SM particles couple to the composite sector with strength dictated
by partial-compositeness: each gauge boson Ai has coupling gi, while each chiral fermion ψ
couples with strength λψ. This is particularly relevant for the composite right-handed top
quark tR, which couples with strength λtR = gρ as the Higgs; the analysis of the viability
and the consequences of a fully composite top quark has been presented in [52]. (iii) The
low energy particle content of the composite GUT models, below the scale mρ, is not that
of the SM, since new light particles arise as the K-partners of both H and tR. The effects
that these might have on precision observables are model dependent, and will be studied
in section 3.5, after the relevant features of our scenario will have been settled.

We begin by recalling that electroweak data strongly favour the presence of a light
Higgs-like particle in the spectrum [56]. The attempts to break the EW symmetry with-
out a Higgs doublet, such as technicolour or Higgsless models, are generically difficult to
reconcile with EWPTs, in particular due to large deviations in the Peskin-Takeuchi S and
T parameters [57], with respect to the SM prediction. This motivates a preference for
composite-Higgs models, in particular those where H arises as a NGB from the strong dy-
namics, since in this case a hierarchy between the EW scale and mρ naturally arises [43, 58].

Next, let us motivate the requirement that the new physics should be custodially sym-
metric, that is, it should (at least approximately) respect the SU(2)c custodial symmetry
under which the three would-be NGBs, eventually eaten by the EW gauge bosons, trans-
form as a triplet [59]. In our scenario, where EWSB is driven by the Higgs boson, this
requirement translates into the requisite that the unbroken global symmetries of the com-
posite sector, i.e. the group K, should contain a subgroup SO(4) ∼= SU(2)L× SU(2)R, with
H transforming in the representation 4 ∼= (2,2). In this case, when the EW symmetry is
broken by 〈H〉 ∝ diag(v, v), the SU(2)c diagonal subgroup of SU(2)L × SU(2)R remains
unbroken. The custodial symmetry is necessary to avoid large corrections to the tree level
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relation m2
W /(mZ cos θW )2 = ρ = 1, that may arise from the operator

cT
2f2
|H†
←→
DµH|2 , T̂ ≡ ∆ρ = −cT ξ , (3.1)

with cT = O(1), as prescribed by NDA, and ξ ≡ v2/f2. This operator can be generated
purely by the strong dynamics, in the sense that cT does not vanish in the limit gelem → 0.
It is extremely constrained by present data: −1.0 . 1000 T̂ . +2.1, where we projected
on the T̂ -axis the 95% C.L. ellipse in the Ŝ − T̂ plane [55]. In order to minimize the fine-
tuning in our scenario, i.e. to allow for a higher value of ξ compatible with the experimental
constraints, the ∆ρ estimate given above implies that custodial symmetry must be imposed,
because it automatically leads to cT = 0. Similar conclusions can be drawn by analyzing
the corrections to ρ due to SU(2)c-violating operators involving a composite tR, so that
custodial symmetry emerges as a generic requirement for the whole strong sector.12

The other major source of concern, especially in strong dynamics scenarios, comes
from the Ŝ parameter.13 The composite sector will generically generate the operators

icW g

2m2
ρ

(H†σi
←→
DµH)(DνWµν)i +

icBg
′

2m2
ρ

(H†
←→
DµH)(∂νBµν) , Ŝ ≡ (cW + cB)

m2
W

m2
ρ

, (3.2)

with the NDA estimate cW , cB = O(1).14 The projection of the 95% C.L. ellipse in the
Ŝ − T̂ plane [55] gives −1.7 . 1000 Ŝ . +2.1, that leads to the constraint mρ & 2.5 TeV.
For a benchmark value f = 750 GeV, this gives gρ & 3.3, that lies within the window
between gelem and 4π, the perturbativity limit for the coupling between resonances. In
other words, the bound on Ŝ pushes to larger values of gρ for a fixed f , which in turn
should not be much larger than v to avoid fine-tuning.

In composite-Higgs models, both T̂ and Ŝ receive an additional contribution, arising at
one-loop level because of the modified couplings of the Higgs to the gauge bosons. These
couplings, which in the SM are such that WW scattering is unitarized, are suppressed
due to the NGB nature of the Higgs boson. This leads to a mild sensitivity of the EW
precision observables to the ultraviolet cut-off of the effective lagrangian for the NGBs,
Λ ∼ 4πf/

√
nNGB ∼ mρ (as well as to the requirement of WW scattering unitarization

by massive vector resonances). The leading effect can be accounted for by taking the SM
expressions for T̂ and Ŝ in the heavy Higgs approximation, and replacing the Higgs mass
mh with an effective mass [58]:

meff
h = mh

(
Λ
mh

)δ
. (3.3)

The exponent accounts for the modification of the Higgs coupling to gauge bosons, that in
the present scenario is given by ghWW =

√
1− ξ gSM

hWW , so that we have δ = ξ. Then, one
12Here we are neglecting model dependent contributions to cT , due to couplings between the strong sector

and the SM fields, which depend on gelem and will be estimated later.
13Other parameters associated to the EW gauge boson properties are higher order in the number of

derivatives, and they typically do not pose strong constraints [56].
14This estimate is actually confirmed in holographic composite-Higgs models [5, 6, 53] or other strongly

interacting EWSB models with hidden local symmetries, see [54] for a review.
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has

∆T̂ ' −
3GFm2

W

4
√

2π2
tan2 θW log

[
meff
h

mref
h

]
, ∆Ŝ '

GFm
2
W

12
√

2π2
log

[
meff
h

mref
h

]
, (3.4)

where GF is the Fermi constant, θW the Weinberg angle, and mref
h ' 117 GeV is the

reference Higgs mass that we adopted to define the allowed experimental ranges for T̂ and Ŝ.
The last of the primary EWPTs that our scenario faces is the correction to the Zbb̄

vertex. Experimentally, the coupling of the Z boson to the left-handed bottom quark
current is known at the per mil level, −15 . 1000 δgbL/gbL . +2 at the 2σ level [60], if
one allows for variations in gbR (the coupling of the Z to the right-handed bottom).15 This
suggests the introduction of a symmetry in the EWSB sector, and in its couplings to the
elementary SM particles, in order to prevent large corrections to gbL . Such a symmetry
has been identified in [48]: the composite operator coupled to bL must transform under
SU(2)L× SU(2)R as an eigenstate of the parity PLR exchanging SU(2)L with SU(2)R, that
is to say, it has TR3 = TL3 . This possibility is realized in one of the models we shall consider
later. In this case the corrections to gbL due to the composite sector are absent, more
precisely δgbL = 0 at tree-level and for zero transferred momentum [48].

If one cannot enforce such symmetry protection mechanism, strong constraints on the
parameters of the model come from the limits on δgbL/gbL . This effect can be parametrized
by the higher dimensional operators

ic
(1)
L

m2
ρ

(
H†DµH

)
(qLγµqL) +

ic
(3)
L

2m2
ρ

(
H†σiDµH

) (
qLγ

µσiqL
)

+ h.c. ,

δgbL
gbL

=

(
c

(1)
L + c

(3)
L

)
ξ

2
(
1− 2

3 sin2 θW
)
g2
ρ

, (3.5)

where qL is the top-bottom quark doublet. The coefficients c(1),(3)
L depend on the coupling

of qL to the composite sector, so that NDA gives c(1),(3)
L = λ2

q ×O(1). Assuming no cancel-
lations are present, the estimate δgbL/gbL ∼ (λq/gρ)2ξ puts a strong bound on the degree
of compositeness of qL and/or on ξ. Actually, since tR is fully composite in our scenario,
λq ' yt is determined by the requirement to reproduce the observed top Yukawa. This
implies a bound mρ & (1.4, 3.9) TeV, depending on the sign of the correction, which we
cannot predict. This bound therefore can be even stronger than the one from Ŝ. Never-
theless, the absence of a protection mechanism remains an open possibility. As a matter
of fact, the data on gbR suggests that beyond the SM physics might affect significantly the
SM fit for gbL (see for instance ref. [60]).

When the PLR symmetry introduced before is adopted, the tree-level contribution to
δgbL vanishes (c(1)

L = −c(3)
L ), and we only expect loop corrections to give a new physics

15Actually, the measured value of gbR does not agree well with the SM prediction: the data on the

forward-backward asymmetry and the branching fraction of Z into b’s suggest that gbR should be larger

than the SM value, gSM
bR
' sin2 θW /3, by roughly 20%: the best fit is given by δgbR ' 0.016, with a 2σ

range δgbR ∈ (0.000, 0.030) [60]. This is the interval we adopted to determine the allowed range for δgbL .

If instead δgbR = 0 were enforced, the bound would become 0 . 1000 δgbL/gbL . +2 at the 2σ level.
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G → K RNGB ΣiR
i
Kmin

(a) SO(11)→ SO(10) 10 (1,2,2)0 + (3,1,1)−2/3 + (3̄,1,1)+2/3

(b) SO(11)→ SO(7)× SU(2)× SU(2) (7,2,2) (1,2,2)0 + (3,2,2)−2/3 + (3̄,2,2)+2/3

(c) Sp(10)→ Sp(8)× SU(2) (8,2) (1,2,2)0 + (3,1,2)−2/3 + (3̄,1,2)+2/3

or
(1,2,2)0 + (3,2,1)−2/3 + (3̄,2,1)+2/3

Table 1. Symmetry breaking patterns G → K satisfying the requirements i)-iii), with the minimal
restriction rank(G) = 5. The NGB representations under K and Kmin are reported in the third and
fourth column, respectively.

contribution of the order δgbL/gbL ∼ (δgbL/gbL)SM(yt/gρ)2ξ, where (δgbL/gbL)SM is the SM
top-loop contribution. This correction is safely below the experimental precision. Further
loop corrections associated to tR compositeness are under control [52].

In addition to the deviations from the SM predictions for T̂ , Ŝ and the Zbb̄ coupling,
also the couplings of tR will be significantly modified, due to its composite nature. However,
there are no stronger constraints from present data. Such deviations could be observed (and
eventually top-compositeness could be discovered) in the near future [52], by inspection of
early LHC data.

3.2 Minimal global symmetry breaking patterns

The discussion of the previous sections leads to the following requirements on the global
symmetry breaking pattern G → K of the composite sector:

i) G ⊃ SU(5), in order to avoid leading order contributions to the differential running of
the SM gauge couplings, that would spoil the calculability of unification.

ii) K ⊃ Kmin ≡ SU(3)C × SU(2)L × SU(2)R × U(1)′. The SU(2)R factor is needed to
maintain a residual custodial symmetry after EWSB, while the extra abelian factor
U(1)′ is necessary to properly embed the hypercharge gauged group U(1)Y. In fact,
the simplest embedding Y = TR3 turns out to be incompatible with the required
hypercharges of composite fermions (which mix with the SM elementary ones).

iii) The broken generators in G/K must include a (1,2,2)0 multiplet of Kmin, which
corresponds to the NGBs with the quantum numbers of the Higgs doublet.

With these requirements, the rank of G should be equal or larger than 5. We find that
there are only three possibilities with rank 5, listed in table 1. We indicated with RNGB the
K-representation of the broken generators in G/K, i.e. of the NGBs of the composite sector.
In the last column we provided the decomposition of RNGB under Kmin, with an arbitrary
normalization of the U(1)′ charges (corresponding to the standard B − L embedding, for
the case K = SO(10)). Note that in option (c), SU(2)L may or may not be identified with
the SU(2) factor external to Sp(8).
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The group K indicated in table 1 is the maximal subgroup of G satisfying the require-
ments i)-iii), but in all the three options the unbroken subgroup could actually be as small
as Kmin. Of course, if a non-maximal K is chosen, further NGBs appear, besides those
listed in table 1. We expect the possibilities with rank(G) > 5 to be generalizations of
these three cases with no qualitatively new features.16

The hypercharge of composite states depends on the embedding of U(1)Y into SU(2)R×
U(1)′, which is given in general by Y = αTR3 + β Y ′. To enforce custodial symmetry in
the simplest possible way, we asked for the Higgs doublet H to transform as (2,2)0 under
SU(2)L × SU(2)R × U(1)′, so that one needs α = ±1 to obtain Y (H) = ±1/2, while β
can be determined only by an additional requirement. In particular, the hypercharge of
the colour triplet NGBs, T , that are present for all three breaking patterns (a)-(c), is not
fixed in general.

Consider for definiteness the case K = SO(10) with the normalization Y ′ = (B −
L)SO(10), that is, the customary B − L generator within the global SO(10) symmetry,
not to be confused with the B − L symmetry of the SM. If one requires the SM fermion
quantum numbers to fit into a spinorial 16 representation of SO(10), one finds two solutions:
Y = TR3 + Y ′/2 (standard SU(5) embedding into SO(10)) or Y = −TR3 + Y ′/2 (flipped
SU(5)). Then the colour triplet NGBs have Y (T ) = ±1/3. In the following, we will also
consider a different possibility, that is, to embed tR into a 10 representation of SO(10). In
this case the two available solutions are Y = ±TR3 − Y ′ and the colour triplet NGBs have
Y (T ) = ±2/3.

Besides the light NGB scalar resonances, listed in table 1, in the composite-tR limit
one expects in general light fermionic resonances, corresponding to the partners of tR
filling a K-multiplet, and to the exotic elementary fermions that pair with them to form
vector-like massive states. In principle, these fermion states can be absent all together, if
the SM state tR ∼ (3,1)2/3 forms a full K-multiplet by itself. This requires K = Kmin,
tR ∼ (3,1,1)Y ′(tR) and Y (tR) = β Y ′(tR) = 2/3. In all other cases exotic fermions are
needed, with quantum numbers determined by the choice of the symmetry breaking pattern
and of the K-multiplet TR containing tR.

As discussed in section 2.2, the set of exotic fermions determines the fate of gauge
coupling unification. A sufficient condition to realize it accurately is to take K simple.
This is the case only for the symmetry breaking pattern (a), with the largest possible
unbroken subgroup, K = SO(10). This is the model whose phenomenology we will study
in detail, motivated by unification.17

When K is not simple, one can still hope to realize unification, if RSM−H−tR+xL '
Rexp, where xL is the set of exotic fermions. To realize the latter condition, one should
carefully choose K and the K-multiplet TR. First, notice that in the SM α1 and α2 meet
at ∼ 1013 GeV, which is too early to unify with α3 as well as to prevent gauge-mediated

16Note that when the rank is larger than 5, the possibility appears of semi-simple groups of the kind

SU(4)A × SU(4)B × PAB or SU(3)3 × Z3, where unification is enforced by a permutation symmetry.
17Besides, the coset SO(11)/SO(10) has the advantage of being the smallest coset of our list, with nNGB =

10. This is a desirable feature, since the ultraviolet cut-off of our effective lagrangian for the NGBs is

Λ ∼ 4πf/
√
nNGB.
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proton-decay (see section 3.3). To delay unification one needs a correction ∆(b2 − b1) > 0.
If K contains SU(2)L as an isolated factor, TR must be a singlet of SU(2)L in order to
contain tR, and thus exotic fermions do not contribute to b2. In order to increase b2, one
should resort to models where SU(2)L is part of a larger simple group, SU(2)L ⊂ KL ⊂ K,
and TR contains SU(2)L-non-singlet components. This is possible only for the symmetry
breaking pattern (c), with the maximal unbroken subgroup K = Sp(8) × SU(2) and with
SU(2)L ⊂ Sp(8). However, inspecting small K-representations, we did not find one that
contains tR and leads to reasonably good unification: the required contribution to b2 is
compensated by large contributions to b1 and b3, that go in the wrong direction. We will
not study further the case with K non-simple in the following.

3.3 Constraints from proton stability

As usual in GUTs, the stability of the proton is endangered by baryon number violating
interactions. These manifest in the SM effective lagrangian as higher dimensional operators
suppressed by the scale ΛB of baryon number violation. In the elementary sector, this scale
is the mass of GUT gauge bosons, ΛB ∼MGUT. The interactions with the composite sector,
however, may violate baryon number (and lepton number) at much smaller scales ∼ mρ,
thus invalidating the whole program of composite GUTs. Let us briefly comment, first, on
the usual gauge-mediated proton decay at MGUT, and next move to the requirements to
be imposed on the composite sector.

We explained how the differences of gauge coupling β-function coefficients, bi − bj ,
which control the differential running at leading order, can be determined thanks to the
global symmetry G of the composite sector. This not only allows the prediction for α3

from the experimental values of α1,2, but also fixes the value of the scale MGUT, where α1

and α2 meet. With our recipe for precision unification, that is, with an elementary field
content given by SM−H− tR− t′L, one finds MGUT ' 6 ·1014 GeV, which is a factor of ∼ 7
smaller than the lower bound on GUT gauge boson masses in the minimal SU(5) model,
MV & 4 · 1015 GeV.18 This gap shall be cured either by two-loops corrections, that may be
enhanced by the strong dynamics, or by GUT thresholds, or by special structures of the
Yukawa couplings leading to cancellations in the proton-decay operators (these can relax
the lower bound on MV by more than one order of magnitude [61]). Also, if GUT breaking
is realized in extra-dimensions by orbifolding, proton-decay operators can be forbidden or,
more in general, their structure can be significantly different [62–67]. We do not elaborate
more on these issues, since we do not control the strong dynamics at the two-loop level
and we do not specify the theory at the GUT scale in this paper.

Let us now discuss possible low-energy sources of baryon and lepton number violation.
While in the SM B and L are accidental symmetries of the renormalizable lagrangian (due
to the gauge symmetry and the SM field content), in general the composite states may
mediate B- and L-violating processes. This is particularly worrisome in view of the unified
G-symmetry of the composite sector, that will contain states with the charges of the SM

18In the MSSM MGUT ' 2 · 1016 GeV, however supersymmetry enhances Higgs-mediated p-decay (since

it is induced by dimension 5 operators), thus requiring an additional suppression.
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ones together with their G-partners. Therefore, one a priori expects e.g. resonances at the
scale mρ with the same quantum numbers of the SU(5) gauge bosons V . The couplings
of these resonances to the SM elementary fermions (in particular those contained in the
proton), as given in eq. (1.4), will induce B-violating operators of the form

λiλjλkλl
m2
ρ

ψiψjψkψl ∼
√
yiyjykyl

f2
ψiψjψkψl , (3.6)

where we used the rough relation λi ∼
√
yigρ, in order to illustrate that these operators

cannot be sufficiently suppressed, if one wants to properly reproduce the SM Yukawa
couplings.19 Similarly, the dimension-5 operator λ2

l liljHH/mρ could be induced, that
would violate L, generating Majorana neutrino masses far too large with respect to the
observed ones.

One is then forced to postulate additional symmetries, to prevent too large B and L

violations. Note that additional symmetries are also required in supersymmetric models:
in particular, with the particle content of the MSSM, one needs to impose R-parity in order
to forbid B and L violating dim-4 interactions; this is sufficient in such weakly coupled
theories, because one can assume that higher dimensional operators are generated only at
scales much larger than the EW scale. In the composite GUT scenario, the extra symmetry
should forbid also, at the very least, the dimension-5 and -6 operators. This extra “matter”
symmetry, denoted by GM , shall be part of the global symmetries of the composite sector,
either within the simple unified group, GM ⊂ G, or factored out, G × GM . Besides, it
should be extended consistently to the elementary sector, that is, it must be (to very good
approximation) a symmetry of the whole effective lagrangian in eq. (1.1), and it should be
preserved up to scales ∼MGUT. In other words, while B and L are accidental symmetries
of the SM alone at low energy, the symmetry GM must be imposed by hand on the couplings
of the SM elementary fields to the composite sector.

To see concretely how proton decay arises and how it can be forbidden, let us consider
the simple case of K = SU(5), left unbroken at Λc. If the Higgs doublet H belongs to a
composite multiplet 5 ∼ (H,T ), the coloured triplet T can mediate proton-decay, as it is
well-known. Clearly, there is no generator internal to K that can prevent the couplings
of T to SM fermions, without preventing at the same time the required couplings of H.
Therefore, one is forced to introduce an extra global symmetry external to K. The most
obvious option is U(1)B with (i) the usual B-assignments of elementary fermions, (ii)
B(H) = B(T ) = 0, as required since H and T belong to the same K-multiplet; (iii)
B(TR) = 1/3, in order to allow for the Yukawa coupling of tR ∈ TR.20

The same reasoning can be applied to the realistic case K = SO(10) (we saw that
K = SU(5) is too small to accommodate the custodial symmetry), imposing a U(1)B

19Even if composite resonances coupling directly to the four elementary fermions are absent, B-violating

operators can be generated through non-perturbative effects by the strong sector, suppressed generically

by the scale Λc. This suppression is again far too small.
20Alternative choices could be e.g. U(1)3B+L, which may be inspired by Pati-Salam unification and allows

for proton-decays into three leptons (these require operators with dimension larger than 6 and may be

sufficiently suppressed [68]). In principle, even a discrete symmetry could be enough to guarantee the

proton stability.
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symmetry external to SO(10) (and therefore also to SO(11)). However, in the SO(10)
case there is a second, slightly more economical, possibility: to identify the action of B
on the composite states with the action of one of the K generators. In fact, once the
embedding of the SM subgroup SU(3)C×SU(2)L×U(1)Y into K is chosen, one is left with
one independent linear combination of the generators in the Cartan subalgebra of SO(10),
that is an independent U(1)X symmetry, and one can take B(φcomp) = X(φcomp) for any
composite field φcomp. Since B acts on elementary fermions as the usual baryon number,
one needs X(H) = 0. Recalling that the NGBs (H,T ) form a 10 representation of SO(10),
a viable choice is X = Y ′. In particular B(T ) = −2/3.

As already mentioned, one also needs a symmetry to prevent neutrino masses larger
than ∼ eV, as required by experiments, that is, the composite sector should respect
in good approximation lepton number. We do not repeat a detailed discussion analo-
gous to the one of baryon number, and we just adopt the most straightforward possibil-
ity: a U(1)L global symmetry with the usual L-assignments of elementary fermions and
L(H) = L(T ) = L(TR) = 0. Note that the whole composite sector cannot be neutral under
lepton number, since at least the charged leptons are acquiring their mass by mixing with
composite operators.

In summary, we assume that the full effective lagrangian in eq. (1.1), respects a global
symmetry GM = U(1)B×U(1)L. In particular, the gauge and Yukawa interactions between
the elementary and the composite sector generically do break K, but must preserve both
the GSM gauged subgroup, and the global GM symmetry.

Let us comment on the connection between the symmetry GM and the UV completion
of our scenario at MGUT. It seems that the simplest possibility is to take GM external to the
unified gauge group GGUT, since GGUT by itself always allows for B (and L) violating oper-
ators in the elementary sector. This would imply, in particular, that elementary fermions
with different B shall belong to different GGUT multiplets: a splitting of these multiplets
is required at the GUT scale, with only the components with the correct B remaining
massless. Interestingly, this is specular with respect to the case of supersymmetric GUTs,
where SM fermions fill full SU(5) multiplets, but a doublet-triplet splitting is necessary in
the Higgs sector, to prevent proton decay.21 In composite GUTs, the doublet-triplet split-
ting issue appears to be transferred to the matter sector. Still, there may be more subtle
(and economical) ways to obtain the GM symmetry in the effective lagrangian, from the
initial GGUT symmetry of the full theory. In a sense, this issue requires non-trivial model-
building at the GUT scale, as it was the case historically for doublet-triplet splitting in
supersymmetric GUTs.

3.4 Exotic fermions in the SO(11)/SO(10) scenario

Let us recall that, in our scenario, the right-handed top tR is fully composite and it is
part of the K-multiplet TR = (tR, xR), that includes in general other composite chiral
fermions xR. The composite sector does not contain a left-handed partner of TR, because tR
should remain massless before EWSB. Therefore, one needs to introduce exotic elementary

21Exceptions are possible: a supersymmetric GUT model with no doublet-triplet was proposed in ref. [69].

– 20 –



J
H
E
P
0
6
(
2
0
1
1
)
0
2
9

fermions xL, which form vector-like pairs with xR and cancel their anomalies. In addition,
when K is simple the contribution of xL to the gauge coupling evolution leads to precision
unification, as described in section 2.2.

The exotic fermions x should acquire a vector-like mass from the couplings λx between
their composite and elementary chiral components. These couplings (i) should respect the
symmetry GM , to suppress baryon and lepton number violations; (ii) should be sufficiently
large to avoid experimental lower bounds on the masses of exotic fermions; (iii) are con-
strained by EWPTs, analogously to the couplings λψ of the SM fermions ψ to the composite
sector. In this section we analyze the possible quantum numbers of exotic fermions for the
case that we are going to study phenomenologically: G = SO(11) → K = SO(10). In the
various cases, we will also specify the fermionic operators Oψ coupling to the SM fermions.
These operators, besides containing a component with the GSM quantum numbers of ψ,
must have a Yukawa-like SO(10) invariant coupling to the 10 containing the Higgs doublet.

The exotic charges depend on the choice of the SO(10) representation that contains
the SM state tR ∼ (3,1)2/3. In order to illustrate the relevance of such choice for our
results, we will compare the two simplest possibilities,

(1) TR ∼ 16 = (3̄,2,1)−1/3 + (1,2,1)1 + (3,1,2)1/3 + (1,1,2)−1 , (3.7)

(2) TR ∼ 10 = (1,2,2)0 + (3,1,1)−2/3 + (3̄,1,1)2/3 , (3.8)

where the decomposition under the SO(10) subgroup SU(3)C × SU(2)L × SU(2)R × U(1)′

is provided (recall that Y ′ = (B − L)SO(10)).

Case (1) corresponds to the usual SO(10) embedding of all SM fermions in a 16 multi-
plet, which is realized choosing for the hypercharge the linear combination Y = ±TR3 +Y ′/2,
with tR corresponding to the component of (3,1,2)1/3 with TR3 = ±1/2. Then, the exotic
elementary fermions xL have SM quantum numbers

(1) qcL = (3̄,2)−1/6, l
c
L = (1,2)1/2, b

′
L = (3,1)−1/3, ν

′
L = (1,1)0, e′L = (1,1)−1 , (3.9)

where f ′L denotes a SU(2)L singlet, not to be confused with the SM fermion fL, which
is a component of a SU(2)L doublet. Thus, these exotic fermions have the SM quantum
numbers of a full vector-like fourth generation, except for the singlet top quark.

However, the symmetry GM differentiates them from an actual fourth generation, be-
cause it assigns to them exotic baryon and lepton numbers, and thus it constrains the
allowed couplings of the exotic fermions with the SM elementary fields and with the com-
posites, in particular H and T . As explained in section 3.3, we consider two possible as-
signments of baryon number, either a group U(1)BE

external to SO(11), or a group U(1)BI

internal to SO(10) ⊂ SO(11), more precisely identified with the Y ′ = (B − L)SO(10) gener-
ator (the U(1)L symmetry defined in section 3.3 is implicitly assumed everywhere, too).

• In the case U(1)BE
, B(xR) = B(tR) = 1/3 and, in order to form vector-like states,

the exotic fermions should all have B(xL) = 1/3. All elementary fermions, ψ =
{xL, qL, bR, lL, eR} couple to the strong sector through operators transforming under
SO(11) × U(1)BE

as 32B(ψ) (which decomposes under SO(10) as 32 = 16 + 16).
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In particular, qL mixes with a component with quantum numbers (3,2,1)1/3 under
Kmin, so that a Yukawa coupling with H ∼ (1,2,2)0 and tR ∈ (3,1,2)1/3 is allowed.
Notice that both the exotics xL and qL could couple to the same composite operator,
O(q,x)L . In this case the set of couplings λx and λq evolve to their low-energy values
all with the anomalous dimension of O(q,x)L . Therefore, if their ultraviolet values
do not present large hierarchies, they are expected to be of the same order also at
low energy. Apart from the case of xL and qL, each elementary fermion mixes with
a different composite operator, because of B conservation. Also, U(1)B (along with
the GSM gauge invariance) implies that the exotic fermions do not mix with the SM
ones, except for bR that can pair with b′L (they have the same GSM×U(1)B charges).
The potential consequences of this mixing are discussed below.

• In the case U(1)BI
, B(tR) = 1/3 is different from the tR partners baryon number:

B(qc) = −1/3, B(lc) = 1, B(b′) = 1/3, B(ν ′) = B(e′) = −1. The elementary
fermions xL, qL, and bR may all couple to the same operator in the 32 representation
of SO(11).22 The leptons cannot couple to 32, because the states with their SM gauge
charges carry baryon number. We find that lL can couple, instead, to 11 = 10 + 1,
while eR couples to 55 = 45 + 10, allowing for the charged lepton Yukawa. As for
the case of U(1)BE

, there is a possible mixing between the elementary fermions bR
and b′L. Also qL and qcL can mix, since they have conjugate charges under GSM×GM ,
but this mixing can be forbidden by an extra chiral U(1) symmetry, as we assume in
the following.

Note that, in the absence of U(1)B, the elementary exotics xL would pair, generically,
not only with the composite states xR, but also with the elementary fermions with the
same GSM quantum numbers, which we denote with ψR:

− L ⊃ mxxLxR +MxxLψR + h.c. . (3.10)

While mx = λxf , the elementary mass term Mx can be as large as MGUT and this would
decouple the pair (ψR, xL), leaving as massless SM fermion the composite state xR, as it
happens for tR (see eq. (2.5)). The symmetry U(1)B, which was introduced to make the
proton stable, comes to help for this independent issue: consider for definiteness the case
with U(1)BE

, where B(xR) = B(xL) = 1/3 and therefore Mx is forbidden for B(ψR) 6= 1/3.
Inspecting eq. (3.9), only the elementary bR can pair with the exotic b′L and may decouple
with a large mass Mb, leaving a mostly composite bR. This special property of bR is due to
its embedding with tR into a doublet of SU(2)R. At this stage, case (1 ) seems to predict
that the composite tR is accompanied by a composite bR. Unfortunately, this possibility is
not viable, since it would imply yb = yt.23 To avoid the problems with bR-compositeness,

22In this case, in order to reproduce the top-bottom mass difference, one is forced to take λbR � λq at

high energies. In alternative, one may forbid the coupling bRO(q,x)L
e.g. with an extra chiral U(1) symmetry,

and couple bR to an independent 32 operator; then the mass hierarchy can follow from the different running

of λq and λbR to low energies.
23Even if this equality is avoided with some extra model-building, in the case of composite right-handed

bottom the elementary pair (belemR , b′L) should be subtracted from the running between the EW scale and

– 22 –



J
H
E
P
0
6
(
2
0
1
1
)
0
2
9

one needs a chiral symmetry forbidding the mass term Mbb
′
LbR, e.g. a Z2-parity with

Z2(bR) = −1 and Z2(b′L) = +1. However, any such symmetry distinguishing bR and b′L
cannot be exact, because it would forbid at least one of the three couplings ytqLHctR,
ybqLHbR and λb′f b′Lb

′
R, that are necessary to generate the top and bottom masses as well

as mb′ = λb′f .24 This signals that the chiral symmetry is only approximate and should be
broken by the strong dynamics. It also implies that in any of the limits yb → 0, yt → 0,
λb′ → 0, one can recover the symmetry and thus have Mb → 0. Then, one can estimate
the minimum size of the breaking, Mb ∼ ybytλb′/(4πgρ)2f (through a loop with qL), that
is negligible in comparison with mb′ or even mb = ybv/

√
2. In the case with U(1)BI

, the
discussion of bR − b′L mixing is identical.

Case (2) corresponds to a different choice for the hypercharge, Y = ±TR3 −Y ′, such that
tR can be identified with the (3,1,1)−2/3 component in eq. (3.8). This choice for Y implies
an unusual embedding of composite states with the quantum numbers of SM fermions in
SO(10) multiplets: lL and tR are contained in a 10, qL, eR in a 45 and dR in a 120. Then,
one can couple lL to a composite operator transforming as a 11 of SO(11), qL to a 55,
et cetera. This embedding is slightly less economical than in case (1 ), but note that the
number and nature of the composite multiplets emerging from the strong dynamics is not
restricted a priori.25

Since TR transforms in a real representation 10, a mass term TRTR would be K-
invariant, but it is forbidden by a U(1)B symmetry external to K, because we need B(tR) =
1/3. The option of taking U(1)B internal to SO(10) is less appealing, since one would be
forced anyway to introduce an external symmetry to keep tR massless (before EWSB).
Therefore, we will not consider this possibility for case (2 ). The exotic elementary fermions
xL have the following SM quantum numbers:

(2) lcL = (1,2)1/2, l
′
L = (1,2)−1/2, t

c
L = (3,1)−2/3 , (3.11)

that is, there are two “lepton” doublet resonances as well as a singlet “top” one, with
B(xL) = B(xR) = B(tR) = 1/3 for all xL. Remarkably, U(1)B is enough to forbid all the
mass terms mixing the exotic fermions with the SM elementary fermions. In particular,
there is no xL with the quantum number of bR. As a consequence, tR remains the only
composite SM fermion and precision unification works in the simplest way. Also, notice
that in this case λq and the exotic couplings, λlc ∼ λl′ ∼ λtc , are not related.

3.5 Contribution of the exotic fermions to the electroweak precision tests

In order to estimate the contribution of the exotic fermions to the EWPTs, we need to
specify their couplings λx to the composite sector. We will analyze this issue drawing

Mb, in the same way as (telemR , t′L) was subtracted between the EW scale and Mt ∼ MGUT (see eq. (2.5)).

If also Mb ∼MGUT, precision unification is spoiled because RSM−H−tR−t′L−bR−b
′
L

= 1.2: one should choose

Mb,t somewhat below the GUT scale to fix unification.
24To prove this, note that, under the chiral symmetry, the Higgs H is neutral and tR has the same charge

of b′R, since they sit in the same K-multiplet.
25We remind that here we are dealing with the embedding of Y into the global symmetry K of the

composite sector, while the way Y is embedded in GGUT can be a standard one.
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a parallel with the analogous coupling of the top-bottom quark doublet qL, since it also
contributes significantly to the EW precision parameters:

− L ⊃ qLλqOqL +
∑
xL

xLλxOxL , (3.12)

where for notational convenience we are writing a different composite operator Oψ for
each elementary fermion ψ, knowing that all the xL’s (and in case (1 ) also qL) actually
couple to the same operator, but with different couplings. The transformation properties
of OqL and OxL under G, in particular under the subgroup SU(2)L × SU(2)R × PLR, will
determine the contributions to T̂ and δgbL from the various λψ’s. The latter can be treated
as spurion fields transforming under G as the conjugate of OψL . As shown in section 3.4,
these transformation properties are determined by those of the TR multiplet.

We will study, for each of our cases, the contributions to T̂ and δgbL using the effective
lagrangian approach introduced in section 3.1, that is, we will estimate the contributions
to the operators in eq. (3.1) and eq. (3.5), respectively. We first estimate the contributions
arising after integrating out the strong sector resonances, which are suppressed by powers
of mρ, and proportional to the degree of compositeness of the light fermions, that is to
λq and λx. Next, after presenting the relevant low-energy operators, we compute the
contributions generated by the mixing of the exotic fermions with the SM ones, whose size
is suppressed by powers of the exotic fermion mass, mx = λxf . We remind that, due to the
full compositeness of tR, λq ' yt is fixed. One-loop contributions to Ŝ from the exotics are
much smaller than the tree-level correction from vector resonances discussed in section 3.1
(see eq. (3.2)), and therefore we do not consider them here.

Case (1). Here OqL transforms under SU(2)L × SU(2)R as a (2,1), which renders λq a
singlet of custodial SU(2)c. Among the exotic couplings, Ob′L transforms as (1,2), thus

λb′ ∼ 2 of SU(2)c, which then contributes to T̂ as λ4
b′ .

26 Also λe′ , λν′ ∼ 2 of SU(2)c, but
if the two couplings are equal SU(2)R-invariance is restored, so the correction to T̂ goes
as (λν′ − λe′)4. Regarding δgbL , as already pointed out after eq. (3.5), there is a tree-level
contribution through λq. Summarizing,

T̂b′ ∼
NC

16π2

λ4
b′

g2
ρ

ξ , T̂(ν′,e′) ∼
1

16π2

(λν′ − λe′)4

g2
ρ

ξ ,
δgbL
gbL
∼
λ2
q

g2
ρ

ξ . (3.13)

These contributions to T̂ , taken individually, set upper bounds on the mass of the ex-
otic fermion b′, mb′ . 1.2f(mρ/TeV)1/2, and on the mass difference |mν′ − me′ | .
1.5f(mρ/TeV)1/2. However, cancellations between the two terms could be present, thus
making the bounds milder; also, for large mh, the negative ∆T̂ in eq. (3.4) can compensate
these terms. The bound on mρ from δgbL was already discussed in section 3.1.

In fact, a strong constraint from δgbL is imposed on λb′ , from the mixing of b′ and the
bottom quark, which modifies their couplings to the Z. Such mixing arises after EWSB
from the Yukawa term ytqLHb

′
R, which is generated along with the top Yukawa. The

26This is because bT “transforms” under SU(2)c as a 5 [70].
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leading contribution can be computed,

δgbL
gbL

= −m
2
t

m2
b′
, (3.14)

and it yields the robust lower bound mb′ & 1.4 TeV.27 The associated correction to the
WtLbL coupling, δgtLbL/gtLbL = −(mt/mb′)2/2, is well below the experimental uncertainty.

As explained in section 3.1, the bound on δgbL is derived allowing for δgbR to vary
in its 2σ range. The bR-b′R mixing does not correct the ZbRb̄R vertex, because bR and
b′R have the same EW charges. However, a contribution to gbR comes from the composite
resonances at mρ,

δgbR ∼
λ2
bR

g2
ρ

ξ . (3.15)

In order for δgbR to reach the experimental best value, one would need λbR/gρ ∼
0.4(f/750 GeV), assuming that the deviation has the proper sign, that is positive. In
the minimal realization of our scenario, this condition cannot be fulfilled, since λbR/gρ '
yb/yt ' 0.02. However, if the Yukawa coupling of the bottom quark arises from the mixing
of qL with a composite operator different from the top Yukawa one, the required degree of
compositeness of bR can be accommodated. In that case λbR should be taken into account
in the computation of the pNGB effective potential, but we will not pursue this possibility
in the following.

In addition, when baryon number is identified with the internal (B−L)SO(10) symmetry,
an extra mixing between bR and bcR arises through the coupling λbRbRq

c
RH. This term

modifies the coupling of the Z to bR by

δgbR =
1
2
λ2
bR

λ2
qc
ξ . (3.16)

Such correction has the sign needed to improve the agreement with the data and, taking
λbR ' gρ(yb/yt), it is as large as the best fit value for ξ ∼ 0.1 and λqc/gρ ∼ 0.04. This
indicates that, in order to improve the fit for gbR , the exotic fermion bc should have a mass
close to the experimental lower bound.

The constraints in case (1 ) are combined in figure 3, where we show the different
bounds on v/f as a function of λb′/gρ. We present two plots, corresponding to two different
Higgs masses, in order to show the preference of the EW data for a light Higgs. Here we
have assumed the first contribution to T̂ in eq. (3.13) to be positive (and neglected the
second one), and the one to Ŝ in eq. (3.2) to be also positive. They are added to the
contribution from the Higgs loops, given in eq. (3.4). The relevant contribution to δgbL is
the one in eq. (3.14), that we constrained allowing for gbR to vary, since we have shown
that sizable δgbR can arise in this scenario. We thus find that, for low Higgs masses, close
to the experimental bound, the deviations in T̂ and gbL associated to b′ determine the

27In the present scenario, the situation is somewhat better than with tR elementary [43]. In the latter

case, in eq. (3.13) λb′ should be substituted by λtR , with the constraint λqλtR ' gρyt, which requires a

very small ξ. Such a problem can be alleviated by means of extra model building [43].
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Figure 3. The bounds on
√
ξ ≡ v/f coming from the EWPTs in case (1 ), as a function of the ratio

λb′/gρ. The solid (dashed) lines correspond to gρ = 8 (4), while the left (right) panel corresponds
to a physical Higgs mass mh = 117 GeV (300 GeV). The green horizontal lines give the 95% C.L.
upper bound from the Ŝ parameter, the region between the two orange curved lines corresponds to
the 95% C.L. allowed range for the T̂ parameter, and finally the blue straight rising lines represent
the 2σ upper bound from δgbL

.

maximum allowed value of v/f . The upper bound on v/f increases (decreases) with gρ
for small (large) values of λb′/gρ. For higher Higgs masses, due to the associated negative
contribution to T̂ , a positive contribution to this parameter from b′ is required. This forces
us to lie to the right of the lower orange curved line (minimum allowed value of T̂ ), leading
to a lower bound on v/f and λb′/gρ. The allowed region is further reduced by the constraint
on δgbL and, for smaller gρ, also the bound from Ŝ can be relevant.28

Case (2). The constraints on our scenario from the exotic contributions to EWPTs are
significantly milder when TR ∼ 10. This is because OqL now transforms as (2,2)−2/3

under SU(2)L × SU(2)R ×U(1)′ and consequently the bidoublet component coupling to bL
has TR3 = TL3 . Therefore, if the composite sector is PLR symmetric (which is the case when
K = SO(10)), the bL coupling to the Z is protected at tree-level [48]. However, there will
be a contribution at one-loop, since the OqL-component coupling to tL has TR3 6= TL3 and
thus it is not an eigenstate of PLR. The contributions to T̂ come from λq and (λlc − λl′),
both transforming as 2 under SU(2)c. One can estimate

T̂q ∼
NC

16π2

λ4
q

g2
ρ

ξ , T̂(lc,l′) ∼
1

16π2

(λlc − λl′)4

g2
ρ

ξ ,
δgbL
gbL
∼
(
δgb
gb

)
SM

λ2
q

g2
ρ

ξ . (3.17)

Given our reference value ξ ∼ 0.1, T̂q and δgbL are well below the experimental constraints.
The constraints on case (2 ) are illustrated in figure 4, for two different values of mh,

as a function of |λlc −λl′ |/gρ. The correction to δgbL is not relevant in this case. For small
values of mh and gρ, the maximum allowed v/f is determined by the bound on Ŝ. As the

28In these plots we took mh to be independent from λb′ . Once the effective potential is computed (see

section 4.4), one will be able to study the correlation between these two parameters.
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Figure 4. The bounds on
√
ξ ≡ v/f coming from the EWPTs in case (2 ), as a function of the

coupling difference δλl/gρ ≡ |λlc −λl′ |/gρ. The solid (dashed) lines correspond to gρ = 8 (4), while
the left (right) panel corresponds to a physical Higgs mass mh = 117 GeV (300 GeV). The green
horizontal lines give the 95% C.L. upper bound from the Ŝ parameter, while the two orange curved
lines correspond to the 95% C.L. lower and upper values of the T̂ parameter (the allowed region
lies between the two lines). There is no relevant constraint from δgbL

in this case.

value of gρ increases, the bound becomes milder, and the one from T̂ becomes important,
either when the custodial violating mass difference between lc and l′ is large, or when it
is too small to compensate the opposite sign contribution to T̂ from Higgs loops given in
eq. (3.4) (we are assuming a positive sign for the T̂ contributions shown in eq. (3.17)).
For higher Higgs masses, the negative contribution to T̂ from Higgs loops increases to the
point that an extra positive T̂ from the exotic fermions is demanded. This puts a lower
bound on the mass splitting |mlc −ml′ |. Besides, the smaller gρ is, the smaller the open
parameter space, because of the combined constraints from T̂ and Ŝ.

All the aforementioned constraints on the parameters of our model shall be taken into
account when we will compute the conditions for EWSB, in section 4.4. They shall provide
guidance to identify the preferred value of the parameters v/f , gρ and mx = λxf .

4 Electroweak symmetry breaking

The NGBs of the composite sector are provided with a non-zero effective potential by
the interactions with the elementary sector, that explicitly break the global symmetry
G. In this section, by generalizing the formalism developed for minimal composite-Higgs
models [7], we will compute the effective potential for these pNGBs, and show that the
minimum can satisfy all requirements: electroweak symmetry is broken while colour is not,
i.e. the Higgs doublet acquires a VEV v while the other pNGBs do not, and at the same
time the induced ratio v/f complies with the phenomenological constraints. The mass
spectrum of the pNGBs will be consequently estimated.
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4.1 The SO(11)/SO(10) coset

For the global symmetry breaking of the composite sector, G → K, we focus on option (a)
of section 3.2, G = SO(11) and K = SO(10), that generates ten NGBs, transforming in the
10 representation of SO(10), which decomposes as (1,2,2)0 + (3,1,1)−2/3 + (3̄,1,1)2/3

under the subgroup Kmin ≡ SU(3)C×SU(2)L×SU(2)R×U(1)′. The SO(11)/SO(10) coset
can be parametrized by the NGB-matrix

U(π) = ei
√

2πa(x)Ta/f , (4.1)

where Ta are the broken SO(11) generators, given by (Ta)IJ = i(δI,11δa,J − δI,aδ11,J)/
√

2,
and πa = (h̃i, φ̃α) are the NGBs, where i = 1 − 4 and α = 1 − 6 are SO(4) and SO(6)
indices, respectively.

We find it convenient to use an alternative parameterization, where the NGBs are
associated to a dimensionless field Σ, which transforms linearly as the 11 representation
of SO(11) and acquires a VEV Σ0 = (0, . . . , 0, 1)T :

Σ ≡ U(π)Σ0 =
sin(Π/f)

Π

[
h̃, φ̃,Π cot(Π/f)

]T
, (4.2)

where Π ≡
√
h̃2 + φ̃2 . One can redefine the NGB fields in terms of dimensionless variables,

sin(Π/f)/Π× h̃i ≡ hi and analogously for φ̃α, thus obtaining

Σ =
(
h, φ,±

√
1− h2 − φ2

)T
. (4.3)

With this coset parameterization it will be easier to decompose the G-invariant terms
in the lagrangian.29 Besides, the VEV of h determines v = 〈h〉f , which is defined by
m2
W = g2v2/4. The four real scalars hi, transforming as a 4 of SO(4), are equivalent, up

to an overall factor f and a change of basis, to a complex bidoublet (iσ2H
∗, H) ∼ (2,2)

under SU(2)L × SU(2)R ' SO(4), while the six real scalars φα, transforming as a 6 of
SO(6), correspond to a complex triplet T ∼ 3−2/3 under SU(3)C ×U(1)′ ⊂ SO(6).

The kinetic term for the pNGBs is given by

f2

2
|DµΣ|2 = |DµH|2 + |DµT |2 +

1
4

[
∂µ(H†H) + ∂µ(T †T )

]2
f2/2− |H|2 − |T |2

, (4.4)

where DµH and DµT are the covariant derivatives for the Higgs and the colour triplet.
The last term represents the leading interactions among the pNGBs, that signal their
composite nature. These interactions lead both to corrections of O(s/f2) in processes
with characteristic energy scale

√
s, and to modifications of O(v2/f2) (with respect to the

renormalizable lagrangian) in the H and T couplings. The latter arise because of the non-
canonical kinetic terms after EWSB, which require a wave-function renormalization. As an
example, the coupling of two W ’s to the Higgs boson is modified as ghWW = gSM

hWW

√
1− ξ,

where ξ ≡ v2/f2. This deviation affects the EWPTs through eq. (3.3).

29Moreover, one explicitly sees that the coset is just a parameterization of a sphere in 11 dimensions.
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4.2 Explicit breaking of SO(11)

The composite sector is coupled to a set of elementary fields, that comprises the SM
gauge bosons and fermions, except for the right-handed top quark, as well as the exotic
fermions. Such interactions, introduced in eq. (1.3) for gauge bosons and eq. (1.4) for
fermions, explicitly break the global symmetry G, and thus induce a non-zero potential
for the pNGBs at loop level. In order to parametrize such interactions, it is useful to
consider the G-breaking couplings as dimensionless spurion (non-propagating) fields S,
that transform in some definite representation of G. Then, the spurion VEVs 〈S〉 will
break G (from now on we shall denote each spurion and the corresponding VEV with the
same symbol). There are two kinds of spurion fields:

• Gauge interactions:
AµigΩ

ig
Ia

(T Ia)IJJ IJµ , (4.5)

where J IJµ is the SO(11)-current of the composite sector in a generic SO(11)-
representation carrying indices I, J , while T Ia are the generators of SO(11) with
Ia = 1, . . . , 55 varying over the adjoint representation 55, Aµig are the SM gauge
bosons with ig varying over the SM generators, and the spurion Ω is a matrix of
gauge couplings parameterising the embedding of the gauge symmetries into the ad-
joint representation of SO(11). Explicitly, one has

Ωig
Ia

=
(
gsδ

αC
Ia

+ gδiLIa + g1δ
Y
Ia

)
, (4.6)

where Ia = αC , iL, Y identify the generators of SU(3)C, SU(2)L, U(1)Y inside SO(11),
and g1 ≡

√
5/3 g′.

• Fermion interactions:
ψi(λψ)iIOIψ + h.c. , (4.7)

where ψ is a generic elementary fermion, Oψ is the composite operator ψ couples
to, i and I are respectively SM- and G-indices, and the spurion λψ describes the
embedding of ψ into the G-representation rψ to which Oψ belongs. One can think
of λψ as a projector that, acting on the operator Oψ, selects the component with
the SM quantum numbers of ψ, so that the interaction is gauge invariant. Only the
fermions with large couplings to the composite sector affect significantly the pNGB
effective potential. In our scenario, these are the left-handed top quark contained in
qL and the exotic fermions xL. The SM quantum numbers of xL and the minimal
choices for the G-representations rq and rx have been discussed in section 3.4.

Technically, the spurions transform separately under an elementary sector symmetry
SU(3) × SU(2) × U(1) ≡ Gelem

SM , and a composite symmetry G, both global.30 When the
spurions take a VEV, both Gelem

SM and G are broken, but the diagonal combination remains
unbroken and it is identified with the gauged SM symmetry GSM.

30The elementary global symmetry is in fact larger, since it includes extra U(1)’s in the form of global

phase redefinitions of the elementary fields.
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4.3 The effective lagrangian in the background of the NGBs

The full low energy effective lagrangian Leff can be obtained by integrating out the heavy
resonances of the composite sector: Leff includes the interactions among the SM fields, the
NGBs and the exotic fermions, as well as other possible light resonances [71, 72]. In this
section, however, we are interested only in the interactions that contribute to the NGB
effective potential Veff(π), which are encoded in the effective lagrangian for the elementary
fields in the background of Σ, i.e. with no derivatives on Σ. This is because only the
elementary fields break the G-invariance explicitly, and because Veff(π) is obtained from
the effective action in the zero-momentum limit (see e.g. ref. [7]). Readers not interested
in the technical derivation of Leff can move to section 4.4, where the result for Veff(π) is
presented and EWSB is discussed.

In order to identify the relevant terms in Leff , we will build G-invariants out of the
spurions and Σ. Since Σ is dimensionless, terms with any power of Σ should be included;
the effective lagrangian should not be expanded in the number of NGBs, but rather in the
number of spurions. It turns out that only a few terms, with at most two powers of Σ,
are independent invariants, basically because ΣTΣ = 1. A formal way to understand this
is through the Coleman-Callan-Wess-Zumino construction for lagrangians invariant under
non-linearly realized symmetries [71, 72]. In this formalism the non-derivative interactions
of the NGBs are associated to the spurions only, redefined as S̃(π) = U(π)[S]. These S̃
transform generically under a reducible representation of K and, at a given order in S̃, only
a finite number of independent K-invariants can be constructed. We will do this counting
in the following subsections before presenting the G-invariant effective lagrangian. The
same argument will apply for the terms in Veff(π), that will be computed in section 4.4.

4.3.1 Gauge bosons

The gauge spurion Ω transforms in the adjoint of SO(11), which decomposes under SO(10)
as 55 = 45 + 10. In order to identify the K-invariants quadratic in the gauge couplings
(i.e. the leading order ones), we shall inspect the singlets contained in Ω2. Since 55×55 =
(45+10)×(45+10) = 145×45 +110×10 + · · · , there are two K-invariants. One combination
of them is independent from the NGBs, since it is also invariant under G; to see this, note
that 55× 55 = 1G + · · · contains one G-singlet, denoted as 1G .

The effective lagrangian for the elementary gauge bosons in the background of Σ can
be written in momentum space as

LAeff(p) =
1
2
P Tµν(p)Aµig(p)A

ν
jg(p)Ω

ig
Ia

Ωjg
Ja

[
ΠA

0 (p2)(T Ia)IJ(T Ja)JI

+ΠA
1 (p2)ΣI(T Ia)IJ(T Ja)JKΣK

]
, (4.8)

where P Tµν(p) = gµν−pµpν/p2 is the transverse projector, and ΠA
0,1(p2) are form factors that

encode the effects of the strong dynamics. Actually ΠA
0 , or more precisely dΠA

0 /dp
2|p2=0,

represents the contribution of the composite sector to the β-function of the SM gauge
couplings. Here I, J,K are SO(11) indices in the fundamental representation. The nor-
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malization of the SO(11) generators and their contraction with the Σ-components read

(T Ia)IJ(T Ja)JI = Tr[T IaT Ja ] = δIaJa , (4.9)

Ωig
Ia

Ωjg
Ja

ΣI(T Ia)IJ(T Ja)JKΣK = g2hi(T iL)ij(T jL)jkhk + 2gg1hi(T iL)ij(T Y )jkhk
+g2

1hi(T
Y )ij(T Y )jkhk + g2

1φα(T Y )αβ(T Y )βγφγ (4.10)

+g2
sφα(TαC )αβ(T βC )βγφγ + 2g1gsφα(TαC )αβ(T Y )βγφγ ,

where i, j, k are SO(4) indices, α, β, γ are SO(6) indices, and TαC , T iL , T Y are respectively
the generators of SU(3)C, SU(2)L, U(1)Y.

4.3.2 Fermions in case (1): rq = rx = 32

Let us consider case (1) of section 3.4, with both qL and xL coupling to a composite
operator in the 32 spinor representation of SO(11), in particular qL couples to the 16
of SO(10) and xL to the 16. Therefore both λq and λx transform in the 32. The K-
invariants quadratic in these couplings are easily counted by inspecting the tensor product
32 × 32′ = (16 + 16) × (16′ + 16′) = 1

16×16
′ + 116×16′ + · · · = 1G + 1 + · · · , that is one

G-invariant independent from the NGBs, plus one invariant that depends on them.

The effective lagrangian for these elementary fermions in the background for Σ can be
written as

Lψeff(p)=
∑
ψ,ψ′

ψiψ(p)
[
Πψψ′

0 (p2)(λψ)iψIs (λ∗ψ′)
Is
jψ′

+ Πψψ′

1 (p2)(λψ)iψIsΣI(ΓI)IsJs(λ
∗
ψ′)

Js
jψ′

]
/pψ′jψ′ (p) ,

(4.11)
where the sum runs over (ψ,ψ′) = (qL, qL), (qL, xL), (xL, qL), (xL, xL), with xL spanning
the exotic fermions listed in eq. (3.9). Here iψ, jψ′ are the SM elementary indices of ψ,ψ′

respectively, while I and Is, Js are SO(11) indices in the fundamental and spinor representa-
tion, respectively, contracted by the Γ matrices of SO(11). Notice that we are not including
in eq. (4.11) terms of the kind ψTCψ′ (where C is the charge-conjugation matrix), since
they are forbidden by the baryon number symmetry U(1)BE

, that is assumed to hold in this
section. On the contrary, these terms are allowed for the case of U(1)BI

. The modifications
introduced by the addition of these extra terms will be discussed in section 4.4.1.

As explained in section 3.4, the exotic fermions couple to all the components of TR ∼
16, other than tR. Therefore, only these 16-components of the spurion λx are non-zero.
In particular any contraction involving the 16-components vanishes. Similarly, in λq only
the 16-component with the quantum numbers of qL is non-zero. Keeping this in mind, the
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SO(11) contractions in eq. (4.11) read explicitly

(λq)
iq
Is

(λ∗q)
Is
jq

= Tr[(λq)iq(λ∗q)jq ] = δ
iq
jq
λ2
q , (4.12)

(λx)ixIs(λ
∗
x)Isjx = δixjxλ

2
x , (4.13)

(λq)
iq
Is

(λ∗x)Isjx = δ
iq
jx
λqλx = 0 , (4.14)

(λq)
iq
Is

ΣI(ΓI)IsJs(λ
∗
q)
Js
jq

= δ
iq
jq
λ2
qΣ11 = ±δiqjqλ

2
q

√
1− h2 − φ2 , (4.15)

(λx)ixIsΣI(ΓI)IsJs(λ
∗
x)Jsjx = ∓δixjxλ

2
x

√
1− h2 − φ2 , (4.16)[

(qL)iq /p (xL)jx
]

(λq)
iq
Is

ΣI(ΓI)IsJs(λ
∗
x)Jsjx = λq(qL)αi /p

[
λb′(b′L)αH i

+λlc(lcL)iTα + λqc(qcL)iβT
∗
γ ε
αβγ
]
, (4.17)

where, with a slight abuse of notation, we dubbed λq,x the values of the non-zero compo-
nents of the spurions (λq,x)iq,xIs

(these values can be taken real with no loss of generality).
The sign difference between eq. (4.15) and eq. (4.16) comes from the antisymmetry of the
SO(11) invariant 32 × 32 × 11, and in eq. (4.17) we employed the decomposition of the
SO(10) invariant 16× 16× 10 into SM components.

4.3.3 Fermions in case (2): rq = 55, rx = 11

Let us consider now case (2) of section 3.4, with qL coupled to a 45 of SO(10), and xL
to a 10, so that we take λq to transform as 55 = 45 + 10 and λx as 11 = 1 + 10 under
SO(11). The K-invariants quadratic in the elementary-composite couplings correspond to
the K-singlets in the tensor products 55× 55 = 1G + 1 + · · · , 11× 11 = 1G + 1 + · · · , and
55× 11 = 1 + · · · .

In this case the effective lagrangian for the elementary fermions in the background of
the Σ field is given by

Lψeff = (qL)iq
[
Πqq

0 (λq)
iq
Ia

(λ∗q)
Ia
jq

+ Πqq
1 (λq)

iq
Ia

ΣI(T Ia)IJ(TJa)JKΣK(λ∗q)
Ja
jq

]
/p (qL)jq

+(xL)ix
[
Πxx

0 (λx)ixI (λ∗x)Ijx + Πxx
1 (λx)ixI ΣIΣJ(λ∗x)Jjx

]
/p (xL)jx

+
{

(qL)iq
[
Πqx

1 (λq)
iq
Ia

ΣI(T Ia)IJ(λ∗x)Jjx
]
/p (xL)jx + h.c.

}
, (4.18)

where xL represents the set of exotic fermions listed in eq. (3.11) and only the corresponding
components of λx are non-zero. The SO(11) contractions in eq. (4.18) read explicitly

(λq)
iq
Ia

(λ∗q)
Ia
jq

= δ
iq
jq
λ2
q , (4.19)

(λx)ixIa(λ∗x)Iajx = δixjxλ
2
x , (4.20)[

(qL)iq /p (qL)jq
]
×

×(λq)
iq
Ia

ΣI(T Ia)IJ(TJa)JKΣK(λ∗q)
Ja
jq

=−λ2
q (qL)iα /p (qL)jβ

(
δijT

∗
βT

α+H iH∗j δ
α
β

)
/2 , (4.21)[

(xL)ix /p (xL)jx
]

(λx)ixI ΣIΣJ(λ∗x)Jjx =
[
λlc(lcL)iH i + λl′(l′L)iH∗i + λtc(tcL)αT ∗α

]
×

×/p
[
λlcH

∗
j (lcL)j+λl′Hj(l′L)j+λtcT β(tcL)β

]
, (4.22)[

(qL)iq /p (xL)jx
]

(λq)
iq
Ia

ΣI(T Ia)IJ(λ∗x)Jjx = λqλl′(qL)αi /p (l′L)iTα/
√

2 . (4.23)
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(T Ia)IJΩig
Ia

(T Ja)JKΩig
Ja

ΣI ΣK

Figure 1:

1 A

1

Figure 5. Leading order contribution in the number of gauge spurions and loops to the effective
potential for the NGBs.

4.4 The NGB effective potential

The effective potential Veff(π) for the NGBs can be obtained rigorously from the effective
lagrangian Leff presented in section 4.3, by integrating out the elementary fields. In fact,
up to some convenient specifications, Veff(π) may be identified with the most general G-
invariant potential V (Σ, S) constructed with the NGB field Σ and the spurions S. The
coefficient in front of each invariant can be evaluated, in principle, integrating over the form
factors introduced in Leff . Similar integrals have been computed only in specific models
with an extra-dimensional dual [5, 6].31 In the present scenario, we can only provide NDA
estimates for such integrals, and the uncertainty will be parametrized by one dimensionless
coefficient for each invariant, expected to be O(1). Note that, depending on the specific
form of Leff , some G-invariants may not be generated by integrating out the elementary
fields at one-loop level, rather they appear at higher orders only: this occurrence can be
easily verified by inspecting Leff .

In order to build the invariants, the elementary indices of the spurions have to be
contracted, because the potential Veff should respect the SM elementary sector symmetries.
In other words, only terms with no elementary external lines contribute to it. For this
reason, we will construct Veff contracting Σ with

Ω2
IaJa ≡ Ωig

Ia
Ωig
Ja
, (4.24)

(λ2
ψ)JI ≡ (λψ)iI(λ

∗
ψ)Ji . (4.25)

As far as the gauge interactions are concerned, there is only one invariant that depends on
the NGBs, which corresponds to the second term in eq. (4.8) and is given by

A1 = Ω2
IaJaΣI(T Ia)IJ(T Ja)JKΣK =

3
2
g2h2 +

8
3
g2
sφ

2 . (4.26)

The corresponding Feynman diagram is depicted in figure 5. The factors 3/2 and 8/3 are
given by twice the quadratic Casimir of SU(N), C2(N) = (N2 − 1)/(2N), for SU(2)L and
SU(3)C respectively (we neglect the hypercharge contributions).

31In principle, they could also be determined from (not yet measured) experimental data on the form

factors, as it has been done in QCD for the meson chiral lagrangian.
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In the potential, A1 is multiplied by the integral over the form factors (see e.g. [7]),
given by

3
∫

d4p

(2π)4

ΠA
1 (p2)
p2

= a1
3

16π2

m4
ρ

g2
ρ

. (4.27)

The uncertainty in this last expression is accounted for by theO(1) coefficient a1. The factor
of 3 counts the number of Lorentz polarizations of the gauge boson. Here we estimated the
integral taking a momentum cut-off mρ, a factor 1/16π2 for the elementary gauge loop,
and another “loop factor” 1/g2

ρ from the strong sector (described pictorially by the shaded
blob in figure 5). This is needed in order to match the expectation Veff ∼ Λ4/16π2, that
must hold when all the interactions become strong at the cut-off scale Λ ∼ mρ, that is
when gρ, gi ∼ 4π.32 The sign of a1 is not fixed by the low-energy theory we are working
with, although in calculable examples [5, 6, 73] it turns out to be positive (see also [74]).

The other invariants entering Veff depend on interactions of the elementary fermions
with the composite sector.

4.4.1 Case (1)

Let us consider first case (1), where the composite operators coupling to qL and xL trans-
form in the spinor representation, rq = rx = 32, and let us assume a baryon number
symmetry U(1)BE

external to SO(11). The set of leading invariants (two spurions, one
loop) is given by

B
(1)
1 = (λ2

q)
Js
Is

ΣI(ΓI)IsJs = 6λ2
q

√
1− h2 − φ2 , (4.28)

C
(1)
1 = (λ2

x)JsIsΣI(ΓI)IsJs = −13λ2
x

√
1− h2 − φ2 . (4.29)

For notational convenience, we take the same value of λx for all the exotic fermions. Thus,
the factors 6 and 13 account for the number of components of qL and xL, respectively,
running in the loop. The diagram for the invariant B(1)

1 is shown in figure 6. In the
potential, it will be multiplied by

2
∫

d4p

(2π)4
Πqq

1 (p2) = b
(1)
1

2
16π2

m4
ρ

g2
ρ

. (4.30)

Again, the sign of the order one coefficient b(1)
1 is not determined. The factor of 2 ac-

counts for the elementary fermion polarisations. In the case of xL, an analog integral
2
∫
d4p/(2π)4Πxx

1 (p2) multiplies the invariant C(1)
1 .33

32This factor also matches the NDA estimate for a loop of N constituent “techni-quarks”, given by

N/(16π2), when one takes the large-N estimate for the inter-composite coupling, gρ = 4π/
√
N .

33When integrating out the exotic fermions, one may worry about the contribution from the composite

resonances xR to the integral over the form-factors. Since the xR are massless in the limit λx → 0, they may

introduce infrared divergences that result in a logarithmic enhancement, log(m2
ρ/m

2
x). Since this logarithm

is not very large anyway, we consider it as part of the uncertainty parametrized by the order one coefficients.
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(λq)
iq
Is

(λ∗
q)

Js
iq

ΣI(ΓI)Is
Js

Figure 1:

1 A

1

Figure 6. Leading order contribution in the number of qL-spurions and loops to the effective
potential for the NGBs.

(λq)
iq
Is

(λ∗
q)

Js
iq

(λ∗
x)Ks

jx
(λx)jx

Ls

ΣJ(ΓJ)Is
Ks

ΣI(ΓI)Ls
Js

Figure 1:

1 A

Figure 7. One of the next to leading order contribution (D(2)
2 in eq. (4.33)) to Veff , quartic in the

number of (qL and xL) spurions and with one loop of the elementary sector.

At the next order, with four insertions of the spurions and one elementary fermion
loop, the invariants are34

B
(2)
2 = (λ2

q)
Js
Is

(λ2
q)
Ks
Ls

ΣI(ΓI)IsKsΣJ(ΓJ)LsJs = 6λ4
q

(
1− h2 − φ2

)
, (4.31)

C
(2)
2 = (λ2

x)JsIs (λ2
x)KsLs ΣI(ΓI)IsKsΣJ(ΓJ)LsJs = 13λ4

x

(
1− h2 − φ2

)
, (4.32)

D
(2)
2 = (λ2

q)
Js
Is

(λ2
x)KsLs ΣI(ΓI)IsKsΣJ(ΓJ)LsJs =

1
2
λ2
xλ

2
q(3h

2 + 6φ2) . (4.33)

The factors 3 and 6 in front of h2 and φ2 in eq. (4.33) come from the sum over the SM
degrees of freedom running in the loop, in the case xL = b′L and xL = lcL, q

c
L respectively

(see eq. (4.17)). The diagram corresponding to D(2)
2 is shown in figure 7, and in the effective

potential it carries a factor35

2
∫

d4p

(2π)4
[Πqx

1 (p)]2 = d
(2)
2

2
16π2

m4
ρ

g4
ρ

. (4.34)

34We neglect one-loop O(λ4) contributions obtained by adding to diagrams like the one in figure 6 an

extra composite sector blob in the elementary propagator, since they have the same functional dependence

on the NGBs as B
(1)
1 and C

(1)
1 , with a relative suppression by an extra factor λ2/g2

ρ.
35We are neglecting the invariants B

(1)
1 B

(1)
1 , B

(1)
1 C

(1)
1 and C

(1)
1 C

(1)
1 , that are also of O(λ4), but they

correspond to two loops of elementary fermions and only one composite blob. Therefore, their contribution

is suppressed by an extra loop factor 1/(16π2) and enhanced by a factor g2
ρ, with respect to eq. (4.34).

Also, they are enhanced by an extra power of the number of elementary fermion components in the loop.

Anyway these invariants have the same functional dependence on the NGBs as B
(2)
2 (or C

(2)
2 ), so we can

absorb the contribution of the former in the order one coefficient of the latter.
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Let us notice that, contrary to previous models in the literature [5, 6, 75], all the
large fermionic contributions to Veff arise from kinetic-type couplings, not from Yukawa-
type couplings. This is because the only large Yukawa, the one of the top quark, is not a
coupling of Σ to the elementary fermions only, since tR is fully composite. As a consequence
such coupling does not contribute to Veff .

Armed with the list of the relevant invariants we can now discern whether the radia-
tively generated potential Veff allows for SU(2)L×U(1)Y breaking to U(1)Q while preserving
SU(3)C, and we can study the conditions to obtain a phenomenologically viable v/f ratio
at the minimum of Veff . The potential is a function of h2 ≡

∑
i h

2
i and φ2 ≡

∑
α φ

2
α only.

Close to the origin, the EW symmetry will be broken if the quadratic term µ2
hh

2 in the
potential is negative, while colour will be preserved if at the same time the term µ2

φφ
2 is

positive. This happens when the fermionic contributions of the top quark and of the exotic
fermions to µ2

h,φ are negative and large enough to overcome the gauge contribution to µ2
h

generated by the W ’s, but not the larger contribution to µ2
φ generated by the gluons. In

this case Veff is minimized by 〈h〉 6= 0 and 〈φ〉 = 0.
In order to present in a compact form the minimization conditions, we will set from the

beginning 〈φ〉 = 0 and verify a posteriori the consistency of this assumption, by requiring
the physical mass of the coloured triplet to be positive: we checked that this condition is
necessary and sufficient to guarantee that the global minimum of the potential does not
break colour. Combining the contributions of eqs. (4.26), (4.28)–(4.29) and (4.31)–(4.33),
one obtains

Veff(h) = ±α
√

1− h2 − βh2 = α cos(h̃/f)− β sin2(h̃/f) , (4.35)

where the expressions for α and β are

α '
m4
ρ

16π2

(
12b(1)

1

λ2
q

g2
ρ

− 26c(1)
1

λ2
x

g2
ρ

)
, (4.36)

β '
m4
ρ

16π2

(
−9

2
a1
g2

g2
ρ

+ 12b(2)
2

λ4
q

g4
ρ

+ 26c(2)
2

λ4
x

g4
ρ

− 3d(2)
2

λ2
qλ

2
x

g4
ρ

)
. (4.37)

The minimum of the potential is displaced from h = 0 provided that β > |α|/2; in this case
the minimum sits at 〈h〉 =

√
1− α2/(2β)2, or equivalently cos(〈h̃〉/f) = −α/(2β). The

ratio between the electroweak scale and the NGB decay constant is given by
√
ξ ≡ v/f =

〈h〉 = sin(〈h̃〉/f), and it is constrained by EWPTs, as described in sections 3.1 and 3.5. In
order to achieve sufficiently small values of ξ one has to require |α|/2 to be close to β.

Since tR-compositeness fixes λq ' yt ' 1, the only free parameters of the model are λx
and gρ (here we take the same value λx for all exotic fermions), as well as a set of unknown
order one coefficients, that are expected to lie in a narrow range around ±1. One also needs
λx/gρ to be somewhat smaller than one, in order for our perturbative computation of the
effective potential to be valid.36 In figure 8 we display the allowed parameter space in the
λx/gρ−gρ plane, for fixed values of the order one coefficients. The region allowed by EWSB

36Besides, λx cannot be arbitrarily small, since this parameter fixes the masses of the exotic fermions,

which are constrained by direct experimental searches. We will see in section 5 how these lower bounds

depend on the quantum numbers of each exotic fermion.
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and EWPTs is sensitive to the latter choice of coefficients, therefore this figure is intended
only to illustrate the correlations between the parameters of the model; the specific values
of the parameters displayed should not be taken as a univocal prediction of the model.

One can check that the leading order fermion contribution to µ2
h,φ is given by |α|/2

and thus has the same sign of the gauge contribution. Therefore, the next-to-leading
fermion terms in β are the actual responsible for EWSB. They shall overcome the weak
gauge term in β as well as the leading fermion terms in α, both positive, in order to fulfill
the condition β > |α|/2. This can be achieved when (i) λx/gρ is not very small and (ii) the
coefficients of the next-to-leading fermion terms add up to a significantly larger value than
those of the leading ones. In particular, there can be an accidental cancellation between
the first and second term in eq. (4.36), e.g. for b(1)

1 ' c(1)
1 and λx ' 0.7. These requirements

are illustrated in figure 8 (left panel), where we took next-to-leading coefficients equal to
2 and leading ones equal to 1/2, in order to enlarge the region with EWSB. One notices
that, for large values of gρ, λx/gρ has to be larger than a certain value, determined by the
W and qL loop contributions to Veff . For small gρ, smaller values of λx/gρ are allowed,
especially when the cancellation in α occurs. All in all, the need to enhance the O(λ4)
terms over the O(λ2) ones, in order to achieve EWSB, requires some moderate tuning of
the parameters of the model.

In the region where EWSB is achieved, the constraints from the EWPTs put an upper
and a lower bound on the allowed value of v/f , depending on λx/gρ, as we showed in
figure 3. These bounds translate into the green shaded region in figure 8, left panel.
Consider first large values of λx/gρ (& 0.3): the region where ξ is small (close to the
region with unbroken EW symmetry) is excluded by the lower bound on T̂ . This is because
the Higgs mass is large (see eq. (4.39) below) and needs to be compensated by a positive
contribution to T̂ from the exotic fermion b′ (recall we are taking λb′ = λx for all x’s). The
upper bound on T̂ excludes large values of ξ, where this same contribution from b′ becomes
too large. Thus, the allowed range for T̂ translates into an allowed window for λx/gρ,
mildly dependent on gρ. Finally, δgbL puts a lower bound on λxf , which cuts the allowed
region at small values of gρ. For small λx/gρ (. 0.3), this same constraint from δgbL leaves
only a very narrow allowed strip, which is still interesting because it corresponds to lower
Higgs masses. One can check that f can be as small as ∼ 500 GeV, in agreement with
figure 3. The masses of the exotic fermions are expected to be

mx ' λxf ' 1.9 TeV
(
λx
2.5

)(
f

750 GeV

)
, (4.38)

but we recall that a significant difference between the various λx’s is possible.
The physical mass of the Higgs in the EWSB minimum is given by

m2
h '

2β
f4
v2 ∼ Nx

λ4
x

16π2
v2 ' (440 GeV)2

(
λx
2.5

)4

, (4.39)

where the estimate assumes that the largest contribution comes from the O(λ4
x) loop,

generated by the Nx = 13 exotic fermions, which is a good approximation for intermediate
and large values of gρ. As expected, the Higgs mass scale is controlled by the Higgs VEV v,
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Figure 8. The allowed range for the inter-composite coupling, gρ, as a function of the composite-
elementary coupling of the exotic fermions, λx/gρ, for the case (1) with an illustrative choice of the
order one coefficients in the effective potential: a1 = b

(1)
1 = c

(1)
1 = 1/2, b(2)

2 = c
(2)
2 = −d(2)

2 = 2. The
right panel is a zoom of the left panel for an interesting range of the parameters. We fixed λq = 1
and v = 246 GeV. The requirement of EWSB (defined by β > |α|/2) excludes the blue (dark)
shaded region. The requirement of unbroken colour (defined by m2

T > 0) is always satisfied in the
displayed range of parameters. EWPTs exclude the green (light) shaded region. The parameter ξ
increases from zero, at the boundary of the region with no EWSB, to larger values as one moves
away from this boundary. This is explicitly shown by the isocontours of constant f (black solid
lines) in the left panel: f = 1000, 500, 300 GeV, from left to right. In the right panel we also
show curves of constant mT = 1, 1.5, 2, 3 TeV (red dashed lines, from right to left) and of constant
mh = 450, 550, 700, 850 GeV (blue solid lines, from bottom to top).

rather than by f . The dominant contribution from exotic fermion loops raises the value of
mh with respect to minimal composite-Higgs models without gauge unification. Regarding
the mass of the colour triplet, this can be written as

m2
T '

[
a1g

2
ρ

(
16g2

s−9g2
)
+d(2)

2 6λ2
qλ

2
x

] f2

16π2
∼ Ng

g2
s

16π2
m2
ρ ' (1.2 TeV)2

( mρ

4.5 TeV

)2
, (4.40)

where f2 is determined, in turn, by the minimization condition, f2 = v2/(1 − (α/2β)2).
In the estimate we assumed that the loop with the Ng = 8 gluons dominates. The triplet
mass scale is controlled by mρ = gρf , therefore m2

T is enhanced with respect to m2
h by a

factor 1/ξ. The gluon loops as well as the exotic fermion loops (at large λx) push the mass
of the triplet to the TeV range. The isocurves of constant mh and mT are also shown in
the right panel of figure 8.

Let us comment briefly on the structure of Veff when the baryon number symmetry
U(1)BI

is adopted instead of U(1)BE
. In this case the effective lagrangian contains also terms

of the type ψTCψ′Φ (ψ,ψ′ = qL, xL, Φ = H,H∗, T, T ∗), that were forbidden by U(1)BE
.

They do not generate leading contributions (two spurions, one loop) to Veff , but they do
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generate one loop contributions with four spurions, analog to the one depicted in figure 7,
with the arrow of one elementary fermion reversed. The corresponding terms in Veff(h) are
proportional to λ4

xh
2, completely analog to the third term in eq. (4.37). Therefore, they

do not modify qualitatively the analysis of EWSB (there are also new terms depending on
the colour triplet, ∼ λ4

qφ
2 or ∼ λ4

xφ
2, that contribute to m2

T ).

4.4.2 Case (2)

In case (2) the spurions λq and λx transform in the representations rq = 55 and rx = 11
respectively. One can again perform the computation of the leading invariants generated
by the fermion interactions, which take the following form:

B
(1)
1 = (λ2

q)
Ja
Ia

ΣI(T Ia)IJ(TJa)JKΣK = −
λ2
q

4
(
3h2 + 2φ2

)
, (4.41)

C
(1)
1 = (λ2

x)JI ΣIΣJ =
1
2
[
(λ2
lc + λ2

l′)h
2 + λ2

tcφ
2
]
, (4.42)

B
(2)
2 = (λ2

q)
Ja
Ia

(λ2
q)
Ka
La

[
ΣI(T Ia)IJ(TKa)JKΣK

] [
ΣL(TLa)LM (TJa)MNΣN

]
=
λ4
q

16
(
3h4 + 2h2φ2 + 2φ4

)
, (4.43)

C
(2)
2 = (λ2

x)JI (λ2
x)KL ΣIΣKΣJΣL =

[
C

(1)
1

]2
, (4.44)

D
(2)
2 = (λ2

q)
Ja
Ia

(λ2
x)JI ΣK(T Ia)KJΣL(TJa)LI =

λ2
qλ

2
l′

4
(2φ2) , (4.45)

where the couplings λx of the three exotic fermions, x = lc, l′, tc, can be different in general.
As in case (1), it is consistent to assume that colour remains unbroken (that is, 〈φ〉 = 0),

as long as the mass of the coloured triplet is verified to be positive in the desired minimum.
In this case, combining the contributions of eqs. (4.26) and (4.41)–(4.45), one finds that
the effective potential is

Veff(h) = αh4 − βh2 = α sin4(h̃/f)− β sin2(h̃/f) , (4.46)

which has a non-trivial minimum (〈h〉 6= 0, 1) for 0 < β < 2α: in this interval 〈h〉 ≡
sin(h̃/f) ≡ v/f =

√
β/(2α). The coefficients of the potential are given by

α '
m4
ρ

16π2

(
3
8
b
(2)
2

λ4
q

g4
ρ

+
1
2
c

(2)
2

(λ2
lc + λ2

l′)
2

g4
ρ

)
, (4.47)

β '
m4
ρ

16π2

(
−9

2
a1
g2

g2
ρ

+
3
2
b
(1)
1

λ2
q

g2
ρ

− c(1)
1

λ2
lc + λ2

l′

g2
ρ

)
. (4.48)

With respect to case (1), it is easier to turn β positive and thus drive EWSB, since the neg-
ative weak gauge contribution can be compensated by leading order fermion contributions.
Still, a sufficiently small ξ requires to tune β to be small compared with the next-to-leading
order terms that determine the size of α. A favourable choice is to take negative values
for b(1)

1 and c
(1)
1 , since reasonable values of λlc,l′ can cancel the W and qL contributions

making β small. Notice that λtc does not contribute to the Higgs potential, thus the mass
of tc is not related to EWSB.
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In figure 9 we display the allowed parameter space in the λx/gρ − gρ plane, taking
λx = (λl′ + λlc)/2 = λtc , λlc − λl′ = 2λx/5 and a fixed choice of the order one coefficients.
Once again, we warn the reader that the region allowed by EWSB and EWPTs is quite
sensitive to this choice and the figure is intended only to illustrate one possible range
of variation of the physical parameters: e.g., for fixed values of λx and gρ, ξ scales as
the ratio of leading over next-to-leading coefficients (in figure 9 we took this ratio to be
1/4). The green shaded region is excluded by EWPTs, with the stronger constraint, for
small gρ, coming from Ŝ. However, for larger values of gρ the bound from Ŝ becomes
milder, allowing for a larger ξ, and the bound from T̂ becomes relevant. We considered a
non-zero difference between λlc and λl′ in order to generate a positive contribution to T̂

from the exotic fermions, that partially cancels the negative one associated with mh. The
lower bound on f is attained for large gρ, consistently with figure 4: we find a minimum
f ∼ 600 GeV, that is comparable with case (1 ). Notice that λx is approximately constant
in the allowed region of figure 9 (left panel), because the latter is bounded by the two
curves β = 0 and 2.1 × 10−3 = Ŝ ∝ ξ/g2

ρ, that in this case are both independent from gρ
(the minimization of Veff implies ξ ∝ g2

ρ). Taking the coefficients of the various terms to be
close to one, a value λx ∼ 1 is obtained, allowing for the masses mx ' λxf to be relatively
lighter with respect to case (1 ).

The mass of the Higgs in the EWSB minimum is given by

m2
h '

8α
f4
v2

(
1− v2

f2

)
∼ Nx

λ4
x

4π2
v2 ' (80 GeV)2

(
λx
1

)4

, (4.49)

where the largest contribution comes from the Nx = 4 exotic fermions (only lc and l′

contribute in this case), so that the Higgs mass is correlated with their mass. This order
of magnitude estimate implies a much lighter Higgs than in case (1 ), with some range of
parameters that is even incompatible with the LEP lower bound. The message is that
in case (2 ) the Higgs is expected to be light, while in case (1 ) it prefers to be heavier.
Concerning the mass of the coloured triplet, it is given by

m2
T '

f2

8π2

[
g2
ρ(8a1g

2
s − b

(1)
1 λ2

q + c
(1)
1 λ2

tc) + d
(2)
2 λ2

qλ
2
l′

]
+

v2

32π2

[
b
(2)
2 λ4

q + 4c(2)
2 (λ2

lc + λ2
l′)λ

2
tc

]
,

(4.50)
where the minimization of Veff fixes f2 = v2(2α/β). In this case the triplet mass receives
two large contributions, from gluons and from tc, that can be estimated as

m2
T ∼ Ng

g2
s

16π2
m2
ρ ' (1.2 TeV)2

( mρ

4.5 TeV

)2
,

∼ λ2
tc

16π2
m2
ρ ' (0.4 TeV)2

(
λtc

1

)2 ( mρ

4.5 TeV

)2
. (4.51)

If these two terms add up, the triplet is heavy, but they may have instead opposite sign and
partially compensate, allowing for a lighter T . For illustration, the isocurves of constant
mh and mT are shown in the right panel of figure 9 for a fixed set of O(1) parameters, that
leads to a partial cancellation in the triplet mass, whose minimal allowed value ends up to
be lighter than in case (1 ).
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Figure 9. The allowed range for gρ as a function of λx/gρ for the case (2), with effective potential
coefficients a1 = −b(1)

1 = −c(1)
1 = 1/2, b(2)

2 = c
(2)
2 = 2. The right panel is a zoom of the left

panel. The requirement of EWSB (defined by 0 < β < 2α) excludes the blue (dark) shaded region.
The requirement of unbroken colour (defined by m2

T > 0) is always satisfied in the displayed range
of parameters. The EWPTs exclude the green (light) shaded region. In the allowed unshaded
region, ξ increases from zero, at the EWSB boundary, to its maximal allowed value, close to the
EWPTs boundary. This is explicitly shown by the isocontours of constant f (black solid lines)
in the left panel: f = 750, 500, 300 GeV, from bottom to top. In the right panel we also show
curves of constant mT = 750, 900, 1500 GeV (red dashed lines, from top to bottom) and of constant
mh = 195, 200, 210 GeV (blue solid lines, from bottom to top).

5 Collider phenomenology of Higgs and top quark partners

The deviations from the elementary SM Higgs properties due to compositeness have been
studied in detail in e.g. ref. [43]: the most promising processes are longitudinal vector boson
scattering and strong double-Higgs production, as well as the measurement of anomalous
Higgs couplings. The signatures associated to top-compositeness have been also analyzed,
in a similar fashion, in ref. [52]. Evidence can be searched in modified top couplings to
gauge bosons, or through the enhancement of processes like pp → tt̄tt̄ at large partonic
center of mass energy [52, 76–78].

Here we focus on the new physics more specifically related to the scenario of composite
unification, that is to say, on the composite partners of H and tR, that fill with them
complete K-multiplets, for the case K = SO(10) (recall that the states accompanying tR
are also complemented with elementary chiral partners to form a set of vector-like fermions).
These composite partners (in short, “comparts”) are the counterpart of supersymmetric
partners (“sparticles”) in the case of supersymmetric unification.

The Higgs H is accompanied by a colour triplet T , sharing its character of pNGB. As
such it acquires a mass only through radiative corrections, roughly a loop factor smaller
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than the compositeness scale. Therefore T is necessarily light, if we demand a natural EW
scale. From the analyses of EWSB in section 4.4, we expect the T mass to lie in the range
∼ (0.5, 2.5) TeV, for values of ξ between the maximum allowed by EWPTs and ∼ 0.1. This
is in contrast to the vast majority of GUT models, where a colour triplet scalar is also
present, although with a mass of the order of MGUT.

The fermionic partners of the tR, the exotic fermions x’s, are responsible for the precise
unification of gauge couplings at MGUT. Therefore, their presence at low energies would
constitute an evidence for the unified character of the SM forces. They are intimately
related to the composite nature of the top, and as a consequence their observation at
colliders will be associated to top (and bottom) physics, either through production or
decay. Notice that all the x’s are lighter than the other resonances of the composite sector,
which makes them a perfect target for colliders such as the LHC, even in the unfortunate
case that the scale of compositeness is just too high to be accessible. While the mass of b′

in case (1 ) is tightly constrained by EWPTs, mb′ & 1.4 TeV, the masses of the rest of the
fermionic comparts are only required to lie in the region allowed by EWSB. We recall that
all the x’s couple, each with a different λx, to the same composite sector operator. If all
couplings have a similar value, the x’s acquire a common mass mx ' λxf . Then, from the
analysis of section 4.4, mx should be in the range ∼ (1, 3) TeV to trigger EWSB in case (1 ),
while lighter exotic fermions in the range ∼ (0.5, 1.5) TeV are expected in case (2 ). Mild
hierarchies between the couplings λx are well possible, allowing for fermionic comparts as
light as their current experimental bound, discussed below.

The Higgs is expected to be the lightest composite state (besides the top quark), and
its mass grows with the number Nx and the coupling λx of the exotic fermions. In the case
(1 ) mh can be as heavy as ∼ 800 GeV, while values smaller than 400 GeV are possible but
require extra tuning of the parameters. In the case (2 ) mh can lie between the current
experimental bound, 115 GeV, and ∼ 250 GeV.

Before considering specific realizations of our scenario, let us make some general con-
siderations on production and decay of the comparts. We expect them to be mostly pair-
produced via gauge interactions. This will certainly be the case for the coloured comparts.
The production cross section of a pair of heavy quarks at the LHC with

√
s = 14 TeV

is around 2 − 0.05 pb for masses 0.5 − 1 TeV [79]. For a scalar colour triplet, the pair
production cross section is of the order of 0.5− 0.01 pb for masses 0.5− 1 TeV [80]. Dou-
ble production will also be substantial for the case of weakly interacting comparts. Cross
sections for pair production of heavy leptons are around 20 fb for 500 GeV masses at the
LHC with

√
s = 14 TeV [81].

Once produced, the open decay channels for the comparts crucially depend on their
baryon number assignment. We will see that, in some models, only a few of them can
decay in SM states only, predominantly involving top quarks and (composite) longitudinal
gauge bosons. Therefore, among the rest of the comparts, the lightest is stable, with
interesting consequences for detection at LHC as well as for dark matter. However, we will
also present a model with no stable comparts, with interesting third generation diquark as
well as triquark signatures. Of course, the decay chains will depend on the details of the
mass spectrum in a model-dependent way.
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qL tR bR lL eR H

SU(3)C 3 3 3 1 1 1
SU(2)L 2 1 1 2 1 2
U(1)Y

1
6

2
3 −1

3 −1
2 −1 1

2

U(1)B
1
3

1
3

1
3 0 0 0

Table 2. The gauge and baryon number assignments of the SM fields.

qc b′ lc ν ′ e′ T

SU(3)C 3̄ 3 1 1 1 3
SU(2)L 2 1 2 1 1 1
U(1)Y −1

6 −1
3

1
2 0 −1 −1

3

U(1)BE
1
3

1
3

1
3

1
3

1
3 0

U(1)BI
−1

3
1
3 1 -1 -1 −2

3

Table 3. The gauge and baryon number assignments of the composite partner fields in the case
(1 ), that is with tR ∈ 16. Two choices for the baryon number are displayed, depending on if U(1)B

is taken to be external or internal to SO(10).

5.1 The model with tR ∈ 16 and U(1)BE

We focus first on the embedding of the composite tR in the spinor representation of K =
SO(10). It is convenient to display the quantum numbers of the SM states (table 2) and the
ones of the comparts (table 3), to promptly identify the allowed interactions between them.
However, recall that not all the interactions allowed by GSM × U(1)B will be necessarily
generated by the elementary-composite couplings introduced in section 4.2, because these
may preserve some extra symmetries, associated with additional generators of SO(10); still,
we expect these symmetries to be broken by extra (smaller) couplings of the elementary
fields to different composite operators.

We discuss in this section the model where baryon number is identified with a group
U(1)BE

external to SO(10), so that the partners of H (tR) have the same baryon number as
H (tR). In the next section we will consider the other possibility, a group U(1)BI

internal
to SO(10), more precisely identified with the (B−L)SO(10) generator. It will be shown that
the phenomenology of the comparts at colliders is substantially different in the two cases.

The effective lagrangian of the comparts contains, besides the obvious compart mass
terms and gauge interactions, the Yukawa couplings as well as higher dimensional interac-
tions. The allowed Yukawa interactions with the SM fields can be classified on the basis of
the number of comparts involved:

2 comparts : λqqLl
c
RT , λqqLq

c
RT
∗ ;

λ̃lc l
c
Lν
′
RH , λ̃ν′ν

′
Ll
c
RH
∗ , λ̃bR,ν′bRν

′
LT ; (5.1)

1 compart : λqqLb
′
RH . (5.2)
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We do not present here a list of higher dimensional operators; we will rather specify those
controlling relevant processes when needed, for example in the case of the compart e′, that
has no allowed Yukawa couplings. The second line of eq. (5.1) contains terms that are
not generated by the couplings λψ, which induce the SM and exotic fermion masses. The
reason is that such couplings accidentally respect U(1)(B−L)SO(10)

, while the terms in the
second line of eq. (5.1) do not. However, this U(1) can be broken in general by extra
elementary-composite couplings, generating such additional terms. Their coefficients λ̃ψ
should be smaller than λq or λx, not to spoil the analysis of the potential carried out in
section 4.4. However, they are important for the decay of some of the comparts.

The only compart that can be singly produced or decay into a SM final state is b′.
This can be understood in terms of the Z3 symmetry known as baryon triality, that can
be defined as B3 ≡ (3B − nC)mod 3, where nC is the number of colour indices (nC = 1 for
the 3 representation, −1 for the 3̄). All SM particles as well as b′L have B3 = 0. On the
contrary B3(qcL) = B3(T ) = 2 and B3(lcL) = B3(ν ′L) = B3(e′L) = 1. This implies that the
lightest of these comparts will be stable.

The compart b′, being a vector-like SU(2)L-singlet fermion, is not strictly a fourth
family down-type quark, but still some of the bounds on the latter apply. The coupling
in eq. (5.2) opens the decay channels b′ → bh, tWL, bZL (where the subscript L denotes
longitudinal polarizations), all with similar strength. CDF searches exclude at 95% CL
bottom-like quarks with masses mb′ . 340(270) GeV decaying to tW (bZ) [82]([83]). Also,
the CMS collaboration has already analyzed the double production of bottom-like quarks
decaying to tW , excluding masses below 360 GeV at 95% CL [84]. Both constraints are
weaker than the indirect bound mb′ & 1.4 TeV from the Zbb̄ coupling, discussed in sec-
tion 3.5. The latter limit strongly reduces the discovery prospects of b′ at the LHC. For
such high masses, single production, associated with a bottom or top quark and a spectator
jet, becomes the dominant production mechanism, with σ(mb′ = 1− 2 TeV) ∼ 0.2− 0.005
pb for

√
s = 14 TeV [85].

Concerning the other comparts, let us discuss a couple of interesting possible scenarios.
Suppose first that the pNGB T is lighter than all fermion comparts. In fact, as discussed
in section 4.4.1, we have roughly m2

T /m
2
x ∼ Ng(g2

s/16π2)(g2
ρ/λ

2
x), which is typically smaller

than one. We checked that, in the parameter region compatible with EWSB and EWPTs,
T can be the lightest compart.

Then, the fermion comparts decay into SM+T final states as

tc → bT , bc → tT , ec → tT ∗ , νc → bT ∗ , ν ′ → bT ∗ , e′ → bbt̄T ∗ . (5.3)

The decays of qc = (bc, tc) and lc = (ec, νc) go through the first two couplings in eq. (5.1).
Besides, the heaviest of the SU(2)L components of qc and lc can decay to the lightest one
and a W boson, either real or virtual. The decay of ν ′ proceeds through the last term
in eq. (5.1).37 The decay of e′ proceeds through a dim-7 operator involving four fermions

37This term involves a coupling of bR to the composite sector. We notice that such coupling could be

responsible for an important deviation of the ZbRbR coupling from the SM prediction, as explained below

eq. (3.15).
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and T . We find that the leading one is bRe′RbRtRT (various contractions understood), that
carries the NDA suppression factor (λ̃bR/gρ)

2×1/f3. Then the decay rate is small, Γ(e′ →
bbt̄T ∗) ∼ (λ̃bR/gρ)

4(m7
e′/f

6)/(4π)5 ∼ (0.5µm)−1, where we have taken for concreteness
me′ = f = 750 GeV and λ̃bR/gρ = λbR/gρ ' yb/yt ' 0.02. If this decay rate were slightly
smaller than this estimate, the displaced vertex of the e′ decay could be seen at LHCb,
that has a sensitivity of about 40µm.

The scalar colour triplet T can be either pair-produced or come from the decay chains
of the fermionic comparts. Being stable, it hadronizes into colour singlet bound states,
either neutral (T d̄ ≡ T 0) or singly charged (T ū ≡ T −) and flies out of the detector. Their
hadronic interactions are too small to lead to detection [86], although they could lead
to transitions between T 0 and T − [87]. When the T -hadrons are neutral, they will not
be seen, but they will lead to events with large missing energy, while the charged ones
behave as heavy muons undergoing ionization, an almost background-free signature. The
CDF collaboration sets a bound on the mass of a stop-like long-lived charged massive
particle (CHAMP), which very much resembles our scalar colour triplet, mt̃ > 250 GeV
at 95% CL, which applies only if the CHAMP is charged in both the inner and outer
trackers [88]. At the LHC with 100 fb−1 luminosity, the number of identifiable T ±T ∓

events is estimated in ∼ 10000− 300 for mT ± = 0.5− 1 TeV [86]. The CMS collaboration
is already putting bounds on CHAMPs [89]. In particular, for a gluino-like particle, the
bound already increased to 400 GeV.

We expect that the detection of T ± states, either from T pair production or associated
with tops and bottoms from the decay of heavier comparts, will be the cleanest signature
of this model. When T is not detected, processes like pp→ bcbc → tt̄+ /ET or pp→ tctc →
bb̄ + /ET , i.e. top or bottom pairs plus missing transverse energy, could lead to the early
discovery of the coloured fermionic comparts bc and tc, while the prospects for the colour
singlets lc, e′, ν ′ are more modest, due to the smaller production rates. In general, the best
search strategy for fermionic comparts at the LHC, in the presence of a lightest stable T
manifesting as missing energy, shall be similar to that carried out by ATLAS and CMS for
supersymmetry [90, 91], that is to look for events with jets and large missing transverse
energy, associated with a high pT lepton for those processes where the top is produced.
Consequently, bounds on the masses of the fermionic comparts could be extracted from
these searches: squarks and gluinos as heavy as ∼ 0.5 TeV are already probed by these
kind of studies.

Since the scalar colour triplet T is stable thanks to the B3 symmetry, one may wonder
if its relic density may play a role as dark matter, or more in general affect cosmology. A
relic coloured particle is very constrained by the experimental bounds on its cross-section
with nucleons, even if it manifests in the form of neutral hadrons [92–94]. In any case,
one can argue that the T relic density will be very suppressed since, besides annihilations
through the SM gauge interactions, T being a composite state interacts strongly with the
rest of the composite sector and thus it can annihilate efficiently to other lighter unstable
composites, such as longitudinal W and Z bosons [95].

Alternatively, consider the scenario where the lightest compart is either νc or ν ′. This
can be realized by taking λlc and/or λν′ sufficiently small (compared to gρ), which may be
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compatible with EWSB and EWPTs. Note that the third and fourth couplings of eq. (5.1)
induce a mixing of νc and ν ′, that plays a relevant role in their phenomenology. The lightest
combination νl is the stable compart in this scenario. The other comparts decay to SM+νl
final states. The scalar triplet decays as

T → bνl,h , tec , (5.4)

and the decay channels for the fermionic comparts are

ec →W (∗)νl,h , tc → bbνl,h , bc → tbνl,h , νh → (Z, h)νl , e′ → νl,hbt̄, (5.5)

where νh is the orthogonal combination to νl. Again, the decay channel tc → W (∗)bc

or vice versa is present. The signals at the LHC for this scenario are richer in top and
bottom quarks than the previous one. When tc, bc, or e′ are doubly produced, they yield
events with bb̄bb̄ + /ET or bb̄tt̄ + /ET , which constitute an excellent opportunity for early
LHC discovery. These final states are very similar to supersymmetric scenarios where the
third generation squarks are lighter than the other sfermions and are produced mostly from
gluino decays [96, 97].

The stable νl could be a viable dark matter candidate. In fact, the fermions lc = (ec, νc)
and ν ′ have the gauge quantum numbers of a higgsino and a bino in supersymmetry (but
ν ′ is a Dirac fermion). The analysis of dark matter phenomenology will be similar, with a
few significant differences: the higgsino-bino mixing provided by the gauge couplings to the
Higgs is replaced by lc − ν ′ mixing provided by the third and fourth Yukawa couplings in
eq. (5.1); the t-channel annihilations into SM fermions in supersymmetry proceed through
sfermion exchange, while here T is exchanged, via the first and last couplings in eq. (5.1).
Note that a purely νc dark matter would couple to the Z boson and scatter on nuclei at
the tree-level, with a spin-independent cross section [100] a few orders of magnitude larger
than the upper bound from direct dark matter searches. Therefore, νl should be mostly
made of the SU(2)L singlet state ν ′, in order to constitute a viable dark matter candidate.
Contrary to the case of the bino, the ν ′ annihilations into SM fermions are not chirality
suppressed due to its Dirac nature.

As a matter of fact, a closely related scenario has been studied in detail in a warped
extra-dimension, with SO(10) gauge symmetry in the bulk [37, 38]. There, states with
the quantum numbers of our fermionic comparts are present and their phenomenology
is discussed. In particular, the lightest zero mode with B3 6= 0 plays the role of dark
matter. Moreover, there are arguments that favour the analog of ν ′ to be the lightest, and
a detailed analysis of dark matter phenomenology is performed: while the relic density
is mostly controlled by SM gauge interactions for dark matter masses below ∼ 100 GeV,
for larger masses it becomes more relevant to consider the interactions with the lightest
Kaluza-Klein resonances of the SO(10) gauge bosons (we did not discuss such multi-TeV
vector resonances in this paper).

Finally, concerning flavour transitions in this scenario, T cannot mediate FCNCs at
tree-level, due to its non-zero B3 charge. The only compart that couples linearly to the SM
fermions is b′, that can mediate flavour transitions at loop-level; however the bounds are
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milder than the one from Zbb̄, that already requires mb′ to lie above one TeV. Loop dia-
grams involving both T and a lighter fermionic compart may provide some mild constraint.

5.2 The model with tR ∈ 16 and U(1)BI

The phenomenology turns out to be completely different if the baryon number of the
comparts is defined by the generator (B − L)SO(10). The absence of an external U(1)
symmetry introduces extra couplings that allow any of the comparts to decay to SM fields
and, in some cases, to be singly produced. With the help of tables 2 and 3 it is easy to list
all the allowed Yukawa interactions, as well as a few phenomenologically relevant dim-5
operators, coupling the comparts to the SM fields:

2 comparts : λqqLl
c
RT , λbRbRν

′
RT
∗ , λqqLq

c
RT
∗ ,

λb′λqc

gρ
qcLb
′
LH ,

λlcλe′

gρ
lcLe
′
LH ,

λlcλν′

gρ
lcLν
′
LH
∗ ;

λe′

f
e′L(/∂T ∗)tR ; (5.6)

1 comparts : λqqLb
′
RH ,

λ2
q

gρ
qLqLT , λbRbRtRT , λbRbRq

c
RH ;

λqc

f
qcL(/∂H∗)tR . (5.7)

In identifying the allowed couplings above, we worked in the natural pNGB basis, where H
and T have non-derivative interactions only if they are “contracted” with a coupling λψ,
that explicitly breaks SO(10); e.g. a coupling gρqcRtRH

∗ is not present, even if allowed by
GSM ×U(1)BI

.
Eq. (5.7) shows that T can couple to two quarks (or two antiquarks), predominantly

a bottom and a top. The coupling to light generations are much smaller, since they are
proportional to the corresponding Yukawas. Therefore, T is a so-called (third-generation)
diquark. It can be singly produced at the LHC (or Tevatron), in association with a top
and possibly also a bottom, since its coupling to light quarks is comparatively negligible.
Still, we expect T pair production through gluon fusion to be the dominant production
channel, unless its mass is unexpectedly large. The triplet decays promptly to top-bottom
final states,

T → t̄b̄ , (5.8)

either left- or right-handed, although with different branching fractions. There exist several
experimental studies on diquarks at Tevatron [102] and recently also at the LHC [103, 104],
although they focus on diquark resonant production and decay to dijets, and therefore
their bounds are easily evaded in our scenario.38 Instead, we expect the discovery of our
third-generation diquarks to come from the study of events with tt̄bb̄ finals states, when

38Nonetheless, the possibility is open that T couples to light generations more strongly than naively

expected (for instance to right-handed quarks, if their degree of compositeness is large). In that case the

diquark could be copiously produced at the LHC, where it should be seen as a resonance in the channel

pp→ jj. The exclusion limits from Tevatron and LHC collaborations are comparable, with model dependent

mass bounds mT & 1 TeV [102–104].
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pair produced, or tt̄b, from single production. We also remark that this diquark does not
mediate flavour-changing neutral currents at tree level, since it connects an up-type quark
to a down-type quark.

For what concerns the coloured fermion comparts, since b′ has the same couplings to
the SM fields as in the case of U(1)BE

, the same considerations for production and decay as
above apply. Now also the vector-like quark doublet qc couples to SM fields only, through
the last two terms in eq. (5.7). Therefore, tc and bc can be singly produced in association
with a top or a bottom, just as b′. Also, they predominantly decay to a bottom or a top
and a longitudinal EW vector boson:

tc → th, tZL, bc → tW−L . (5.9)

The lower bound on mb′ from CDF discussed above also applies to mbc . Similar searches
exist for a toplike quark, leading to the bound mtc & 260 GeV [98]. These limits could be
strengthened studying correlations between tc and b′,bc decays [99].

Finally, the colour singlet fermion comparts lc, e′ and ν ′ carry a baryon number ±1,
and therefore they must decay into three-quark final states. They actually do through T ,
as apparent from the first two couplings as well as the last one in eq. (5.6). We find that
the dominant decay channels are

νc, ν ′ → tbb , ec, e′ → tbt . (5.10)

Since these states can be significantly produced only in pairs, events with a high multiplicity
of bottom and top quarks will be generated, i.e. bb̄bb̄tt̄ or bb̄tt̄tt̄. Since t → bW , and W

decays in turn either leptonically or hadronically, we expect events with ∼ 6 b’s, plus
(same-sign) lepton(s) and/or jets, to be ideal channels for discovery. However, the required
luminosity is large, since the triquarks are produced through weak interactions only. We
believe that this model definitely deserves an accurate analysis of the third-generation
diquark and triquark signatures.

5.3 The model with tR ∈ 10 and U(1)BE

Let us discuss the phenomenology in the case when the composite tR is embedded in the
fundamental representation of K = SO(10). Since 10 is a real representation, one needs
to prevent a vector-like mass term, mρ10 10, in order to keep tR massless before EWSB.
This is achieved automatically by imposing baryon number conservation in the form of
a symmetry U(1)BE

external to SO(10). On the contrary, U(1)BI
would allow for such a

mass term and therefore it is not a viable option. We display the quantum numbers of
the comparts in table 4, to promptly identify the allowed interactions between them and
the SM particles in table 2. Note that the baryon triality of the comparts is non-zero,
B3(lc) = B3(l′) = 1 and B3(tc) = B3(T ) = 2, so that they cannot decay into SM final
states and the lightest compart is stable.

There is in fact a unique allowed Yukawa interaction between comparts and SM par-
ticles,

λqqLl
′
RT . (5.11)

– 48 –



J
H
E
P
0
6
(
2
0
1
1
)
0
2
9

lc l′ tc T

SU(3)C 1 1 3̄ 3
SU(2)L 2 2 1 1
U(1)Y

1
2 −1

2 −2
3

2
3

U(1)BE
1
3

1
3

1
3 0

Table 4. The gauge and baryon number assignments of the comparts in the case (2), that is with
tR ∈ 10. The baryon number assignment external to SO(10) is adopted.

Therefore the phenomenology is controlled also by higher dimensional operators. Let us
classify the allowed two-fermion operators of dimension five:

3 comparts :
λtc

f
tcLtRT

∗T ∗ ,

λlc

f
lcLt

c
RTH ,

λtc

f
tcLl

c
RT
∗H∗ ,

λl′

f
l′Lt

c
RTH

∗ ,
λtc

f
tcLl
′
RT
∗H ; (5.12)

2 comparts :
λqλl′

gρ

1
mρ

qL(/∂T )l′L ,
λlc

f
lcLtRT

∗H ,
λl′

f
l′LtRT

∗H∗ ,

λlc

f
lcLl

c
RH
∗H ,

λl′

f
l′Ll
′
RH
∗H ,

λl′

f
l′Ll

c
RH
∗H∗ ,

λlc

f
lcLl
′
RHH . (5.13)

The last two terms of eq. (5.13) induce a mixing between νc and ν ′ of order
(λlc/λl′)±1(v2/f2); we call νl and νh the corresponding light and heavy mass eigenstates.

When T is lighter than the fermionic comparts, the former is stable, while the latter
decay into SM+T final states, through the coupling in eq. (5.11) and those in the first line
of eq. (5.12) and eq. (5.13):

νl,h → tT ∗ , e′ → bT ∗ , ec → tWT ∗ , tc → tT ∗T ∗ . (5.14)

The intermediate decay ec → νl,hW
(∗) or vice versa is also possible, and similarly for

e′. When the tc decay channel in eq. (5.14) is not open kinematically, mtc < 2mT , tc

can decay to bbt̄T , through a dim-7 operator, much in the same way as e′ in section 5.1.
The phenomenology of the stable T is basically the same as discussed for the model of
section 5.1, since its different charge appears difficult to measure. It will appear as missing
energy, when T hadronizes into a neutral bound state (e.g. T ū), or it can also hadronize
(with similar probability) to a charged bound state (e.g. T d̄; T can be distinguished from
T ∗ because of the opposite charge of the hadron). The processes in eq. (5.14) will resemble
the supersymmetric ones for decays of neutralinos or charginos with a stable stop in the
final state, except for the decay of tc that has no counterpart in supersymmetry.

Alternatively, consider the possibility that the lightest compart is the neutral compo-
nent of lc or l′, more precisely the linear combination νl. The decays of T and of the colour
singlet comparts into SM+νl final states proceed through the channels

T → tνl,h , be′ , e′ → νl,hW
(∗) , ec → νl,hW

(∗) , νh → (Z, h)νl . (5.15)
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Finally, the only coloured fermion compart decays through the operators in the second line
of eq. (5.12), as

tc → νl,hT
∗ , (5.16)

where T ∗ and νh could either be real or virtual.
Concerning dark matter, this scenario resembles that of section 5.1 with νl as lightest

compart. In the present case νl is a mixture of the SU(2)L doublets components ν ′ and νc,
that are both higgsino-like. This makes it a problematic dark matter candidate, for the
same reason as νc in section 5.1: such a Dirac fermion scatters on nuclei at tree-level through
Z boson exchange, with a spin-independent cross section by far larger than allowed by direct
dark matter searches. One can envisage two ways out: either its number density today is
much lower than the one required to explain dark matter, e.g. due to the rapid annihilation
channel into W ’s and possible additional channels via the composite sector; or it is split into
a pseudo-Dirac pair of fermions with mass difference δm & 100keV, e.g. due to a small mix-
ing with an electroweak singlet Majorana fermion: in this case the coupling to Z of the light-
est state is suppressed by δm/m [101] and it thus becomes a viable dark matter candidate.

Let us conclude with a comparison between the two possibilities we adopted to prevent
baryon number violation. The choice between U(1)BE

and U(1)BI
determines whether T

is stable (or it decays to a lighter stable compart) or it behaves as a diquark, respectively.
We remind again that there are also alternative possibilities to suppress proton decay.
For example, if one adopts a U(1)3B+L symmetry external to SO(10), T would behave
as a composite leptoquark mostly coupled to the third generation, as studied in ref. [68].
Clearly, the phenomenology of the exotic fermions also depends on this choice. In this
paper we explored two viable possibilities, since both are consistent with gauge coupling
unification and EWSB, with sensible differences in terms of the underlying model-building,
of constraints from EWPTs, and more importantly in terms of phenomenology at colliders.
What option is chosen by nature is an experimental question, at this stage.

6 Conclusions

We performed a first comprehensive analysis of composite-Higgs scenarios that account, at
the same time, for the stability of the EW scale and for gauge coupling unification. We
characterized in detail the structure of the composite sector, required to achieve precision
unification while realizing EWSB in agreement with EWPTs. These requirements deter-
mine the spectrum of light exotic particles below the compositeness scale, to be observed
in the first few years of the LHC operation. The effective theories we presented constitute
the low energy manifestation of fully natural theories valid up to the GUT scale, since the
EW-GUT hierarchy is stabilized by the strongly coupled dynamics of the composite sector.

The way precision unification is implemented can be summarized in two essential
requirements: (i) the global symmetry group G of the composite sector, that necessarily
contains SU(3)C × SU(2)L ×U(1)Y, must be a simple group; (ii) the SM right-handed top
quark tR must be a composite state, as suggested by the large top mass. Then, under the
fairly generic assumptions discussed in section 2, it follows that the degree of unification
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at leading order is very good, comparable to the one of the minimal supersymmetric SM,
with unification scale MGUT ∼ 1015 GeV.

Given the additional requirement of custodial symmetry of the composite sector, that is
demanded by EW precision data, we found that the minimal implementation of composite
unification entails a symmetry G = SO(11), broken spontaneously at a scale of the order
of a few TeVs to K = SO(10). It is amusing that the SO(10) technology, developed to
study the GUT scale sector in weakly coupled theories of unification, is brought down to
earth in the composite GUT scenario, where it relates to the TeV scale particle content.
One remarkable example is the prediction of a colour triplet scalar T associated with the
Higgs doublet H: together they fill the composite pNGB multiplet, transforming in the 10
representation of SO(10).

We find that the price to pay to make the composite GUT scenario realistic is high,
but it is rewarded by the existence of fully viable and relatively compact models, that
address the hierarchy problem and the gauge unification as effectively as low energy super-
symmetry does, and predict very distinctive signals in forthcoming collider searches. Here
is a summary of the main difficulties to address in the construction of a composite GUT
model, and of the solutions we proposed and investigated in our analysis:

• The compositeness of tR demands for an ad hoc content of elementary chiral fermions:
the SM ones, but without the top isosinglet, plus a set of exotic ones to pair with the
SO(10) partners of tR and make them massive. We have shown how this content can
be simply understood, complementing the three SM generations with an extra SO(10)
multiplet of chiral fermions, and decoupling the top isosinglet with a mass ∼MGUT.
This provides an anomaly-free set of elementary fermions which is exactly the one
needed for the precise unification of gauge couplings. The tR partners are vector-
like fermions with masses below the compositeness scale (as much as supersymmetric
partners shall be found below the scale of supersymmetry breaking). We studied
the potentially dangerous contributions of these exotic fermions to the EW precision
parameters in two cases, tR ∈ 16 and tR ∈ 10. In the first case, the contributions
from the exotic fermion b′ to T̂ and δgbL constrain the allowed range for f and
we find the lower bound f & 500 GeV. In the second case, the contributions to
T̂ and δgbL from the exotic fermions can be suppressed, since they do not violate
SU(2)L×SU(2)R×PLR, as long as they have equal masses. The stronger constraints
come from the usual correction to Ŝ of composite-Higgs models, and from the negative
contribution to T̂ frommh. We find a lower bound f & 600 GeV, that could be relaxed
taking a large custodial violating mass difference between the exotic fermions.

• Too fast proton decay (and too large neutrino masses) must be forbidden imposing
that the composite sector and its couplings to the elementary sector respect baryon
(and lepton) number; this requirement compares with R-parity in the case of su-
persymmetry. We identified two consistent ways to assign baryon number to the
composite states, adopting a symmetry U(1)B that is either external or internal to
the SO(10) global symmetry. In particular, the lightest composite particles, that is to
say T and the partners of tR, have different baryon numbers in the two cases. Baryon
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number violation is thus forbidden in spite of a scalar sector that contains both a
Higgs doublet and a colour triplet. However, the U(1)B symmetry seems to require
that the chiral elementary fermions do not fill complete GUT multiplets: it remains
an open challenge to realize the needed splitting at the GUT scale, in analogy with
the doublet-triplet splitting problem of supersymmetric GUTs.

• The minimization of the pNGB potential Veff(H,T ) depends on the interplay be-
tween the large SM couplings, gs and yt, and two free parameters, the exotic fermion
coupling λx and the inter-composite coupling gρ. We demonstrated that Veff is com-
patible with EWSB with no colour breaking in a sizable portion of parameter space.
This region is reduced significantly by EWPTs, introducing the so-called little hierar-
chy problem. The fine-tuning is customarily estimated by the parameter ξ = v2/f2.
As discussed above, we gratifyingly find that our composite GUT models are fully
compatible with ξ ' 0.1 (10% tuning), comparable to minimal composite-Higgs mod-
els. However, a sufficiently large exotic coupling λx is necessary to achieve EWSB,
and its value is strongly correlated with ξ so that, to comply with EWPTs, λx is
restricted to a narrow range that depends on gρ.

The analysis of EWSB and EWPTs allowed us to identify the favoured range for
the parameters f , gρ and λx. This in turn determines the masses of the light composite
states: the Higgs, the triplet T , and the exotic fermions x’s. In the case with tR ∈ 16,
we find that the exotic fermions are expected to lie in the range mx = λxf ∼ 1 − 3 TeV
(assuming ξ . 0.1, to bar unnecessary fine-tuning), although some x’s are allowed to have
a significantly lighter mass. The mass of the Higgs rapidly grows with λx, so that heavier
x’s correspond to a heavier Higgs. We find mh values typically larger than 400 GeV, and
up to 800 GeV. The mass of the triplet is dominated by gluon loops, yielding mT & 1 TeV,
increasing with mρ = gρf . In the case with tR ∈ 10 lighter states are expected, with
masses as light as the experimental lower bounds. This is due to the lower value of λx
needed to realize EWSB and to the smaller number of exotic fermions, with respect to the
previous case.

Having delimited the territory of viable composite GUT models, we performed a first
survey of the phenomenology at colliders. The distinctive features of this scenario is that
the Higgs doublet and the right-handed top are composite, and they are both accompanied
by their SO(10) partners (comparts). Were these comparts identified experimentally, one
would obtain a suggestive indication in favour of grand unification. The phenomenology of
comparts strongly depends on their baryon number, since this determines, along with the
SM gauge symmetries, their couplings to the SM particles. We identify two main scenarios,
characterized by broadly different signatures:

(i) When U(1)B is chosen to be external to SO(10), the lightest compart with non-zero
baryon triality is stable. This will manifest at the LHC either as a charged track
associated to a heavy particle, or as large missing transverse energy. In both cases,
top and/or bottom quarks are expected in the final state. The stable compart, if
colourless and neutral, may account for the dark matter energy density.
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(ii) When U(1)B is internal to SO(10), there is no stable compart. The triplet T behaves
as a third generation diquark, while the colour singlet fermion comparts are third
generation triquarks: they decay respectively to two or three quarks, predominantly
tops and bottoms, what yields striking events such as pp→ bb̄bb̄tt̄ or bb̄tt̄tt̄.

Since the coloured comparts have the largest production cross sections, they could be copi-
ously produced in the initial LHC running, so they are perfect targets for early discovery.
The signals have a significant intersection with those for third generation squarks and
gluinos in the supersymmetric scenario. Still there are a few distinguishing features, as we
detailed in section 5: some comparts resemble fourth generation quarks, and there is the
possibility of no stable particles with, correspondingly, events with higher multiplicity of
tops and bottoms.

Finally, let us remark that it will be more difficult to demonstrate the composite nature
of the new particles at the LHC. Previous analyses to characterize the compositeness of
the Higgs and of the top indicate the need of precision measurements of their couplings,
that require large integrated luminosity. We expect that the compositeness of the comparts
could be deciphered conducting similar investigations. This would ultimately distinguish
them from elementary states with identical quantum numbers (e.g. a stable colour triplet
T shares many similarities with a stable stop). These compositeness measurements will
probe new physics associated to the scale f , which we expect to be close to the EW scale
by naturalness arguments, and they may be the first hint for a strongly interacting sector,
even when the resonances with mass ∼ mρ are too heavy to be directly observed.

We thus suggest that the first new physics signals at the LHC may come from (coloured)
particles associated with a strongly interacting sector, that must accompany the Higgs and
the top quark when the global symmetry of this sector unifies the EW and the colour
interactions. These new states must be lighter than the compositeness scale and their
discovery would point to a more accurate gauge coupling unification, with respect to the
SM field content. In the absence of these signals, the idea of composite GUTs with a
natural EW scale may be ruled out within a few years. If instead some of its specific
predictions were confirmed, this scenario could receive substantial support.
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