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To appear in Journal of Mathematical Sciences

APPLICATION OF A BERNSTEIN TYPE INEQUALITY TO RATIONAL

INTERPOLATION IN THE DIRICHLET SPACE

RACHID ZAROUF

Abstract. We prove a Bernstein-type inequality involving the Bergman and the Hardy norms,

for rational functions in the unit disc D having at most n poles all outside of 1

r
D, 0 < r < 1. The

asymptotic sharpness of this inequality is shown as n → ∞ and r → 1−. We apply our Bernstein-

type inequality to an effective Nevanlinna-Pick interpolation problem in the standard Dirichlet

space, constrained by the H
2- norm.

Introduction

a. Statement of the problems.

Let D = {z ∈ C : |z| < 1} be the unit disc of the complex plane and let Hol (D) be the space of
holomorphic functions on D. Let also X and Y be two Banach spaces of holomorphic functions
on the unit disc D, X, Y ⊂ Hol (D) . Here and later on, H∞ stands for the space (algebra) of
bounded holomorphic functions in the unit disc D endowed with the norm ‖f‖∞ = supz∈D |f(z)| .
We suppose that n ≥ 1 is an integer, r ∈ [0, 1) and we consider the two following problems.

Problem 1. Let Pn be the complex space of analytic polynomials of degree less or equal than
n, and

Rn, r =

{
p

q
: q ∈ Pn, d

◦p < d◦q, q(ζ) = 0 =⇒ |ζ | ≥ 1

r

}
,

(where d◦p means the degree of any p ∈ Pn) be the set of all rational functions in D of degree
less or equal than n ≥ 1, having at most n poles all outside of 1

r
D. Notice that for r = 0, we get

Rn, 0 = Pn−1. Our first problem is to search for the “best possible” constant Cn, r(X, Y ) such that

‖f ′‖X ≤ Cn, r(X, Y ) ‖f‖Y
for all f ∈ Rn, r.

Problem 2. Let σ = {λ1, ..., λn} be a finite subset of D. What is the best possible interpolation
by functions of the space Y for the traces f|σ of functions of the space X , in the worst case?
The case X ⊂ Y is of no interest, and so one can suppose that either Y ⊂ X or X and Y

are incomparable. More precisely, our second problem is to compute or estimate the following
interpolation constant

I (σ, X, Y ) = sup
f∈X, ‖f‖X≤1

inf
{
‖g‖Y : g|σ = f|σ

}
.

1
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We also define

In, r(X, Y ) = sup {I(σ, X, Y ) : card σ ≤ n , |λ| ≤ r, ∀λ ∈ σ} .

b. Motivations.

Problem 1. Bernstein-type inequalities for rational functions are applied
1.1. in matrix analysis and in operator theory (see “Kreiss Matrix Theorem” [LeTr, Sp] or [Z1,

Z4] for resolvent estimates of power bounded matrices),
1.2. to “inverse theorems of rational approximation” using the classical Bernstein decomposition

(see [Da, Pel, Pek]),
1.3. to effective H∞ interpolation problems (see [Z3] and our Theorem B below in Subsection

d), and more generally to our Problem 1.

Problem 2. We can give three main motivations for Problem 2.
2.1. It is explained in [Z3] (the case Y = H∞) why the classical interpolation problems, those of

Nevanlinna-Pick (1908) and Carathéodory-Schur (1916) (see [N2] p.231 for these two problems),
on the one hand and Carleson’s free interpolation problem (1958) (see [N1] p.158) on the other
hand, are of the nature of our interpolation problem.

2.2. It is also explained in [Z3] why this constrained interpolation is motivated by some appli-
cations in matrix analysis and in operator theory.

2.3. It has already been proved in [Z3] that for X = H2 (see Subsection c. for the definition of
H2) and Y = H∞,

(1)
1

4
√
2

√
n√

1− r
≤ In, r

(
H2, H∞) ≤

√
2

√
n√

1− r
.

The above estimate (1) answers a question of L. Baratchart (private communication), which is
part of a more complicated question arising in an applied situation in [BL1] and [BL2]: given a
set σ ⊂ D, how to estimate I (σ, H2, H∞) in terms of n = card(σ) and maxλ∈σ |λ| = r only?

c. The spaces X and Y considered here.

Now let us define some Banach spaces X and Y of holomorphic functions in D which we will
consider throughout this paper. From now on, if f ∈ Hol(D) and k ∈ N, f̂(k) stands for the kth

Taylor coefficient of f.

1. The standard Hardy space H2 = H2(D),

H2 =

{
f ∈ Hol (D) : ‖f‖2H2 = sup

0≤r<1

ˆ

T

|f(rz)|2 dm(z) < ∞
}
,
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where m stands for the normalized Lebesgue measure on T = {z ∈ C : |z| = 1}. An equivalent
description of the space H2 is

H2 =



f =

∑

k≥0

f̂(k)zk : ‖f‖H2 =

(
∑

k≥0

∣∣∣f̂(k)
∣∣∣
2
) 1

2

< ∞



 .

2. The standard Bergman space L2
a = L2

a (D) ,

L2
a =

{
f ∈ Hol (D) : ‖f‖2L2

a
=

1

π

ˆ

D

|f(z)|2 dA(z) < ∞
}
,

where A is the standard area measure, also defined by

L2
a =



f =

∑

k≥0

f̂(k)zk : ‖f‖L2
a
=

(
∑

k≥0

∣∣∣f̂(k)
∣∣∣
2 1

k + 1

) 1

2

< ∞



 .

3. The analytic Besov space B
1

2

2, 2 (also known as the standard Dirichlet space) defined by

B
1

2

2, 2 =



f =

∑

k≥0

f̂(k)zk : ‖f‖
B

1
2

2, 2

=

(
∑

k≥0

(k + 1)
∣∣∣f̂(k)

∣∣∣
2
) 1

2

< ∞



 .

Then if f ∈ B
1

2

2, 2, we have the following equality

(2) ‖f‖2
B

1

2

2, 2

= ‖f ′‖2L2
a
+ ‖f‖2H2 ,

which establishes a link between the spaces B
1

2

2, 2 and L2
a.

d. The results. Here and later on, the letter c denotes a positive constant that may change from
one step to the next. For two positive functions a and b, we say that a is dominated by b, denoted
by a = O(b), if there is a constant c > 0 such that a ≤ cb; and we say that a and b are comparable,
denoted by a ≍ b, if both a = O(b) and b = O(a) hold.

Problem 1. Our first result (Theorem A, below) is a partial case (p = q = 2, s = 1
2
) of the

following K. Dyakonov’s result [Dy]: if p ∈ [1, ∞), s ∈ (0, +∞), q ∈ [1, +∞], then there exists a
constant cp, s > 0 such that

(3) Cn, r
(
Bs−1

p, p , H
q
)
≤ cp, s sup ‖B′‖sHγ ,

where γ is such that s
γ
+ 1

q
= 1

p
, and the supremum is taken over all finite Blaschke products B of

order n with n zeros outside of 1
r
D. Here Bs

p, p stands for the Hardy-Besov space which consists of
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analytic functions f on D satisfying

‖f‖Bs
p, p

=
n−1∑

k=0

∣∣f (k)(0)
∣∣+
ˆ

D

(1− |w|)(n−s)p−1
∣∣f (n)(w)

∣∣p dA(w) < ∞.

For the (tiny) partial case considered here, our proof is different and the constant c2, 1

2

is asymp-

totically sharp as r tends to 1− and n tends to +∞.

Theorem A. Let n ≥ 1 and r ∈ [0, 1). We have

(i)

(4) ã(n, r)

√
n

1− r
≤ Cn, r

(
L2
a, H

2
)
≤ Ã(n, r)

√
n

1− r
,

where

ã(n, r) ≥
(
1− 1− r

n

) 1

2

and Ã(n, r) ≤
(
1 + r +

1√
n

) 1

2

.

(ii) Moreover, the sequence (Cn, r (L2
a, H

2)√
n

)

n≥1

is convergent and there exists a limit

(5) lim
n→∞

Cn, r (L2
a, H

2)√
n

=

√
1 + r

1− r
.

for all r ∈ [0, 1).

Notice that it has already been proved in [Z2] that there exists a limit

(6) lim
n→∞

Cn, r (H2, H2)

n
=

1 + r

1− r
,

for every r, 0 ≤ r < 1.

Problem 2. Looking at motivation 2.3, we replace the algebra H∞ by the Dirichlet space B
1

2

2, 2.

We show that the “gap” between X = H2 and Y = H∞ (see (1)) is asymptotically the same as

the one which exists between X = H2 and Y = B
1

2

2, 2. In other words,

(7) In, r

(
H2, B

1

2

2, 2

)
≍ In, r

(
H2, H∞) ≍

√
n

1− r
.
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More precisely, we prove the following Theorem B, in which the right-hand side inequality of (10)
is a consequence of the right-hand side inequality of (4) in the above Theorem A.

Theorem B. Let n ≥ 1, and r ∈ [0, 1). Then,

(8) In, r

(
H2, B

1

2

2, 2

)
≤
[(
Cn, r

(
L2
a, H

2
))2

+ 1
] 1

2

.

Let λ ∈ D and the corresponding one-point interpolation set σn, λ = {λ, λ, ..., λ}︸ ︷︷ ︸
n

. We have,

(9) I
(
σn, λ, H

2, B
1

2

2, 2

)
≥
√

n

1− |λ|

[
(1 + |λ|)2 − 2

n
− 2|λ|

n

2(1 + |λ|)

] 1

2

.

In particular,

(10)

[
1 + r

2

(
1− 1

n

)] 1

2

√
n

1− r
≤ In, r

(
H2, B

1

2

2, 2

)
≤
(
1 + r +

1√
n
+

1− r

n

) 1

2

√
n

1− r
,

(11)

√
1+r
2

1− r
≤ lim inf

n→∞

In, r

(
H2, B

1

2

2, 2

)

√
n

≤ lim sup
n→∞

In, r

(
H2, B

1

2

2, 2

)

√
n

≤
√

1 + r

1− r
,

and

(12)√
2

2
≤ lim inf

r→1−
lim inf
n→∞

√
1− r

n
In, r

(
H2, B

1

2

2, 2

)
≤ lim sup

r→1−
lim sup
n→∞

√
1− r

n
In, r

(
H2, B

1

2

2, 2

)
≤

√
2.

In the next Section, we first give some definitions introducing the main tools used in the proofs
of Theorem A and Theorem B. After that, we prove these theorems.

Proofs of Theorems A and B

From now on, if σ = {λ1, ..., λn} ⊂ D is a finite subset of the unit disc, then

Bσ =

n∏

j=1

bλj



APPLICATION OF A BERNSTEIN TYPE INEQUALITY TO RATIONAL INTERPOLATION IN THE DIRICHLET SPACE6

is the corresponding finite Blaschke product where bλ = λ−z
1−λz

, λ ∈ D. In Definitions 1, 2, 3 and

in Remark 4 below, σ = {λ1, ..., λn} is a sequence in the unit disc D and Bσ is the corresponding
Blaschke product.

Definition 1. Malmquist family. For k ∈ [1, n], we set fk = 1
1−λkz

, and define the family

(ek)1≤k≤n, (which is known as Malmquist basis, see [N1, p.117]), by

(13) e1 =
f1

‖f1‖2
and ek =

(
k−1∏

j=1

bλj

)
fk

‖fk‖2
,

for k ∈ [2, n]; we have ‖fk‖2 = (1− |λk|2)−1/2
.

Definition 2. The model space KBσ
. We define KBσ

to be the n-dimensional space:

(14) KBσ
=
(
BσH

2
)⊥

= H2 ⊖ BσH
2.

Definition 3. The orthogonal projection PBσ
on KBσ

. We define PBσ
to be the orthogonal

projection of H2 on its n-dimensional subspace KBσ
.

Remark 4. The Malmquist family (ek)1≤k≤n corresponding to σ is an orthonormal basis of KBσ
.

In particular,

(15) PBσ
=

n∑

k=1

(·, ek)H2 ek,

where (·, ·)H2 means the scalar product on H2.

Proof of Theorem A.

Proof of (i). 1) We fist prove the the right-hand side inequality of (4). Using both

Cauchy-Schwarz inequality and the fact that f̂ ′(k) = (k + 1)f̂(k + 1) for all k ≥ 0, we get

‖f ′‖2L2
a
=
∑

k≥0

∣∣∣f̂ ′(k)
∣∣∣
2

k + 1
=
∑

k≥0

(k + 1)2
∣∣∣f̂(k + 1)

∣∣∣
2

k + 1
=

=
∑

k≥1

k
∣∣∣f̂(k)

∣∣∣
2

≤
(
∑

k≥1

k2
∣∣∣f̂(k)

∣∣∣
2
) 1

2

(
∑

k≥1

∣∣∣f̂(k)
∣∣∣
2
) 1

2

=

= ‖f ′‖H2 ‖f‖H2 ≤ Cn, r
(
H2, H2

)
‖f‖2H2 ,

and hence,

‖f ′‖L2
a
≤
√

Cn, r (H2, H2) ‖f‖H2 ,
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which means

Cn, r
(
L2
a, H

2
)
≤
√
Cn, r (H2, H2).

Then it remains to use [Z2, p.2]:

Cn, r
(
H2, H2

)
≤
(
1 + r +

1√
n

)
n

1− r
,

for all n ≥ 1 and r ∈ [0, 1).

2) The proof of the left-hand side inequality of (4) repeates the one of [Z2, (i)] (for the left-hand
side inequality) excepted that this time, we replace the Hardy norm ‖·‖H2 by the Bergman one

‖·‖L2
a
. Indeed, we use the same test function en =

(1−r2)
1
2

1−rz
bn−1
r (the nth vector of the Malmquist

family associated with the one-point set σn, r = {r, r, ..., r}︸ ︷︷ ︸
n

see Definition 1) and prove by the

same changing of variable ◦br (in the integral on the unit disc D which defines the L2
a−norm) that

‖e′n‖
2
L2
a
=

n

1− r

(
1− 1− r

n

)
,

which gives

Cn, r
(
L2
a, H

2
)
≥
√

n

1− r

(
1− 1− r

n

) 1

2

.

Here are the details of the proof. We have en ∈ Kbnr and ‖en‖H2 = 1, (see [N1], Malmquist-Walsh
Lemma, p.116). Moreover,

e′n =
r (1− r2)

1

2

(1− rz)2
bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
b′rb

n−2
r =

= − r

(1− r2)
1

2

b′rb
n−1
r + (n− 1)

(1− r2)
1

2

1− rz
b′rb

n−2
r ,

since b′r =
r2−1

(1−rz)2
. Then,

e′n = b′r

[
− r

(1− r2)
1

2

bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
bn−2
r

]
,

and

‖e′n‖
2
L2
a
=

1

2π

ˆ

D

|b′r(w)|
2

∣∣∣∣∣−
r

(1− r2)
1

2

(br(w))
n−1 + (n− 1)

(1− r2)
1

2

1− rw
(br(w))

n−2

∣∣∣∣∣

2

dm(w) =
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=
1

2π

ˆ

D

|b′r(w)|
2 ∣∣(br(w))n−2

∣∣2
∣∣∣∣∣−

r

(1− r2)
1

2

br(w) + (n− 1)
(1− r2)

1

2

1− rw

∣∣∣∣∣ dm(w),

which gives, using the variables u = br(w),

‖e′n‖
2
L2
a
=

1

2π

ˆ

D

∣∣un−2
∣∣2
∣∣∣∣∣−

r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− rbr(u)

∣∣∣∣∣

2

dm(u).

But 1− rbr =
1−rz−r(r−z)

1−rz
= 1−r2

1−rz
and b′r ◦ br = r2−1

(1−rbr)
2 = − (1−rz)2

1−r2
. This implies

‖e′n‖
2
L2
a
=

1

2π

ˆ

D

∣∣un−2
∣∣2
∣∣∣∣∣−

r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− r2
(1− ru)

∣∣∣∣∣

2

dm(u) =

=
1

(1− r2)

1

2π

ˆ

D

∣∣un−2
∣∣2 |(−ru+ (n− 1)(1− ru))|2 dm(u),

which gives

‖e′n‖L2
a
=

1

(1− r2)
1

2

‖ϕn‖2 ,

where ϕn = zn−2 (−rz + (n− 1)(1− rz)) . Expanding, we get

ϕn = zn−2 (−rz + n− 1 + rz − nrz) =

= zn−2 (−nrz + n− 1) = (n− 1)zn−2 − nrzn−1,

and

‖e′n‖
2
L2
a
=

1

(1− r2)

(
(n− 1)2

n− 1
+

n2

n
r2
)

=
1

(1− r2)
(n(1 + r)− 1)

=
n

(1− r) (1 + r)

(
(1 + r)− 1

n

)
=

n

1− r

(
1− 1− r

n

)
,

which gives

Cn, r
(
L2
a, H

2
)
≥
√

n

1− r

(
1− 1− r

n

) 1

2

.

Proof of (ii). This is again the same proof as [Z2, (ii)] (the three steps). More precisely in Step 2,
we use the same test function

f =

s+2∑

k=0

(−1)ken−k,

(where s = (sn) is defined in [Z2, p.8]), and the same changing of variable ◦br in the integral on
D. Here are the details of the proof.
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Step 1. We first prove the right-hand-side inequality:

lim sup
n→∞

1√
n
Cn, r

(
L2
a, H

2
)
≤
√

1 + r

1− r
,

which becomes obvious since
1√
n
Cn, r

(
L2
a, H

2
)
≤ 1√

n

√
Cn, r (H2, H2) , .

and
1√
n

√
Cn, r (H2, H2) →

√
1 + r

1− r
,

as n tends to infinity, see [Z1] p. 2.

Step 2. We now prove the left-hand-side inequality:

lim inf
n→∞

1√
n
Cn, r

(
L2
a, H

2
)
≥
√

1 + r

1− r
.

More precisely, we show that

lim inf
n→∞

1√
n
‖D‖(

Kbnr
, ‖·‖

L2
a

)

→H2
≥
√

1 + r

1− r
.

Let f ∈ Kbnr . Then,

f ′ = (f, e1)H2

r

(1− rz)
e1 +

n∑

k=2

(k − 1) (f, ek)H2

b′r
br
ek + r

n∑

k=2

(f, ek)H2

1

(1− rz)
ek =

= r

n∑

k=1

(f, ek)H2

1

(1− rz)
ek +

1− r2

(1− rz)(z − r)

n∑

k=2

(k − 1) (f, ek)H2 ek =

=
r (1− r2)

1

2

(1− rz)2

n∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
3

2

(1− rz)2(z − r)

n∑

k=2

(k − 1) (f, ek)H2 b
k−1
r =

= −b′r

[
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

z − r

n∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

]
.

Now using the change of variables v = br(u), we get

‖f ′‖2L2
a
=

ˆ

D

|b′r(u)|
2

∣∣∣∣∣
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

u− r

n∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

∣∣∣∣∣

2

du =

=

ˆ

D

∣∣∣∣∣
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

br(v)− r

n∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣∣∣∣∣

2

dv.
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Now, br − r = r−z−r(1−rz)
1−rz

= z(r2−1)
1−rz

, which gives

‖f ′‖2L2
a
=

ˆ

D

∣∣∣∣∣
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

v(r2 − 1)
(1− rv)

n∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣∣∣∣∣

2

dv =

=
1

1− r2

ˆ

D

∣∣∣∣∣r
n∑

k=1

(f, ek)H2 v
k−1 − (1− rv)

n∑

k=2

(k − 1) (f, ek)H2 v
k−2

∣∣∣∣∣

2

dv =

=
1

1− r2

ˆ

D

∣∣∣∣∣r
n−1∑

k=0

(f, ek+1)H2 v
k − (1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∣∣∣∣∣

2

dv.

Thus,

(16)
1

‖f‖
H2

√
n(1+r)



∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

+

∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a


 ≥

≥
√

1− r

n

‖f ′‖L2
a

‖f‖H2

≥

≥ 1

‖f‖
H2

√
n(1+r)



∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

−
∥∥∥∥∥r

n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a


 .

Now,

(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k =

=

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k − r

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k+1 =

=

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k − r

n−1∑

k=1

k (f, ek+1)H2 v
k =

= (f, e2)H2 + 2 (f, e3)H2 v +

n−2∑

k=2

[(k + 1) (f, ek+2)H2 − rk (f, ek+1)H2 ] v
k+

−r
[
(f, e2)H2 v + (n− 1) (f, en)H2 v

n−1
]
=

= (f, e2)H2 + [(f, e3)H2 − r (f, e2)H2 ] v +

n−2∑

k=2

[(k + 1) (f, ek+2)H2 − rk (f, ek+1)H2 ] v
k+

−r(n− 1) (f, en)H2 v
n−1,
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which gives

(17)

∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

=

= |(f, e2)H2 |2 +
1

2
|(f, e3)H2 − r (f, e2)H2|2+

+
1

n
r4(n− 1)2 |(f, en)H2 |2 +

n−2∑

k=2

∣∣∣∣(f, ek+2)H2 −
rk

k + 1
(f, ek+1)H2

∣∣∣∣
2

.

On the other hand,

(18)

∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a

≤ r

(
n−1∑

k=0

1

k + 1
|(f, ek+1)H2 |2

)1/2

≤ r ‖f‖H2 ,

Now, let s = (sn) be a sequence of even integers such that

limn→∞sn = ∞ and sn = o(n) as n → ∞.

Then we consider the following function f in Kbnr :

f =
s+2∑

k=0

(−1)ken−k.

Applying (17) with such an f , we get
∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

=

= r4
(n− 1)2

n
+

+
n−2∑

l=2

(n− l + 1)

∣∣∣∣(f, en−l+2)H2 −
r(n− l)

n− l + 1
(f, en−l+1)H2

∣∣∣∣
2

,

setting the change of index l = n− k in the last sum. This finally gives
∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

=
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= r4
(n− 1)2

n
+

s+1∑

l=2

(n− l + 1)

∣∣∣∣1 +
r(n− l)

n− l + 1

∣∣∣∣
2

=

= r4
(n− 1)2

n
+

s+1∑

l=2

(n− l + 1)

[
1 + r

(
1− 1

n− l + 1

)]2
,

and ∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

≥

≥ r4
(n− 1)2

n
+ (s+ 1− 2 + 1)(n− (s+ 1) + 1)

[
1 + r

(
1− 1

n− (s+ 1) + 1

)]2
=

= r4
(n− 1)2

n
+ s(n− s)

[
1 + r

(
1− 1

n− s

)]2
.

In particular,

∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

≥ s(n− s)

[
1 + r

(
1− 1

n− s

)]2
.

Now, since ‖f‖2H2 = sn + 3, we get

lim inf
n→∞

1

n ‖f‖2H2

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

2

≥

≥ lim inf
n→∞

1

n ‖f‖2H2

‖f‖2H2

(
n− ‖f‖2H2

) [
1 + r

(
1− 1

n− s

)]2
=

= lim
n→∞

(
1− sn

n

)[
1 + r

(
1− 1

n− s

)]2
= (1 + r)2.

On the other hand, applying (18) with this f, we obtain

lim
n→∞

1√
n ‖f‖H2

∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a

= 0.

Thus, we can conclude passing after to the limit as n tends to +∞ in (16), that

lim inf
n→∞

√
1− r

n

‖f ′‖L2
a

‖f‖H2

=
1√
1 + r

lim inf
n→∞

1
‖f‖

H2

√
n

∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

≥
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≥ 1 + r√
1 + r

=
√
1 + r,

and

lim inf
n→∞

√
1− r

n
‖D‖Kbnr

→H2 ≥ lim inf
n→∞

√
1− r

n

‖f ′‖L2
a

‖f‖H2

≥
√
1 + r.

Step 3. Conclusion. Using both Step 1 and Step 2, we get

lim sup
n→∞

√
1− r

n
Cn, r

(
L2
a, H

2
)
= lim inf

n→∞

√
1− r

n
Cn, r

(
L2
a, H

2
)
= 1 + r,

which means that the sequence
(

1√
n
Cn, r (L2

a, H
2)
)
n≥1

is convergent and

lim
n→∞

1√
n
Cn, r

(
L2
a, H

2
)
=

√
1 + r

1− r
.

�

Proof of Theorem B.

Proofs of inequality (8) and of the right-hand side inequality of (10). Let σ be a sequence in D,

and B = Bσ the finite Blaschke product corresponding to σ. If f ∈ H2, we use the same function
g as in [Z3] which satisfies g|σ = f|σ. More precisely, let g = PBf ∈ KB (see Definitions 2, 3 and
Remark 4 above for the definitions of KB and PB). Then g− f ∈ BH2 and using the definition of
Cn, r (L2

a, H
2) ,

‖g′‖2L2
a
≤
(
Cn, r

(
L2
a, H

2
))2 ‖g‖2H2 .

Now applying the identity (2) to g we get

‖g‖2
B

1

2

2, 2

≤
[(
Cn, r

(
L2
a, H

2
))2

+ 1
]
‖g‖2H2 .

Using the fact that ‖g‖H2 = ‖PBf‖H2 ≤ ‖f‖H2 , we finally get

‖g‖
B

1
2

2, 2

≤
[(
Cn, r

(
L2
a, H

2
))2

+ 1
] 1

2 ‖f‖H2 ,

and as a result,

I
(
σ, H2, B

1

2

2, 2

)
≤
[(
Cn, r

(
L2
a, H

2
))2

+ 1
] 1

2

.

It remains to apply the right-hand side inequality of (4) in Theorem A to prove the right-hand
side one of (10).

Proof of inequality (9). 1) We use the same test function

f =

n−1∑

k=0

(1− |λ|2) 1

2 bkλ
(
1− λz

)−1
,
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as the one used in the proof of [Z3, Theorem B] (the lower bound, page 11 of [Z3]). f being the
sum of n elements of H2 which are an orthonormal family known as Malmquist’s basis (associated
with σn, λ = {λ, λ, ..., λ}︸ ︷︷ ︸

n

, see Remark 4 above or [N1, p.117]) , we have ‖f‖2H2 = n.

2) Since the spacesH2 andB
1

2

2, 2 are rotation invariant, we have I
(
σn, λ, H

2, B
1

2

2, 2

)
= I

(
σn, µ, H

2, B
1

2

2, 2

)

for every λ, µ with |λ| = |µ| = r. Let λ = −r. To get a lower estimate for ‖f‖
B

1
2

2, 2/b
n
λ
B

1
2

2, 2

consider

g such that f − g ∈ bnλHol(D), i.e. such that f ◦ bλ − g ◦ bλ ∈ znHol(D).

3) First, we notice that

‖g ◦ bλ‖2
B

1

2

2, 2

=
∥∥∥(g ◦ bλ)

′

∥∥∥
2

L2
a

+ ‖g ◦ bλ‖2H2 = ‖bλ.(g′ ◦ bλ)‖2L2
a
+ ‖g ◦ bλ‖2H2 =

=

ˆ

D

|bλ(u)|2 |g′(bλ(u))|2 du+ ‖g ◦ bλ‖2H2 =

ˆ

D

|g′(w)|2 dw + ‖g ◦ bλ‖2H2 ,

using the changing of variable w = bλ(u). We get

‖g ◦ bλ‖2
B

1

2

2, 2

= ‖g′‖2L2
a
+ ‖g ◦ bλ‖2H2 = ‖g‖2

B
1

2

2, 2

+ ‖g ◦ bλ‖2H2 − ‖g‖2H2 ,

and

‖g‖2
B

1

2

2, 2

= ‖g‖2H2 + ‖g ◦ bλ‖2
B

1

2

2, 2

− ‖g ◦ bλ‖2H2 =

≥ ‖g ◦ bλ‖2
B

1

2

2, 2

− ‖g ◦ bλ‖2H2 .

Now, we notice that

f ◦ bλ =

n−1∑

k=0

zk
(1− |λ|2) 1

2

1− λbλ(z)
=
(
1− |λ|2

)− 1

2

(
1 + (1− λ)

n−1∑

k=1

zk − λzn

)
=

= (1− r2)−
1

2

(
1 + (1 + r)

n−1∑

k=1

zk + rzn

)
.

4) Next,

‖g ◦ bλ‖2
B

1

2

2, 2

− ‖g ◦ bλ‖2H2 =
∑

k≥1

k
∣∣∣ĝ ◦ bλ(k)

∣∣∣
2

≥

≥
n−1∑

k=1

k
∣∣∣ĝ ◦ bλ(k)

∣∣∣
2

=

n−1∑

k=1

k
∣∣∣f̂ ◦ bλ(k)

∣∣∣
2

,
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since ĝ ◦ bλ(k) = f̂ ◦ bλ(k) , ∀ k ∈ [0, n− 1]. This gives

‖g ◦ bλ‖2
B

1

2

2, 2

− ‖g ◦ bλ‖2H2 ≥
1

1− r2

(
(1 + r)2

n−1∑

k=1

k

)
=

=
(1 + r)2

1− r2
n(n− 1)

2
=

1 + r

1− r

n(n− 1)

2
=

1 + r

1− r

(n− 1)

2
‖f‖2H2 ,

for all n ≥ 2 since ‖f‖2H2 = n. Finally,

‖g‖2
B

1
2

2, 2

≥ n

1− r

1 + r

2

(
1− 1

n

)
‖f‖2H2 .

In particular,

In, r

(
H2, B

1

2

2, 2

)
≥
√

n

1− r

[
1 + r

2

(
1− 1

n

)] 1

2

.

�

Some comments.

a. Extension of Theorem A to spaces Bs
2, 2, s ≥ 0. Using the techniques developped in

the proof of our Theorem A (combined with complex interpolation (between Banach spaces) and
a reasoning by induction), it is possible both to precise the sharp numerical constant c2, s in K.
Dyakonov’s result (3) (mentioned above in paragraph d. of the Introduction) and to prove the
asymptotic sharpness (at least for s ∈ N∪ 1

2
N) of the right-hand side inequality of (3). In the same

spirit, we would obtain that there exists a limit:

(19) lim
n→∞

Cn, r
(
Bs−1

2, 2 , H
2
)

ns
=

(
1 + r

1− r

)s

.

Our Theorem A corresponds to the case s = 1
2
.

b. Extension of Theorem B to spaces Bs
2, 2, s ≥ 0. The proof of the upper bound in our

Theorem B can be extended so as to give an upper (asymptotic) estimate of the interpolation
constant In, r

(
H2, Bs

2, 2

)
, s ≥ 0. More precisely, applying K. Dyakonov’s result (3) (mentioned

above in paragraph d. of the Introduction) we get

(20) In, r

(
H2, Bs

2, 2

)
≤ c̃s

(
n

1− r

)s

, with c̃s ≍ c2, s,

where c2, s is defined in (3) and precised in (19). Looking at the above comment 1, c̃s ≍ (1+ r)s for
sufficiently large values of n. Our Theorem B corresponds again to the case s = 1

2
. In this Theorem

B, we prove the sharpness of the right-hand side inequality in (20) for s = 1
2
. However, for the

general case s ≥ 0, the asymptotic sharpness of
(

n
1−r

)s
as r → 1− and n → ∞ is less obvious.

Indeed, the key of the proof (for the sharpness) is based on the property that the Dirichlet norm
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(the one of B
1/2
2, 2 ) is “nearly” invariant composing by an elementary Blaschke factor bλ, as this is

the case for the H∞ norm. A conjecture given by N. K. Nikolski is the following:

(21) In, r

(
H2, Bs

2, 2

)
≍
{ ns

√
1−r

if s ≥ 1
2(

n
1−r

)s
if 0 ≤ s ≤ 1

2

,

and is due to the position of the spaces Bs
2, 2, s ≥ 0 with respect to the algebra H∞.
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